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Abstract 

Backgrounds:  Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types and chemothera-
peutic drug resistance is a stumbling block in improving the overall survival of PDAC patients. The nature of specific 
drug resistant subpopulation within pancreatic ductal adenocarcinoma is believed to be partly attributed to epithe-
lial-mesenchymal transition (EMT) and cell stemness. Various PDAC cell lines show various degrees of resistance to 
chemotherapeutic agents including gemcitabine (GEM) and 5-fluorouracil (5-FU). In-depth understanding of drug 
resistance mechanisms and profile heterogeneities could lead to the development of novel and precise therapeutic 
strategies for addressing the chemo-resistant dilemma in PDAC patients.

Methods:  Cytotoxicity assays were performed by CCK8 in ten common PDAC cell lines including AsPC-1, BxPC-
3, CAPAN-1, CFPAC, HPAFII, MIA PaCa-2, PANC-1, Patu-8988, SW1990 and T3M4. RNA-seq data of the ten cell lines 
were downloaded from Cancer Cell Line Encyclopedia (CCLE) database and subsequently analyzed for differentially 
expressed genes (DEGs). Based on first-line chemotherapy regimens of PDAC, DEGs between resistant and sensitive 
cell lines were validated by qRT-PCR. Enriched pathways of differentially expressed genes between the resistant and 
sensitive cell lines were acquired by Metascape database.

Results:  We found that the top two toxic drugs for PDAC cell lines were paclitaxel (PTX) and GEM. Among the ten 
PDAC cell lines, SW1990 was the most resistant PDAC cell line with the highest IC50 levels for three drugs, while MIA 
PaCa-2 and BxPC-3 were the most sensitive PDAC cell lines. Differential expression analysis revealed the highest num-
ber of DEGs associated with cisplatin (CIS) sensitivity up to 642 genes, of which 181 genes were upregulated and 461 
genes were downregulated in CIS-resistant cell lines. The least number of DEGs are associated with GEM sensitivity, of 
which 37 genes were highly expressed in GEM-resistant PDAC cell lines and 25 genes were lowly expressed. Enrich-
ment analysis of the DEGs revealed that pathways associated with drug resistance were mainly extracellular matrix 
and cell–cell junction related pathways.

Conclusions:  PDAC cell lines showed diverse sensitivities to commonly used chemotherapeutic agents, which was 
caused by differential gene expression between the resistant and sensitive cell lines. The heterogeneity and its associ-
ated genes were enriched in extracellular matrix and cell–cell junction related pathways. Our study first portrayed the 
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Background
PDAC is currently the fourth leading cause of cancer-
related death in the USA, with an increasing incidence 
and poor outcome and constitutes one of the most lethal 
of the common malignancies with a poor five-year sur-
vival rate below 11% [1]. Despite advances in treatment 
strategies (including surgery, chemotherapy, radiother-
apy and targeted therapies) in recent years, the survival 
rate of PDAC patients still remains a Gordian knot. Until 
now, the sole potentially curative treatment means of 
PDAC is surgical resection. However, for patients who 
have no chance to undergo surgery, the current standard 
regimen is chemotherapy, the first-line drugs of which 
include GEM, 5-FU, PTX, irinotecan (IRI) and CIS. All of 
the above drugs have shown unsatisfied results for which 
the main reason is the resistance of tumor cells to chem-
otherapeutic agents [2].

Chemotherapeutic regimens of PDAC are often pal-
liative rather than curative, which means insensitivity 
and toxicity restrict the effectiveness of these drugs thus 
resulting in a very marginal improvement in the survival 
rate of PDAC patients with advanced disease [3]. The 
main cause of failure in chemotherapy is drug resist-
ance. Drug resistance is divided into intrinsic resist-
ance and acquired resistance in principle. For patients 
with intrinsic resistance, chemotherapy is ineffective 
from the outset, while in contrast, acquired resistance 
is gradually formed when tumor cells are being exposed 
to anti-cancer drugs and subsequently causing recur-
rence and metastasis [4]. Investigations into the mecha-
nisms underlying chemoresistance were made over the 
past decades, but much is still unclear about exactly how 
it occurs or develops. Moreover, studies published have 
shown that the common reasons for the acquisition of 
drug resistance include gene mutations (such as KRAS, 
CCND1), altered signaling pathways (such as EMT phe-
notype, fibroblast growth factor receptor, cell–cell junc-
tion) [5, 6]. In clinical practice, chemotherapy resistance 
in PDAC patients shows significant individual hetero-
geneity, which reflects possible individual differences 
in response of cancer cells to chemotherapeutic drugs. 
Hitherto several specific PDAC cell lines have been built 
up through years with in-depth study of PDAC and the 
mature PDAC cell lines can reflect the heterogeneity of 
subpopulations within tumors of PDAC patients to some 
extent. Therefore, understanding sensitivities of different 

