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Melatonin is a neuro-hormone with conserved roles in evolution. Initially synthetized as an antioxidant molecule, it
has gained prominence as a key molecule in the regulation of the circadian rhythm. Melatonin exerts its effect by
binding to cytoplasmic and intra-nuclear receptors, and is able to regulate the expression of key mediators of differ-
ent signaling pathways. This ability has led scholars to investigate the role of melatonin in reversing the process of
carcinogenesis, a process in which many signaling pathways are involved, and regulating these pathways may be of
clinical significance. In this review, the role of melatonin in regulating multiple signaling pathways with important
roles in cancer progression is discussed, and evidence regarding the beneficence of targeting malignancies with this

Introduction

N-acetyl-5-methoxy tryptamine or melatonin is a neuro-
hormone which is synthesized from the metabolism of
L-tryptophan [1]. It is thought that this molecule was
initially synthetized by primitive uni-cellular organisms
in order to fade of the toxic effects of oxidant molecules
in the environment, but has gained more sophisticated
roles during evolution, such as regulating the day and
night cycle, sexual selection, environmental tolerance
and immunomodulatory roles [2, 3]. One important
function of melatonin which is obtained early in the pro-
cess of evolution and has been conserved during it is
the ability of melatonin to affect various signaling path-
ways. This is done by both receptors mediated and non-
receptor mediated pathways. Melatonin is able to affect
the singling output of pathways involved in inflammation
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by acting as an anti-oxidant molecule. It can also activate
its receptors located at the cellular membrane and in the
nucleus of the cells, altering normal cellular functions
and affecting the expression of key mediators of different
signaling pathways [4].

As mentioned, there is a decisive relation between
outcomes of melatonin administration and its effects on
signaling pathways. This relation is further emphasized
in pathologies in which these pathways are involved and
are even considered as etiologic factors for disease emer-
gence. One such condition is cancer [5, 6]. Cancer is
characterized by uncontrolled cellular proliferation, eva-
sion of apoptosis, cellular migration and metastasis and
changes to normal intrinsic cellular functions, such as
energy metabolism [7]. These characteristics are depend-
ent on the abnormally increased or inhibited signaling
outputs of pathways which are effective in the normal
regulation of cell functions. Examples of these pathways
are the PI3K/AKT/m-TOR pathway, growth factor sign-
aling pathway, NOTCH pathway and more (Table 1).
These interactions between malignant transformation
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and signaling pathways and the effects melatonin exerts
on them, has led researchers to examine if melatonin has
any significant anti-cancer effects mediated by regulating
signaling pathways (Fig. 1).

Anti-cancer effects of melatonin
Much consideration has been given towards the anti-can-
cer effects of melatonin. Early studies had found that mel-
atonin could inhibit cell proliferation in in vitro cultures
of malignant cells, but the exact mechanism of this effect
was not known [4]. More studies clarified that melatonin
exerts its anti-cancer effects in both direct and in-direct
methods. Indirectly, it acts as a free radical scavenger
and can be used as a chemopreventive agent for cancer
[8]. It can further protect the myeloid system of the bone
marrow, and help regulate the immune system, contrib-
uting to an optimal immune response to the tumor [9].
Melatonin is shown to potentiate cellular immunity by
increasing the secretion of interleukin-2, interleukin-10
and interferon-y, which in term activate the T cells [10].
Melatonin also contributes to tumor behavior by inter-
acting with the tumor microenvironment, which has
critical functions in suppressing or promoting carcino-
genesis [11]. A study by Sonehara et al. showed that mel-
atonin was able to promote apoptosis in breast cancer
cells being under constant acidosis [12].

The direct anti-cancer effects of melatonin consist of its
effects on cell functions such as cellular proliferation and
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apoptosis, and processes such as angiogenesis. Melatonin
is shown to affect DNA damage response (DDR), a sign-
aling pathway which can ultimately control cell prolifera-
tion and apoptosis [13]. It is shown that aberrations in
DDR are associated with cancer, and melatonin is a bene-
ficial agent to reverse the effects of these aberrations [14].
Other studies also showed that melatonin could interact
with the direct mediators of cell cycle arrest, apoptosis
and autophagy, preventing the survival of neoplastic cells.
Melatonin is also effective in decreasing the angiogen-
esis which is initiated by the malignant cells. As tumors
enlarge, they outgrow their pre-existing vasculature,
and end up in an environment with low concentrations
of oxygen and increased concentrations of cellular waste
and debris. These changes stimulate the malignant cells
to initiate angiogenesis, which is mediated by the activa-
tion of Hypoxia-inducible factor 1 and the subsequent
increase in the amounts of vascular endothelial growth
factor (VEGF) [15]. These two mediators initiate a pro-
cess which leads to formation of new vessels with leaky
membranes, which enable uncontrolled passage of sub-
stances and cells, ultimately facilitating distant metasta-
sis, and also enable malignant cells to overcome the harsh
environment [16]. Melatonin is shown to be a potent
inhibitor of angiogenesis, by decreasing the expression of
VEGEF, HIF-1 and the regulation of other mediators [17].
Another mechanism by which melatonin inhibits can-
cer progression is by antagonizing the effect of sexual
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Fig. 1 A summary of interaction between melatonin and various signaling pathways
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hormones on hormonal receptors, such as those found
on breast cancer cells, ovarian cancer cells and prostate
cancer cells [18]. Stimulation by sex hormones has been
proven to increase the cellular proliferation of the afore-
mentioned cancers, and some therapy regimens consist
of more conventional agents with anti-estrogenic effects,
such as tamoxifen [19]. Recent proposed therapy regi-
mens have mixed melatonin with tamoxifen and similar
agents, with the results showing a promise for more com-
prehensive trials in the future [20].