PDAC cell lines to different chemotherapeutic drugs and 
related genes and pathways can provide theoretical basis 
for reversing chemoresistance and precise guidance for 
individualized treatment of PDAC patients.

Here, we characterized the effects of five conventional 
PDAC chemotherapeutic drugs on ten human PDAC 
cell lines to determine the subgroups between chemo-
therapeutic sensitivity and resistance, and constructed 
the profile of chemotherapeutic sensitivity of PDAC cell 
lines. Then DEGs and their associated pathways between 
drug-resistant and sensitive cell lines were analyzed and 
enriched with the RNA-seq data from public databases. 
In addition, PDAC cells co-culture with pancreatic stel-
late cells (PSCs) were performed to verify the role extra-
cellular pathways on drug resistance. Our results revealed 
abundance of DEGs associated with multidrug resistance 
not reported before providing hope for deliberately deal-
ing with chemoresistance of PDAC.

Methods
Cell lines and culture condition
Ten common PDAC cell lines were used in this article, 
including AsAC-1, BxPC-3, CAPAN-1, CFPAC, HPAFII, 
MIA PaCa-2, PANC-1, Patu-8988, SW1990 and T3M4. 
T3M4 were generously provided by Dr. Chengcheng 
Wang (Peking Union Medical College Hospital, Beijing, 
China) and the others were all purchased from Ameri-
can Type Culture Collection (ATCC). All the cell lines 
were validated by detecting their specific short tandem 
repeats (sanger sequencing, Tsingke,Inc.). AsPC-1 and 
SW1990 were cultured in RPMI-1640 modified medium 
(Hyclone). BxPC-3 was cultured in RPMI (Corning). 
CAPAN-1 and CFPAC were cultured in Iscove’s Modified 
Dubecco’s Medium (IMDM, Hyclone). HPAF-II, MIA 
PaCa-2, PANC-1, Patu-8988 and T3M4 were cultured in 
Dulbecco’s Modified Eagle Medium (DMEM)/High Glu-
cose (Hyclone). The culture medium of CAPAN-1 was 
added with 20% fetal bovine serum (FBS) and the culture 
medium of the other cell lines were added with 10% FBS.

Reagents
All five chemotherapeutic drugs, GEM (Lilly, USA), 5-FU 
(Kingyork, China), PTX (Peking Union Pharmaceuti-
cal Factory, China), IRI (Hengrui, China) and CIS (Qilu 
Pharmaceutical, China), were obtained from Peking 
Union Medical College Hospital.

sensitivity profile to chemotherapeutic drugs of PDAC, which would benefit the chemoresistance mechanism study 
by reemphasizing the vital role of extracellular matrix and cell–cell junction related pathways and helping the selec-
tion of suitable PDAC cell lines.

Keywords:  Pancreatic ductal adenocarcinoma, Chemoresistance, Multidrug resistance genes, Extracellular matrix
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siRNA transfection
Gene-specific siRNAs and nonsense control were pro-
vided by Tsingke (Beijing, China). PDAC cells were trans-
fected with siRNA using Lipofectamine 3000 (Invitrogen, 
California, USA). After the knockdown efficiency was 
confirmed by quantitative RT-PCR (qRT-PCR) and west-
ern blot, the cells were used for subsequent experiment. 
The sequences of siRNAs used were listed in Additional 
file 4: Table S3.

Indirect co‑culture model of PSCs and PDAC cells
For indirect co-culture, PSC cells (1*105/mL) were seeded 
in the upper berth of the co-culture chamber and PDAC 
cells (1*105/mL) were seeded in the bottom of co-culture 
chamber. Co-culture for 48  h and RNA were extracted 
from PDAC cells.