PI3K/Akt/mTOR signaling pathway

PI3P is the phosphorylated form of phosphatidylinositol
4,5 diphosphate (PI2P) by PI3K and is dephosphorylated
by PTEN, a tumor suppressor protein with the major
inhibitory effects on the pathway [21]. PDK1 activated by
the PI3P, phosphorylates Akt, which is also activated by
mTOR complex 2. Akt in turn activates mTOR complex
1 in two steps by inactivating both TSC2 and PRAS40. At
last, mMTOR complex 1 induces divergent cascades lead-
ing to different outcomes [22].

Targeting in cancer

The PI3K/Akt/mTOR pathway has a crucial role in cell
survival and proliferation as well as in, differentiation,
apoptosis, tumorigenesis, angiogenesis, autophagy and
metastasis by means of attenuating epithelial-mesenchy-
mal transition (EMT). Ginkgolic acid and curcumin have
been used to inhibit the PI3K/Akt/mTOR axis of EMT in
lung cancer metastasis [23, 24]. Inhibition of the PI3k/
Akt/mTOR pathway by aflatoxin B2 and E. adenophorum
leads to pro-autophagic state and apoptosis in the hepat-
ocytes [25]. An in vitro study revealed that by inhibiting
the pathway, apigenin induces apoptosis in the hepatocel-
lular carcinoma cells [26]. Reviews have proposed that
inhibitors of the pathway may be efficacious in preven-
tion or treatment of age-related macular degeneration or
proliferative diabetic retinopathy [27, 28]. The blockade
of PI3K by LY294002 results in G1 cell cycle arrest hav-
ing synergistic effect with chemotherapeutics acting in
this phase and antagonistic encounter with therapeutics
interfering S or G2 phase [29, 30].

Interaction with melatonin

Melatonin possesses multiple roles within the intracellu-
lar signaling pathways. It can inhibit the Warburg effect
in lelomyosarcoma and Ewing sarcoma cells [31]. Selec-
tive mTOR inhibitors such as everolimus are approved
for treatment of renal cell carcinoma, subependymal
giant cell astrocytoma, progressive neuroendocrine
tumors of the pancreas and hormone receptor positive
breast cancer. Furthermore, inhibition of mTOR causes
hyper-activation of MAPK pathway through feedback
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loops suggesting that combined use of inhibitors of the
two pathways may be more efficient in cancer treatment
[32]. Presence of these feedback loops makes it difficult
to predict the outcomes of suppression of these pathways
[33].

mTOR and Akt phosphorylation and the production
of hypoxia induced factor-la are inhibited by melatonin
[34-36]. PIBK/Akt/mTOR pathway can be suppressed
by combination of rapamycin and melatonin, which was
used in vitro to inhibit head and neck squamous cell
carcinoma proliferation with satisfactory results; mela-
tonin reduced the toxicity of rapamycin on the normal
cells and enhanced the antitumor activity of rapamycin
[37]. A very important mechanism of melatonin induced
autophagy and apoptosis is the modulation of the cellular
response to oxidative stress-induced endoplasmic reticu-
lum (ER) stress [38]. Cellular stress causes accumula-
tion of misfolded proteins by means of ER stress, which
leads to a series of reactions known as unfolded protein
response (UPR). In short-term UPR protects the cell by
regaining the intracellular homeostasis [39]. However,
in the long-term it can lead to several types of diseases
like diabetes, neurodegeneration and cancer [40]. Mela-
tonin seems to regulate the UPR in a contradictory man-
ner, having pro-apoptotic function in the tumor cells and
anti-apoptotic function in the normal viable cells [41]. In
general melatonin is known to prevent apoptosis in neu-
rodegenerative and immunologic diseases and increase
it in cancerous cells [42—44]. Melatonin is claimed to be
involved in the autophagy and apoptosis of several types
of cancer cells such as hepatocellular carcinoma, mela-
noma and ovarian carcinoma via PI3K/Akt/mTOR path-
way and ER stress response [35, 45—47]. Treating glioma
cells with melatonin causes cycle arrest in G1 to S phase
by inhibiting Akt and NF-kB but not ERK [48]. In several
cancers, adding melatonin causes reduction in resistance
to chemotherapy regimen and its systemic toxicity [49].
However, it appears that melatonin is not as safe as it was
thought to be as it can lead to ROS mediated mitochon-
drial damage-induced apoptosis in the platelets which
may lead to elevated risk of thrombosis in long term use
of high dose melatonin [50].

MAPK signaling pathway

The pathway has been conserved through evolution
and has several key interface members such as the RAS
superfamily, RAFs, ERK, MEK 1/2, JNKs [51, 52]. MAPK
itself translocates into the nucleus to continue the cas-
cade [53, 54]. Activation of the downstream effectors
leads to nuclear responses mediated by transcription fac-
tors like cMyc. Inhibition of ERK/MAPK and PI3K/Akt/
mTOR signaling pathways leads to activation of FOXO,
a nuclear transcription factor and apoptosis in the
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pancreas cancer cells [55]. The nuclear response may lead
to cell proliferation, migration, apoptosis, differentiation,
angiogenesis, metastasis [56].