In vitro cell cytotoxicity assay and IC50 calculation
Cells were plated into 96-well plates and treated after 
24  h with GEM, 5-FU, PTX, IRI and CIS. The concen-
tration gradients of drugs were 0, 1 nM, 10 nM, 100 nM, 
1 μM, 10 μM, 100 μM and 1 M. After cultured with drugs 
for 48  h, drug-containing culture medium was replaced 
by fresh medium which contained 10% CCK-8 (Dojindo, 
Japan). Subsequently, place the plates in incubator under 
37℃ for 2  h and determine its light absorption value at 
450  nm and 630  nm using an enzyme-linked immu-
nosorbent detector (Invitrogen, Thermo Fisher Scien-
tific, USA). The difference between absorbance values at 
450 nm and 630 nm indirectly reflects the number of liv-
ing cells.

Cell viability values under the drug concentration gra-
dients were conducted non-linear fitting (inhibitor, four 
parameters). The 50% inhibitory concentration (IC50) 
values were defined as the concentration of drug that 
inhibited cell growth by 50% relative to the untreated 
control. IC50 values were calculated using GraphPad 
Prism 9.0 software (La Jolla, USA).

Data source, identification of DEGs and enrichment 
analysis
The set of sequence-based mRNA expression data (RNA-
seq data) of the ten PDAC cell lines were downloaded 
from CCLE database (http://​porta​ls.​broad​insti​tute.​org/​
ccle). The DEGs between drug resistant and sensitive 
PDAC cell lines were obtained by using edgeR (biocon-
ductor.org/packages/release/bioc/) in R 3.6.0. Those 
genes with a 丨log2(fold change)丨 ≥ 2 and adjusted P 
value < 0.05 in the default Benjamini–Hochberg false dis-
cover rate (FDR) method were considered to have statis-
tical significance, which was shown via volcano plot. We 
then used Metascape (https://​metas​cape.​org/) based on 

Gene Ontology (GO) analysis and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analysis to comprehen-
sively analyze the biological functions, cellular compo-
nents, molecular functions and pathways of the DEGs 
between resistant and sensitive PDAC cell lines. Venn 
diagrams were obtained by using jvenn (http://​jvenn.​
toulo​use.​inra.​fr/).

RNA extraction and quantitative real‑time PCR (qRT‑PCR) 
analysis
Total RNA was extracted from PDAC cell lines using 
TRIzol (Invitrogen, CA, USA) and processed for reverse 
transcription and quantitative PCR using a Reverse Tran-
scription System (Promega, Madison, WI, USA) and a 
One Step SYBR ® PrimeScripttm RT-PCR Kit (Vazyme, 
Nanjing, China) according to the manufacturer’s instruc-
tions. The sequences of primers used in qRT-PCR were 
listed in Additional file 5: Table 4.

Western blot assay
Whole cell lysates were obtained with RIPA lysis buffer 
(Applygen, Beijing, China) containing 1% protease and 
phosphatase inhibitors (Sigma–Aldrich, St. Louis, USA) 
on ice. The cell lysates were centrifuged at 12, 000  rpm 
for 15 min at 4 °C to remove undissolved impurities and 
collect the supernatants. The protein concentration was 
quantified using a BCA protein assay kit (Beyotime, 
Shanghai, China). Then, proteins were separated by 10% 
SDS-PAGE and transferred to 0.22  μm polyvinylidene 
fluoride (PVDF) membranes. The non-specific binding 
sites on the membrane were blocked with 5% milk for 
1  h. After blocking, the membrane was first incubated 
with the primary antibody of UCP2 (11081-1-AP, Pro-
teintech, Shanghai, China) overnight at 4  °C and then 
with the secondary antibody at room temperature for 1 h. 
Finally, super-sensitive ECL assay kit (Beyotime, Shang-
hai, China) was used to show the immune response.

Statistical analysis
The RNA expression levels were analyzed by applying 
the unpaired parametric t-tests. Statistical analyses were 
performed using GraphPad Prism 9.0 (La Jolla, USA). A p 
value < 0.05 was considered statistically significant.

Results
Sensitivity profile to chemotherapeutic drugs of each 
PDAC cell line
We conducted cytotoxicity assay by treating ten com-
mon PDAC cell lines, namely AsPC-1, BxPC-3, CAPAN-
1, CFPAC, HPAF-II, MIA PaCa-2, PANC-1, Patu-8988, 
SW1990 and T3M4, with five first-line chemothera-
peutic drugs of PDAC, namely GEM, 5-FU, PTX, IRI 

http://portals.broadinstitute.org/ccle
http://portals.broadinstitute.org/ccle
https://metascape.org/
http://jvenn.toulouse.inra.fr/
http://jvenn.toulouse.inra.fr/
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and CIS. Inhibition curves based on cell inhibition ratio 
were shown classified by cell lines (Fig. 1). As for a single 
PDAC cell line, the IC50 values for each chemotherapeu-
tic drug varied much from several nanomoles to thou-
sands of micromoles. Nine of the ten PDAC cells were 
most resistant to CIS, except for AsPC-1, whose IC50 
for 5-FU was much greater than that for the other four 
drugs. The two most toxic drugs for PDAC cell lines were 
PTX and GEM. CFPAC, MIA PaCa-2 and Patu-8988 
were most sensitive to GEM and the other seven cell lines 
were most sensitive to PTX.

Sensitivity profile of PDAC cell lines to each 
chemotherapeutic drug
We then drew the inhibition curves classified by the 
five first-line chemotherapeutic drugs in order to com-
pare sensitivity of the ten PDAC cell lines to a single 
drug visually (Fig. 2, Additional file 1: Fig. S1). For some 
drugs, such as 5-FU and IRI, the IC50 values of the ten 

PDAC cell lines had little difference and the maximum 
was less than 100 times of the minimum. While for the 
drugs including GEM, PTX and CIS, the IC50 values of 
cell lines varied much. PDAC cell lines were generally 
sensitive to GEM and PTX, as the maximal IC50 value 
was less than 20  μM and several of the cell lines were 
nearly totally sensitive to the two drugs in  vitro, cor-
relating with the fact that the two drugs could be com-
bined into an effective and widely used regimen. Eight of 
the ten PDAC cell lines were extremely resistant to CIS, 
yet MIA PaCa-2 and AsPC-1 were sensitive to it. In this 
regard, genetic variants such as BRCA1/2 mutation have 
confirmed that PDAC is a conglomerate of multiple sub-
types. Indeed, the alternations of BRCA1/2 have been 
noted to increase sensitivity to platinum-based chemo-
therapy in breast, ovarian cancer and PDAC [7–11].

IC50 values were summarized in the form of heatmap 
(Fig. 3A). SW1990 was the most resistant PDAC cell line 
as its IC50 values for three drugs, GEM, 5-FU and PTX 

Fig. 1  Cytotoxicity assay and IC50 of ten common pancreatic ductal adenocarcinoma (PDAC) cell lines, AsPC-1 (A), BxPC-3 (B), CFPAC (C), CAPAN-1 
(D), HPAFII (E), MIA PaCa-2 (F), PANC-1 (G), Patu-8988 (H), SW1990 (I) and T3M4 (J), to five first-line chemotherapeutic drugs. The most resistant and 
sensitive drugs of each cell line were shown in the red and blue box respectively



Page 5 of 12Zhao et al. Cancer Cell International          (2022) 22:374 	

Fig. 2  Cell viability curve and IC50 of PDAC cell lines grouped by chemotherapeutic drugs, namely GEM (A), 5-FU (B), PTX (C), IRI (D) and CIS (E). The 
color change from blue to red represented the change from ’sensitive’ to ’resistant’
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ranked top three. MIA PaCa-2 and BxPC-3 were the 
most sensitive PDAC cell lines. Regimen based on GEM 
and regimen based on 5-FU are the two main chemo-
therapeutic regimens for PDAC. Out of this impor-
tance, we found that resistant PDAC cell lines to GEM 
were SW1990, AsPC-1 and T3M4, while the sensitive 
cell lines were CFPAC, BxPC-3, HPAFII and Patu-8988 
(Fig. 3B). As for 5-FU, Patu-8988, SW1990 and PANC-1 
were resistance to it and CFPAC and MIA PaCa-2 were 
sensitive.

Identification and validation of DEGs in drug sensitive 
and resistant PDAC cell lines
In order to explore genes associated with drug resistance 
in PDAC, we compared the transcriptome data acquired 
from the CCLE database of the resistant and sensitive cell 
lines of each chemotherapeutic drug (Fig.  4A, Additional 
file 1: Fig. S2). DEGs associated with CIS sensitivity had the 
largest amount of 642 genes, in which 181 genes were up-
regulated in the CIS resistant cell lines and 461 genes were 
down-regulated. The least DEGs were associated with GEM 
sensitivity, in which 37 genes expressed higher in GEM 
resistant PDAC cell lines and 25 genes expressed lower.