Targeting in cancer

The ERK/MAPK pathway is one of the most important
regulators of cell proliferation. Mutations in B-RAF and
RAS tend to be oncogene, while stress-activated JNK
and p38 mostly confront neoplastic transformations [57].
Dysregulation in the MAPK pathway is implicated in the
evolution of melanoma, colorectal cancer, hepatocellular
carcinoma. RASs can activate the PI3K/Akt/mTOR path-
way by phosphorylating PI3K [33]. Broad substrate spec-
ificity of Akt and ERK enzymes gives place to crosstalk
between the two signaling pathways [58]. These cross-
talks form a big network of feedback loops that should
be carefully considered when manipulating one mem-
ber of the pathways which may cause unwanted nega-
tive effects. Exosomes released by gastric tumor cells and
bone marrow mesenchymal stem cells contain wide spec-
trum of proteins and mediators that can in part, stimu-
late proliferation of the adjacent tumor cells via PI3K/
Akt/mTOR and ERK/MAPK and seem to be an impor-
tant mechanism for intercellular communication [59]. An
important association of the MAPK signaling pathway
is the Rho-dependent protein kinase (ROCK) signaling
pathway which alters the cytoskeleton microtubules and
microfilaments regulating cell shape and migration [60].

Interaction with melatonin

By inhibition of p38 MAPK, melatonin suppresses EMT
and metastasis of breast cancer cells [61]. It also inhibits
cellular proliferation and invasive potential of estrogen
receptor « positive cells by repressing phosphorylation of
p38 MAPK [62]. Glycogen synthase kinase 3p, an impor-
tant mediator in cell survival and proliferation, has a cir-
cadian rhythm of phosphorylation in breast cancer cells.
Melatonin activates this enzyme by inhibiting Akt phos-
phorylation, inducing B-catenin degradation and inhib-
iting EMT. Thus, light-at-night may lead to advanced
stages of cancer by reducing melatonin production from
the pineal gland during night [63]. Among breast can-
cer patients, disruption in the circadian production of
melatonin is related to intrinsic resistance to tamoxifen;
thus, supplementary melatonin may be of therapeutic
value [64]. By activation of p38 kinase and JNK, mela-
tonin induces apoptosis in the prostate cancer cells in a
dose-dependent manner, while ERK is not responsive
to treatment with melatonin [65]. In vivo treatment of
hepatocellular carcinoma cells with high concentrations
of melatonin results in cell cycle arrest and apoptosis via
MAPK signaling pathway [66]. Lung adenocarcinoma
cells showed up-regulated expression of occludin and
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reduced phosphorylation of JNK leading to significantly
reduced migration potential of the cells within 24 h of
treatment with melatonin [67]. Melatonin reduces cell
proliferation in melanoma by activation of p38 kinase
[68]. Ovarian cancer cells showed attenuation in expres-
sion of p38 kinase, Akt and mTOR following treatment
with melatonin [47]. Through a similar mechanism, mel-
atonin induces apoptosis in gastric cancer cells [69]. By
suppressing Akt/MAPK signaling pathways and inhibit-
ing matrix-metalloproteinase (MMP)-9 transactivation,
melatonin reduced EMT and metastasis in renal cell
carcinoma [70]. Melatonin reduced MMP-9 expression
in the nasopharyngeal carcinoma and oral carcinoma by
inhibiting binding affinity of transcription factor SP-1
to DNA; this led to reduced cell migration potential and
EMT [70, 71]. Melatonin also inhibits the ROCK signal-
ing pathway and consequently cell migration and metas-
tasis ability of tumor cells [72]. Finally, JNK is altered
through crosstalk between the MAPK and the Wnt path-
ways [73].

Wnt/B-catenin signaling pathway

The signaling pathway has been conserved through
evolution because of its crucial roles in many cellular
functions, including but not limited to embryonal ante-
rior—posterior axis development. Three main branches
of the pathway have been introduced, in most of which,
[-catenin is considered to be the central mediator. These
pathways require two additional co-receptors along with
Wnt, Frizzled proteins and LRP 5 or 6 [74].

Targeting in cancer

Activation of the pathway in turn, activates the down-
stream disheveled protein, which inhibits the -catenin-
destruction complex including APC protein, the initiator
of colon cancer evolution. In the absence of Wnt ligand,
B-catenin undergoes degradation by ubiquitin—pro-
teasome complex [75]. pB-catenin translocates into the
nucleus and after binding with other transcription fac-
tors, activates expression of important proteins (canoni-
cal pathway). A very important second messenger of the
pathway independent of B-catenin is calcium which even-
tually activates calcium/calmodulin-dependent kinase
II, protein kinase C, phospholipase C and phosphodies-
terase that rises a converge of responses (Wnt/calcium
pathway) [76]. Within the tumor bulk there is heteroge-
neity regarding the activity of the Wnt signaling pathway
with predominant activity in the active margin boosting
the invasion machinery of the tumor [77]. Wnt signaling
pathway is upregulated by autocrine mechanisms in the
tumor cells. Dysregulation in circadian rhythm of light
and dark is a known factor in development of cancers.
In vivo studies are underway to target the Wnt pathway
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with anti-cancer purposes. Two small biologic molecules
have shown capability of reversible inhibition of the path-
way [78]. Resveratrol, a polyphenol inhibits cell prolifera-
tion and induces autophagy in breast cancer stem cells via
suppressing the Wnt/B-catenin signaling pathway [79]. A
study revealed that Wnt pathway dysregulation has a part
in EMT in the malignant breast cancer cells and inhibi-
tion of the pathway by sFRP-1 caused decreased cell pro-
liferation, motility and reduced lung metastases in mice
models [80]. Monoclonal antibodies, anti-cancer viral
therapeutics and agonist/antagonist peptides are under
development to target the members of the pathway [81—
83]. Interestingly, aspirin reduces colorectal cancer cell
growth partially by inhibiting Wnt/B-catenin pathway
[83].