Treatment strategy of PDAC tends towards com-
bined regimen rather than a single drug. GEM and PTX 

combined regimen is a widely applied first-line chemo-
therapeutic regimen recommended by the National 
Comprehensive Cancer Network (NCCN) guideline. 
Current clinical chemotherapy for PDAC is mostly based 
on 5-FU and GEM [12, 13]. Hence, to identify genes that 
cause chemoresistance in multidrug combination regi-
mens, DEGs for the five drugs were intersected using a 
Venn diagram (Fig.  4B, Additional file  2: Table  1). The 
results show that several genes that have been shown 
to cause chemoresistance in tumors may also play an 
important role in multidrug combination chemotherapy 
for PDAC.

Several multidrug resistance associated genes were 
confirmed by qRT-PCR. We stimulated MIA PaCa-2 and 
BxPC-3 PDAC cell lines with 5-FU and GEM, respec-
tively, and observed a time-dependent increase in the 
expression of drug resistance associated genes, including 
TMEM178B, ANPEP, DNALI1, TFPI2, UCP2, GATA5, 
VSTM1, FAM196B, DZIP1, DNER and RGS5 (Fig.  5A, 
B). Furthermore, some of the DEGs were also verified in 
PDAC cell lines (Fig. 5C, D). Some of the validated DEGs 
have been studied in tumor drug resistance. The tran-
scription factors in GATA family have been reported to 
regulate tumor development. TCR signaling activates 
a signaling axis that includes ITK, NF-κB, and GATA-3 

Drug Resistant PC cell lines Sensitive PC cell lines

GEM SW1990 AsPC-1 T3M4 CFPAC BxPC-3  HPAFII Patu-8988

5-FU Patu-8988 SW1990 PANC-1 CFPAC MiaPaCa-2

PTX SW1990 HPAFII T3M4 PANC-1 Capan-1 BxPC-3

IRI PANC-1 Patu-8988 Capan-1 CFPAC MiaPaCa-2

CIS Patu-8988 CFPAC PANC-1 AsPC-1 MiaPaCa-2

IC50(µM) GEM 5-FU PTX IRI CIS
AsPC-1 0.47 13.87 0.22 13.38 1.88
BxPC-3 0.003 1.97 0 10.43 193.5
Capan-1 0.017 5.82 0 26.19 106.4
CFPAC 0 0.41 0.23 4.86 6053
HPAFII 0.004 14.95 2.49 19.89 146.2

MiaPaCa-2 0.023 0.45 0.17 3.47 7.1
PANC-1 0.053 17.21 0 30.83 802.8

Patu8988 0.004 20.25 0.19 27.72 287617
SW1990 14.4 17.39 16.67 23.58 145.6

T3M4 0.204 4.84 0 13.48 170.3

A

B

Fig. 3  Sensitivity profile to chemotherapeutic drugs of pancreatic ductal adenocarcinoma cell lines. A IC50s of each PDAC cell line to each 
chemotherapeutic drug. B The most resistant and sensitive PDAC cell lines to the five chemotherapeutic drugs
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and promotes chemotherapy resistance in non-Hodgkin 
lymphomas [14]. Uncoupling protein 2 (UCP2) promotes 
proliferation and chemoresistance via NF-κB/β-catenin 
axis in gallbladder cancer[15]. To verify the accuracy of 
the DEGs, we selected UCP2 for knockdown in the mul-
tidrug-resistant cell line PANC-1 and found that drug 
resistant ability of PANC-1 was alleviated after UCP2 
knocking down (Additional file 1: Fig. S3A–C).

Enrichment analysis reveals extracellular matrix and cell–
cell junction matters in PDAC chemoresistance
GO and KEGG pathway enrichment analyses were applied 
to discover the functions of the DEGs between drug sen-
sitive and resistance PDAC cell lines (Fig.  6A, Additional 

file  3: Table  2). The DEGs were significantly enriched in 
biological processes associated with extracellular matrix 
and cell adhesion. Previous studies have proposed mul-
tiple mechanisms of drug resistance in PDAC, including 
abnormal gene expression, mutations, dysregulation of 
key signaling pathways (such as NF-κB, Akt and apopto-
sis-related pathways), EMT and the role of extracellular 
stromal cells and cancer stem cells [16]. This finding is con-
sistent with the accepted mechanism of drug resistance in 
PDAC. KEGG pathway analysis revealed that DEGs are 
mainly involved in extracellular matrix, external encapsu-
lating structure, collagen-containing extracellular matrix, 
cell junction organization, cell–cell adhesion via plasma-
membrane and cell junction assembly extracellular matrix 