Interaction with melatonin

Melatonin in combination with valproate acid showed
synergistic effect with bladder cancer chemotherapy.
It was revealed that these two add-ups induced expres-
sion of genes related to ER stress, autophagy, apopto-
sis and necrosis via activation of Wnt and MEK/ERK
pathway and upregulation in the E-cadherin which may
have a role in reducing the metastasis virulence of the
tumor cells and suppression of EMT [84]. Accordingly,
a switch in the expression of E-cadherin to N-cadherin
has a pivotal role in EMT and progression of prostate
cancer [85]. In nasopharyngeal carcinoma, melatonin
not only reversed cisplatin chemoresistance, but also
enhanced cisplatin antitumor activity by suppressing the
nuclear translocation of -catenin, and reducing expres-
sion of Wnt/B-catenin response genes [86]. In addition,
melatonin suppresses chronic restraint stress-mediated
metastasis of epithelial ovarian cancer via NE/AKT/p-
catenin/SLUG axis [87]. Li et al. reported that melatonin
inhibited the biological functions of osteosarcoma cells
by repressing the expression of IncRNA JPX through
regulating the Wnt/B-catenin signaling pathway, which
indicated that melatonin might be applied as a poten-
tially useful and effective natural agent in the treatment
of osteosarcoma [88].

Notch signaling pathway

Notch signaling pathway has a key role in regulation of
cell-to-cell communications during important mecha-
nisms such as embryogenesis, cellular proliferation, dif-
ferentiation, and apoptosis. This signaling pathway is
also critical for proper hematopoiesis, regulation of the
immune system, breast development, colorectal epithelial
maturation and neural stem cell survival. Dysregulation
of the Notch signaling pathway is involved in pathogen-
esis of many cancers [89].
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Targeting in cancer

It has been noted that Notch signaling pathway has
crosstalk with growth factors in breast cancer, andro-
gen-dependent signals in prostate cancer and Hedgehog
pathway in pancreatic cancer [90, 91]. Regarding the role
of this pathway in some cancers, targeting of this path-
way has been considered in treatment of cancers. Some
types of drugs have been tested in clinical trials for some
selected cancers like T-cell acute lymphoblastic leuke-
mia, in which mutations related to Notch signaling are
involved in pathology of cancer [92]. The primary action
for development of target therapy of Notch in cancer, is
inhibition of y-secretase mediated Notch cleavage. Until
now, y-secretase inhibitors (GSIs) have been designed
for treatment of T-cell acute lymphoblastic leukemia
and estrogen receptor-positive breast cancer [93]. In a
study by Rizzo et al,; it is demonstrated that estrogen can
inhibit Notch activity through inhibition of y-secretase
activity, thus estrogen blockade by antiestrogens or aro-
matase inhibitors could lead to success in treating breast
cancer with GSIs [94]. Furthermore, after increase in the
knowledge about Cancer Stem Cells (CSC), it is noted
that single-agent GSI therapy may be a useful treatment
in triple-negative breast cancer because of its CSC-like
characteristics [95]. Moreover, DLL4 monoclonal anti-
bodies are designed against cancers through disruption
in their angiogenesis, because DLL4 is a Notch ligand
involved in the process of angiogenesis [96]. Other agents
for Notch-targeted therapy of cancer are MAML inhibi-
tors which can target mastermind-like (MAML)-CSL-
Notch complex formation. In addition to the above,
selective inhibition of Notch receptors may reduce intes-
tinal toxic effects and off-target adverse effects like diar-
rhea resulting from Notch inhibition [97].

Interaction with melatonin

In a study by Zheng et al; it is shown that melatonin
can play a role against glioblastoma through inhibiting
the viability and growth of Glioblastoma stem-like cells
(GSCs). This event occurs via EZH2-Notchl signaling
pathway suppression, which is mediated by melatonin
[98]. In another study by Margheri et al.; it has been seen
that melatonin in combination with all-trans retinoic acid
and somatostatin can inhibit growth of MCEF-7 breast
cancer cells via disruption of Notchl signaling pathway.
In this study they noted that the levels of Notchl were
significantly downregulated in the melatonin-treated cells
[99]. Furthermore, in a study it is revealed that melatonin,
a therapeutic agent for endometriosis, can suppress
17pB-estradiol-induced invasion, migration and epithe-
lial to mesenchymal transition (EMT) in endometriotic
cells of endometrium, because of melatonin-mediated
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decrease in the activity of the Notch signaling pathway
[100]. Also in a study related to melatonin effects on
miRNA expression profiles in GC-1 spg cell line, pathway
analysis indicated that these effects of melatonin on miR-
NAs involved in cancers and signaling pathways, such as
Notch and others. This indicated that melatonin can even
play a therapeutic role in testicular germ cell tumors by
interfering with Notch signaling pathway [101].