A

B

Fig. 4  Differentially expressed genes (DEGs) between drug sensitive and resistant PDAC cell lines. A Volcano plots showed up-regulated genes (red 
plots) and down-regulated genes (green plots) in resistant PDAC cell lines of each drug. B. Venn diagram of DEGs between resistant and sensitive 
PDAC cell lines of each drug
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structural constituent. In addition, pathways related to 
synaptic structure and calcium binding are also enriched 
(Fig.  6B). We selected two multidrug-sensitive cell lines, 
MIA PaCa-2 and BxPC-3 based on the above drug resistant 
profile and co-culture both the two cell lines with PSC. As 
expected, these two cell lines were found to have increased 
resistant capability to all the five drugs after 48  h of co-
culture (Fig. 7). This result shows a good indication of the 
important role of extracellular signaling pathways in drug 
resistance of PDAC cells.

Discussion
Drug resistance is a main cause of poor effect of chemo-
therapy for PDAC patients. Repeated attempts seeking 
for multidrug combined regimens have failed to achieve 

satisfied results. Overcoming chemotherapy resistance 
is therefore a major challenge in prolonging the overall 
survival of PDAC patients. In this study, we compared 
the levels of multidrug resistance between different 
PDAC cell lines by assessing the sensitivity of 10 com-
mon PDAC cell lines to five first-line chemotherapeutic 
agents and combination of drugs. DEGs and associated 
molecular pathways between drug-resistant and sensi-
tive cell lines were also analyzed and validated. Impor-
tantly, there was significant heterogeneity in response of 
different PDAC cell lines to different chemotherapeu-
tics, and the heterogeneity among PDAC cell lines was 
closely related to multidrug resistance associated genes 
and molecular pathways. To validate the role of key genes 
and extracellular pathways on PDAC cell drug resistance, 

Fig. 5  Validation of DEGs in PDAC cell lines by qRT-PCR. A Temporal gradient expression levels of DEGs based on GEM. B Expression level of DEGs 
based on GEM in resistant/sensitive PDAC cell lines. C Temporal gradient expression levels of DEGs based on 5-FU. D Expression level of DEGs based 
on 5-FU in resistant/sensitive PDAC cell lines
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we knocked down UCP2, one of the screened key genes 
(Fig. 6) in drug-resistant cell line PANC1, and found that 
UCP2 knockdown resulted in reduced drug resistance of 
PANC1.

Global PDAC cell line chemosensitivity profile in our 
study unveils that various pancreatic ductal adenocar-
cinoma cell lines show different sensitivities to differ-
ent drugs. For example, AsPC-1 is resistant to GEM but 
sensitive to CIS, and PANC-1 is resistant to 5-FU but 
sensitive to PTX. In addition, we identified multidrug-
resistant cell lines SW1990, Patu-8988 and PANC-1, 
and multidrug-sensitive cell lines MIA PaCa-2, BxPC-3 
and CFPAC. In addition, we performed multidrug co-
treatment (FOLFIRINOX strategy, 5-FU + CIS + IRI) in 
the sensitive cell line MIA PaCa-2 and the drug-resistant 
cell line PANC-1 and found that heterogeneity between 
PDAC cell lines still persisted when response to clini-
cally common combinations of chemotherapeutic agents 
(Additional file  1: Fig.  S4). These results suggest a clear 
heterogeneity of PDAC cells in chemotherapeutic drug 

response. Taking advantage of the heterogeneity, we can 
classify PDAC cell lines into different subpopulations 
by drug sensitivity, helping us effectively selecting suit-
able cell lines for PDAC chemoresistance research in the 
future. By comparing the characteristics of heterogene-
ous PDAC cell lines, including differential expression of 
genes and differential activation of vital molecular path-
ways, we could made further understanding of the chem-
oresistance formation of PDAC.