NF-kB signaling pathway

The nuclear factor kB (NF-«kB) concluding a family of
transcription factors (RelA (p65), RelB and c-Rel, and the
precursor proteins NF-kB1 (p105) and NF-kB2 (p100))
which are bind to kB sites in promoters and enhancers
of a variety of genes and induce or repress their tran-
scription [102]. The NF-«kB signaling pathway is a criti-
cal pathway for regulation of immunity and other vital
mechanisms of the cell like differentiation, proliferation
and survival. Hence, its dysregulation results in inflam-
matory disorders, autoimmune and metabolic diseases
and cancer development [103].

Targeting in cancer

It is shown that NF-«B signaling pathway is activated in
many cancers such as breast cancer and it is related to
some oncogenic characteristics of tumor cells and their
resistance to chemotherapy or radiation [104, 105]. It is
perceived that NF-«kB activity is maintained in cervical
cancer cells through activation by Notch signaling [106].
Also, in gastric cancer, Rel-A (p65), a member of NF-kB
signaling pathway transcription factors, correlated with
tumor invasion-related features like lymphatic invasion
of tumor cells, depth of invasion, tumor size and perito-
neal metastases [107]. Considering the mentioned cases,
utilization of therapeutic potential of this signaling path-
way is implicated. It is noted that inhibition of NF-kB
pathway improves the apoptotic response to treatments
such as radiation therapy or chemotherapeutic drugs like
Taxol [108]. Another approach is designation of Protea-
some inhibitors for targeting NF-kB signaling pathway,
because they cause blockade in the degradation of pro-
teins which are necessary for activation of NF-kB signal-
ing such as IkBs, NF-kB1/p105 or NF-kB2/p100 and by
this way they can prevent NF-«kB activation [109]. Also in
a study by Vequaud et al.; it has been reported that Sur-
vivin, a target gene for cancer therapy, plays its therapeu-
tic role in breast cancer through its modulating effect on
NF-«B signaling pathway and autophagy [110]. Inhibi-
tors of apoptotic proteins (IAPs) are overexpressed in
some cancers. IAPs have differential effects on the NF-kB
pathway. They can be good options for targeting NF-kB
in cancer. Synthetic peptide-mimetic compounds (IAP
antagonists or SMAC mimetics) which can bind to IAPs,
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prevent activation of NF-kB signaling. Thus, SMAC-
mimetics represent a targeted therapeutic approach for
cancer therapy. The SMAC mimetic Birinapant, showed
anti-cancer activity in both hematologic malignancies
and solid tumors [111, 112]. Furthermore, Curcumin
is a natural compound that inhibits the kinase activ-
ity of IKKb in the NF-«B signaling pathway. It is used in
treatment of mantle cell lymphoma, colon cancer and
advanced pancreatic cancer [113, 114].

Interaction with melatonin

It has been noted that melatonin inhibits the activation
of NF-kB and this is one of the antioxidant effects of
melatonin, because some second messengers of NF-xB
signaling are known as free radicals [115]. Melatonin can
reduce the production of MMP9 via inhibition of NF-xB
signaling; this can affect the cell migration and invasion
of glioma cells and other tumors [116]. In a study it has
been shown that melatonin could upregulate the NF-xB
pathway proteins expression in hepatocarcinoma cells,
but treatment of breast cancer cells with melatonin
causes decrease in expression of NF-kB pathway proteins
in them [117]. In another study by Mao et al.; it has been
demonstrated that melatonin can suppress the aerobic
glycolysis (Warburg effect), survival and tumor growth in
leiomyosarcoma cells through modulating some signal-
ing pathways such as NF-«xB pathway [31]. On the other
hand, there is a concept known as immune-pineal axis.
In this concept, NF-kB can inhibit melatonin synthesis
in pinealocytes and induces melatonin synthesis in mac-
rophages, but melatonin reduces NF-kB activation in
pinealocytes and immune competent cells. This balance
could be affected in the pathological conditions that dis-
rupt melatonin rhythms [118].

JAK/STAT signaling pathway

The Janus kinase/signal transducers and activators of
transcription (JAK/STAT) pathway is a vital signaling
mechanism, including pleiotropic cascades which are
important for secretion of a wide array of cytokines and
growth factors. The STAT proteins are a family of tran-
scription factors in the cytoplasm, activated by JAKs via
phosphorylation of tyrosine residues [119]. The cascades
of this pathway are necessary for hematopoiesis, devel-
opment of the immune system, adipogenesis, mammary
gland development and lactation and many other pro-
cesses. Occurrence of these events depends on JAK acti-
vation, because of its important role in stimulation of cell
proliferation, differentiation, cell migration and apoptosis
[120]. Mutations that cause dysregulation of JAK sign-
aling can result in many diseases such as leukemia and
other cancers.
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Targeting in cancer

The inappropriate activation of the JAK/STAT signal-
ing pathway can directly result in oncogenesis [119]. The
cancers in which the aberrant activation of this signaling
pathway was seen, including breast, prostate, pancre-
atic, colorectal and other cancers. Because of the impor-
tance of this pathway, it becomes a therapeutic target for
cancer treatment. It is shown that anti-cancer effects of
(—)-Epigallocatechin gallate (EGCG), the most abun-
dant catechin in tea, are performed through inhibition of
phosphorylation and expression of both JAK3 and STAT3
proteins [121]. Also EGCG treatment for cancers such as
breast cancer, has been shown that inhibit the activity of
STAT3 [122]. Another therapeutic agent which plays its
role against cancer cells through inhibition of JAK/STAT
signaling pathway is Cucurbitacin I, which is a member of
tetracyclic triterpenoids family known as cucurbitacins.
This agent is used in treatment of anaplastic large cell
lymphoma, lung carcinoma and glioblastoma multiforme
via targeting of STAT3 from JAK/STAT pathway [123,
124]. Cucurbitacin B is another agent from this family
which is used for treatment of leukemia and pancreatic
cancer by the same mechanism as Cucurbitacin I [125].

Interaction with melatonin

Maybe one of the important interactions of melatonin
with the JAK/STAT signaling pathway is in the function
of immune cells, especially macrophages. It was noted
that melatonin affects the signaling pathways such as
JAK/STAT and NF-«xB pathways in macrophages. So it
can be concluded that melatonin modulates the develop-
ment of various macrophage-associated diseases, such
as cancer [126]. Also it was seen that melatonin reduces
the angiotensin II-related injury and apoptosis of podo-
cytes in the diabetic nephropathy by inhibition of JAK/
STAT signaling pathway [127]. In another study it was
shown that melatonin can interfere with IGF-1 secre-
tion levels of the liver by modulating the JAK2/STAT3
pathway [128]. Furthermore, it was reported that neu-
roprotective effects of melatonin in brain ischemia and
reperfusion injury after it, are related to some signaling
pathways including JAK/STAT signaling pathway [129].
On the other hand, it is demonstrated that JAK/STAT3
signaling pathway (after activating by leptin) can increase
the expression of miR-7, which acts as a negative regula-
tory molecule inhibiting RAF1/MEK/ERK signaling path-
way and results in decreased melatonin synthesis [130].

IGF, VEGF, FGF, PDGF signaling pathway

The IGF (insulin-like growth factor) signaling pathway
is a critical signaling pathway for somatic growth, acts
through promoting cellular proliferation and differen-
tiation. It also plays a powerful role in cell survival and
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prevention of apoptosis. These anti-apoptotic and pro-
survival effects of this pathway cause its importance and
vital role for cancer cell growth, development of cancers,
and tumor resistance against some treatments [131]. Also
VEGF family including vascular endothelial growth fac-
tors and their receptors, are key proteins for significant
biological processes such as hematopoiesis, lymphangi-
ogenesis and vascular permeability; Moreover, they can
induce neovascularization and angiogenetic characteris-
tics of tumors for example in breast cancer or colorectal
carcinoma. Fibroblast growth factor (FGF) and platelet-
derived growth factor (PDGF) are other growth factors
playing a similar role in cell survival and growth. They
are vital proteins for maintaining the cells healthy. On
the other hand, FGF and PDGF have necessary roles for
facilitation of tumor growth and metastasis via angiogen-
esis. Also they affect tumor survival by some interactions
together [132].

Targeting in cancer

Regarding to the above-mentioned proofs, it is perceived
that signaling pathways of growth factors have important
roles in development of many cancers. Hence, targeting
these pathways can be a promising approach for treat-
ment of cancer [133]. In this relation, therapeutic effects
of targeted therapy for these pathways are shown in many
clinical trials [134]. In the last decades of the twentieth
century it has been shown that antibodies blocking the
VEGF pathway can suppress tumor growth and angio-
genesis. Bevacizumab, a monoclonal antibody against
VEGTE, is the first anti-angiogenic agent approved by the
Food and Drug Administration (FDA). It is used in com-
bination with 5-fluorouracil-based chemotherapy regi-
mens for treatment of previously untreated metastatic
colorectal cancer [135]. It is also used against non-small
cell lung cancer and metastatic breast cancer. Other
agents inhibiting the members of VEGF family and can
be used in treatment of cancers, are including VEGF-
Trap and VEGF-AS. Another approach for utilization
of therapeutic potential of this pathway is inhibition of
VEGER kinase activity. Sunitinib is a small-molecule
receptor tyrosine kinase inhibitor, which could inhibit
PDGF receptor-p and acts as a FDA approved treatment
for patients with gastrointestinal stromal tumors (GISTs).
Other samples of these drugs are Sorafenib for metastatic
renal cell carcinoma and Vatalanib for metastatic colo-
rectal cancer [136, 137]. Also it has been demonstrated
that neutralizing monoclonal antibodies against VEG-
FRs decreases primary and metastatic tumor growth via
inhibiting VEGF signaling [138]. Furthermore, in a study
by Lovly et al.; it is shown that combination therapy with
Crizotinib, a selective tyrosine kinase inhibitor, and an
IGF-1 receptor (IGF-1R)-inhibitor has therapeutic effect
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in lung cancer via sensitizing the cancer cells to Crizo-
tinib by inhibiting the IGF signaling pathway activation
[139]. Also there are other drugs such as Ganitumab and
Dalotuzumab designed to treat cancer, using the mecha-
nism of inhibition of the IGF pathway (especially by tar-
geting the IGF-1 receptor) [140]. Moreover, in relation
to FGF pathway inhibition for treatment of cancers, can
refer to agents such as Dovitinib, Pazopanib, Ponatinib
and other similar agents that are designed for treating
breast, lung, ovarian and other cancers [134, 141].