To gain mechanistic insights into chemoresistance 
of multidrug, we analyzed DEGs and multiple path-
ways between drug-sensitive and resistant PDAC cell 
lines. Based on pathway enrichment analysis of DEGs, 
we found that different drugs lead to drug resistance 
in PDAC by different mechanisms. For example, GEM 
leads to resistance mainly through pathways related 
to extracellular matrix, cell–cell adhesion and cell 
junction assembly, while CIS leads to drug resistance 
mainly through regulation of anatomical structure size, 
cell projection organization, cellular ion homeostasis 

A

B

Fig. 6  Enrichment analysis of DEGs between drug sensitive and resistant PDAC cell lines. A Top biological processes, cellular components, 
molecular functions and pathways enriched based on DEGs between drug sensitive and resistant PDAC cell lines. B. Venn diagram of enriched 
items of DEGs between resistant and sensitive PDAC cell lines of each drug
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Fig. 7  Cell viability curves of PDAC cells to five drugs (GEM, 5-FU, PTX, IRI, CIS) after co-culture with PSCs. A. MIA PaCa-2, B. BxPC-3
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and other pathways. However, what is of greater inter-
est is that all five drugs lead to drug sensitivity through 
pathways such as extracellular matrix, external encap-
sulating structure, synapse organization, collagen-
containing extracellular matrix, synapse assembly, 
cell junction, etc. The results suggested that different 
chemotherapy drugs have synergistic effects in inhib-
iting tumor progression. To verify the role of extracel-
lular pathways in drug resistance, we co-cultured two 
sensitive PDAC cell lines, MIA Paca2 and BxPC-3, with 
PSC and surprisingly found that both the two cell lines 
became more resistant after 48  h of co-culture. The 
implications of this finding for clinical practice lie in the 
use of multidrug combination regimens, where chemo-
therapeutic agents with different mechanisms are com-
bined in different subgroups of patients with individual 
differences or at different stages of the patient’s disease 
course. Besides, the recognition of multidrug resistance 
associated genes and pathways of PDAC were in favor 
of reversing chemoresistance by targeting the related 
factors.

Among the above pathways associated with drug resist-
ance, it is worth mentioning EMT. EMT is the process 
by which epithelial cells lose apical-basal polarity and 
cell–cell adhesion, and transit to invasive mesenchymal 
cells [17]. As a well-studied, complex and dynamic epige-
netic level reprogramming event, one of the main roles of 
EMT is to promote the adaptation of cancer cells to con-
ditions in tumor microenvironment to ensure survival, 
thereby generating cellular heterogeneity and promoting 
drug resistance [18]. Cancer cells with EMT feature have 
a more pronounced growth advantage after drug screen-
ing and may lead to metastasis after chemotherapy [19]. 
Signaling pathways that promote EMT contribute to the 
development of cellular drug resistance. For example, the 
TGF-beta pathway induces EMT leading to drug resist-
ance, and the activation of related pathways following 
cellular resistance leads to high TGF-beta expression and 
active related pathways [20, 21]. EMT-related transcrip-
tion factors such as Snail, Slug and ZEB have also been 
reported to be associated with drug resistance of PDAC 
[22, 23].

Overall, our study provided the first summary of sen-
sitivities of common PDAC cell lines to clinically used 
chemotherapeutic agents. The response of different cell 
lines to the same chemotherapeutic agent and the tox-
icity of different chemotherapeutic agents to the same 
cell line were compared in detail. The DEGs and associ-
ated pathways between resistant and sensitive cells in the 
same drug were analyzed. However, translating the het-
erogeneity of PDAC cells in terms of drug resistance into 
clinical dosing regimens or targeted therapy to reserve 
chemoresistance still requires more in-depth exploration.

Conclusions
In this study, we identified drug heterogeneity among 
PDAC cell lines by assessing the sensitivity of 10 PDAC 
cell lines to five first-line chemotherapeutic agents. 
Through the analysis and enrichment of differentially 
expressed genes and their associated pathways between 
drug-resistant and sensitive cell lines, we found that drug 
resistance in PDAC cells is mainly caused by EMT and 
abnormal cell–cell junction. In addition, PDAC is typi-
cally characterized by extensive tumor-associated stroma, 
and several studies have confirmed that stromal cells also 
play a key role in the drug resistance process. Overall, we 
remain confident that the establishment of PDAC cell 
resistance profile and the dissection of related molecular 
biological pathways are the starting point for addressing 
the individual heterogeneity of drug resistance in clinical 
pancreatic ductal adenocarcinoma patients. We expect to 
ultimately achieve more effective clinical chemotherapy 
regimens and improved disease control of pancreatic 
ductal adenocarcinoma patients.
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