Interaction with melatonin

It is shown that melatonin can affect tumorigenesis of
some cancers by modulating growth factors signaling
pathways in the cancer cells. It is shown that anti-tumor
activity of melatonin in prostate cancer is mediated by
IGF pathway in such a way that IGFBP3 is upregulated
but IGFIR is downregulated after treatment of cancer
cells by melatonin [142]. In another study, it was seen
that melatonin treatment of breast cancer cells causes
reduced VEGF-A protein expression and increased
IGFBP-3, IGFPB-6, IGF-1, IGF-1R proteins in those cells
and results in suppression of cancer cell growth [143].
Other study related to crosstalk between melatonin and
growth factors signaling pathway in cancer, is done by
Marques et al; in that study it is seen melatonin sup-
presses angiogenic features of triple negative breast can-
cer cells by inhibiting expression of IGF-IR, HIF-1a and
VEGF proteins through regulation of miRNA-152-3p
[144].

Hedgehog pathway

The Hedgehog (Hh) pathway is one of other important
pathways that controls vital mechanisms such as tissue
polarity and stem-cell maintenance. In many studies it
is demonstrated hyper-activation of this pathway causes
tumorigenesis in a wide variety of tissues [145]. Also it is
indicated that this pathway has relation with cancer stem
cells in CML and breast cancer. It is shown inhibition of
this pathway in pancreatic cancer can cause suppression
of EMT and metastatic features of these cells [146]. One
of the inhibitors of this pathway is Cyclopamine, a plant-
derived steroidal alkaloid, which is an antagonist for Smo
in the Hh pathway. Furthermore, Robotnikinin is another
inhibitor of this pathway that can act as an inhibitor of
extracellular sHh; it is also one of small synthetic mol-
ecules Hh Protein inhibitors. Targeting of Hh pathway
by Robotnikinin shows preventive role in metastasis and
tumor relapse. GDC-0449 (Genentech), a small molecule
Smo inhibitor, is used in treatment of BCC, colorectal
cancer, ovarian cancer and other malignancies [147]. In a
study it is shown that melatonin has beneficial effects in
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embryonic development through the hedgehog pathway
[148].

miRNA

MicroRNAs (miRNAs) are 21-25 nucleotide single
strand non-coding RNAs and function as a part of post-
transcriptional expression regulation system [149]. Mul-
tiple proteins including DICER work in collaboration to
trim the primary RNA into the mature and functional
form, miRNA. Downregulation of DICER has been
reported in many cancers [150]. After binding with the
compatible sequence of mRNA, they repress the transla-
tion of the mRNA by RNA-induced silencing complexes
(RISC) with 3 main mechanisms: interrupting ribosome
and mRNA interaction, cleavage of the mRNA into two
non-functional segments (slicer-dependent mRNA deg-
radation) and shortening the poly-A tail thus, destabi-
lizing the mRNA. miRNAs have crucial effects on the
regulation of cell proliferation, apoptosis, invasion, EMT
and angiogenesis. Dysregulation in the expression of
miRNAs are seen in many cancers suggesting their tumor
suppressor or oncogene roles. Thus, they can be targeted
or be used as biomarkers [151]. For example, downregu-
lation of miRNA-145 augments the proliferation, inva-
sion and metastasis of colon adenocarcinoma through
over-activation of MAPK-1 [152]. TGFp signaling path-
way can alter the expression of miRNAs in prostate,
breast and ovarian cancers and accelerate the metastatic
progression of these malignancies [153]. Some aberran-
cies in the plasma levels of miRNAs (e.g. miRNA 196b,
198, 492, 614) are specific to pancreatic cancers and can
be used as screening tests for detection of early cancer.
miRNA-126 acts as a tumor suppressor and miRNA-197
as an oncogene leading to EMT [154]. Anti-sense oligo-
nucleotides are used to target the up-regulated oncogene
miRNAs reinforcing the main therapeutic regimen (che-
mosensitization) or even altering the phenotype of malig-
nant cells into a more responsive type [153, 155]. Some
of these new therapeutics have undergone human clinical
trials. For example, OGXO011 has been evaluated in meta-
static prostate and breast cancers but minimal efficacy
was benefited [156, 157]. miRNAs are also applied to pre-
dict the response to treat and individualizing the treat-
ment of prostate, breast and ovarian cancers.

Recent in vivo studies show that administering
melatonin to cancer cell lines alters miRNA expres-
sion and in that regard can be used as an anti-can-
cer agent [158]. Incubation of prostate cancer cells
with melatonin upregulated miRNA 3195 and 374b
expression, suppressing angiogenesis [159]. Mela-
tonin also reduces the cytoplasmic levels of miRNA-
24 by increasing its degradation after transcription.
The mentioned miRNA targets p38 and p53 and is
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upregulated in colon, breast and head & neck can-
cers [160]. By downregulating oncogene miRNA-155,
melatonin reduces invasion and proliferation of glioma
[161]. Melatonin regulates miR-16-5p-Smad3 pathway
reducing gastric cancer cell proliferation [162].

Long non-coding RNAs

Defined as transcripts of more than 200 nucleotides
which do not code any proteins, long non-coding
RNAs (LncRNAs) were initially labeled cellular junk,
but more investigation showed that they have an
indisputable role in the regulation of gene expression,
thus in regulating human pathologies [163]. Studying
in vivo models of cancer cells showed that LncRNAs
were indeed one of the possible targets for therapy in
cancer. A set of acclaimed studies found that a balance
between LncRNAs such as MALAT1, HOTAIR, PTV1
which favor epithelial mesenchymal transformation
and LincRNA-p21 and NEAT1 which favor mesenchy-
mal epithelial transformation balanced the aggressive-
ness of cancer cells in the tumor microenvironment,
making the aforementioned LncRNAs possible targets
for therapy [164]. Furthermore, analysis of random
cancer cell lines of multiple neoplasias show that a
bundle of LncRNAs are upregulated or downregulated,
showing a possible etiologic role for these LncRNAs
[165]. More so, LncRNA are shown to be associated
with hallmarks of cancer such as evading apoptosis,
resisting the immune response and altered cellular
metabolism, making them a target for rendering can-
cers more susceptible for treatment, and changing the
phenotype of cancer cells to more subtle phenotypes
[166].

Theoretically, it is anticipated that there will be con-
siderable overlap between the pathways melatonin
effects and those that LncRNAs regulate. Recent stud-
ies have shown some of these interactions. Wang et al.
showed that administration of melatonin to hepatocel-
lular carcinoma cell lines significantly inhibited cellular
proliferation and increased the expression of FOXAZ2, a
transcription factor. Some of the anti-cancer effects of
melatonin were mediated by LncRNA-CPS1-IT which
inactivated HIF-1 alpha, an agent which is involved in
the process of angiogenesis. This was accompanied by
reduced rates of EMT, showing a reduced tendency
towards invasion and metastasis [167]. Chen et al.
found that LncRNA RAD51-ASI was able to sensitize
hepatocellular carcinoma cells to conventional therapy
agents, by inhibiting the translation of RAD51 micro
RNA, a molecule involved in sensation of DNA damage,
thus corrupting the process of DNA damage response,
and resulting in inhibited DNA repair [168].
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Clinical significance of utilizing melatonin

as a therapeutic agent

Melatonin is available in multiple drug forms, with
favorable pharmacokinetic characteristics, and with no
serious side effects [169]. Currently, multiple trials have
shown the efficacy of melatonin in reducing the symp-
toms of conditions such as jet lag, irritable bowel syn-
drome, glaucoma, macular degeneration, hypertension
and diabetes. It is also thought to be beneficial in tar-
geting multiple malignancies, and in reducing the side
effects of chemotherapy and radiation therapy [170].
Studies also suggest a possible role for exogenous mela-
tonin in the treatment of pediatric sleep disorders, infec-
tious disease, attention deficit hyperactivity disorders,
epilepsy being the most important [171]. There is also a
considerable body of evidence suggesting its use in neu-
rodegenerative disorders and stroke [172]. Melatonin is
both used as an adjuvant therapy and also as single ther-
apy to target these conditions, as it is capable of directly
affecting the function of signaling pathways which play
etiologic roles in these conditions. Examples are dis-
cussed in detail in previous paragraphs, and the same
could theoretically be true in human subjects. It is now
well understood that diseases previously labeled as un-
treatable are resulted from uncontrolled activation of the
aforementioned pathways, such as increased inflamma-
tory response in multiple sclerosis, increased grow factor
signaling in neoplasms, and dopamine signaling pathways
in mood disorders and schizophrenia [173, 174]. With
increased understanding of the role of signaling pathways
in human pathologies, more possibilities will emerge for
the use of melatonin in clinical contexts. Currently, some
hurdles exist before melatonin can gain wide clinical
usage. The main issue is regarding the optimal dosage of
melatonin for various conditions. In in vitro and in vivo
studies, varying concentrations of melatonin have been
used, sometimes being hundreds of times apart. As mela-
tonin is being considered to be prescribed to individuals
with varying conditions, a wide range of doses should
be given. No large-scale clinical trial addresses this issue
until now. Another issue is formulating suitable regimens
in which melatonin is prescribed with other medication.
Many possible interactions may exist between melatonin
and other medications, which could limit its clinical use.
More so, many combinations may be possible, and more
specified trials will be needed to guide clinical decision
making.

Conclusion

Melatonin is a molecule with multiple functional roles,
which is involved in important cellular processes.
Melatonin affects cell signaling pathways both by
receptor dependent and independent mechanisms. As
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mentioned before, the signaling pathways which mela-
tonin affects are involved in much human pathology,
ranging from cancer, to neurodegenerative diseases,
and other subtler conditions, such as irritable bowel
syndrome and sleep problems. Numerous in vivo and
in vitro studies have outlined the exact mechanism of
melatonin’s beneficial effect on these conditions, and
more accumulating evidence suggests that melatonin
should be used in clinical contexts. This is especially
accurate for cancers. currently, many regimens exist
for numerous malignancies, and melatonin could be a
suitable addition to these regimens, both acting as an
anti-cancer agent, which limits cellular proliferation,
promotes apoptosis, counters cancer cell metabolism
changes, reduces cellular migration and limiting metas-
tasis, and also acting as adjuvant therapy, increasing
quality of life in these cancer patients, and reducing the
side effects of treatments.
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