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Conjoint analysis of circulating tumor 
cells and solid tumors for exploring potential 
prognostic markers and constructing a robust 
novel predictive signature for breast cancer
Xuan Li1,2*†  , Hefen Sun1,2†, Qiqi Liu1,2, Yang Liu1, Yifeng Hou1,2* and Wei Jin1,2* 

Abstract 

Background:  Distance metastasis is the leading cause of death for breast cancer patients, and circulating tumor cells 
(CTCs) play a key role in cancer metastasis. There have been few studies on CTCs at the molecular level due to their 
rarity, and the heterogeneity of CTCs may provide special information for solid tumor analysis.

Methods:  In this study, we used the gene expression and clinical information of single-cell RNA-seq data of CTCs of 
breast cancer and discovered a cluster of epithelial cells that had more aggressive characteristics. The differentially 
expressed genes (DEGs) between the identified epithelial cells cluster and others from single-CTCs were selected for 
further analysis in bulk sequence data of solid breast cancers.

Results:  Eighteen genes closely related to the specific CTC epithelial phenotype and breast cancer patient prognosis 
were identified. Among these 18 genes, we selected the GARS gene, which has not been studied in breast cancer, for 
functional research and confirmed that it may be a potential oncogene in breast cancer. A risk score was established 
by the 18 genes, and a high-risk score was strongly associated with a high metastasis rate and poor survival prognosis 
in breast cancer. The high-risk score group was related to a defective immune infiltration environment in breast can-
cer, and the immune checkpoint therapy response rate was lower in this group. The drug-sensitive analysis shows that 
the high-risk score patients may be more sensitive to AKT-mTOR and the cyclin-dependent kinase (CDK) pathways 
drugs than low-risk score patients.

Conclusions:  Our 18-gene risk score shows good prognostic and predictive values and might be a personalized 
prognostic marker or therapy guide marker in breast cancer patients.
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Introduction
Breast cancer has the highest incidence of tumors among 
females in the US [1]. Although breast cancer accounts 
for the second highest mortality due to cancer in women, 
breast cancer patients in the early-stage still have a bet-
ter long-term survival rate. Distance metastasis is the 
leading cause of death for breast cancer patients, and the 
American Joint Committee on Cancer (AJCC) shows that 
stage IV patients only had a 5-year survival rate of less 
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than 30% [2]. In the conventional model, the unlimited 
proliferation of cancer cells disseminates and adapts to 
distant sites to contribute to metastasis [3–6]. Epithelial 
cancer cells undergo epithelial-to-mesenchymal transi-
tion (EMT) to peripheral vessels, and then these cells are 
renamed circulating tumor cells (CTCs). The survival and 
mesenchymal-to-epithelial transition (MET) at distant 
sites of CTCs are considered to be involved in metastasis 
[7]. CTCs are not only considered important “seeds” for 
distant metastasis but also use self-seeding methods to 
accelerate tumor growth and angiogenesis processes [8]. 
An effective capture method and comprehensive analy-
sis of CTCs can help us better study tumors. Currently, 
thanks to the development of isolation and sequencing 
technology, CTCs can be better captured, enriched, and 
detected for clinical use [9, 10].

In recent years, with the development of in-depth 
sequencing technology in genomics, the drop in price 
and easy access and exploration of data from large data-
sets, a large amount of patient gene transcript expres-
sion data has been made available to researchers [11]. 
Many researchers have attempted to find new potential 
biomarkers or gene sets to better predict the prognosis 
of patients or classify patients into significant feature 
groups. Breast cancer is highly heterogeneous and can be 
identified by the expression states of estrogen receptor 
(ER), progesterone receptor (PR), and human epidermal 
growth factor receptor 2 (HER2) into four intrinsic sub-
types. Researchers analyzed a large amount of genomic 
data to reclassify breast cancer patients in a more per-
sonalized way, such as the PAM50 classification, which 
reclassified patients into luminal A, luminal B, HER2-
enriched, basal-like and normal like groups [12]. Pom-
mier et  al. used gene methylation and gene expression 
analyses to describe a group of claudin-low tumors from 
triple-negative breast cancers (TNBCs) comprehen-
sively, which can partially reveal the malignant features of 
TNBCs [13]. Shao and his team applied genomic analysis 
in 465 TNBC patients and further classified TNBCs into 
more suitable categories, which could guide treatment 
choice and indeed show good guide treatment effects in 
subsequent clinical trials [14, 15]. Thus, the continuous 
search for new tumor subtypes is essential to address the 
heterogeneity of tumors.

Single-cell RNA-sequencing (scRNA-seq) technology 
can provide deep insight into transcriptomic information 
at the single-cell level and help reveal unidentified sub-
groups [16, 17]. In this study, we used scRNA-seq tech-
nology in single CTCs to identify a unique subtype that 
may be closely related to metastasis. Combination analy-
sis of CTCs and bulk primary tumor data help to build 
a gene set that can better represent a unique subtype in 
breast cancer. Comprehensive bioinformatics analyses 

were applied to explore the characteristics of the gene set 
classification and its potential precision targeted therapy.

Materials and methods
RNA‑seq and clinical data collection
The training data for breast cancer CTCs were from 
the Gene Expression Omnibus (GEO) set GSE109761, 
and 116 single CTCs were enrolled for analysis (https://​
www.​ncbi.​nlm.​nih.​gov/​gds/). The criteria for select-
ing the 116 single CTCs were as follow: (1) Homo sapi-
ens, (2) number of cells: 1, (3) sample type: CTC single. 
The verification set was GSE144494, and 134 single-cell 
RNA-sequencing datasets were used. Bulk RNA-seq data 
and matched clinical information for breast cancer were 
downloaded from The Cancer Genome Atlas (TCGA) 
data portal (https://​tcga-​data.​nci.​nih.​gov/​tcga/), META-
BRIC cohort (https://​www.​cbiop​ortal.​org/) and GEO 
datasets. Gene mutation data and copy number altera-
tion (CNA) of breast cancer from TCGA were down-
loaded from UCSC Xena (http://​xena.​ucsc.​edu/).

Identification and establishment of the risk score
CTC classification was performed using the “Seu-
rat” package in R software, and the criteria for filtering 
low-quality cells included < 50 genes/cell, < 3 cells/gene 
and > 5% mitochondrial genes. The package “SingleR” was 
used to annotate each CTC cluster.

The selection of differentially expressed genes (DEGs) 
was performed using the “limma" package in R software 
with a p value less than 0.05 and log2 |fold change| > 1. 
DEGs selected from CTCs were then subjected to uni-
variate Cox regression analysis in bulk RNA-Seq data 
of breast cancer from TCGA and GEO. Subsequently, 
least absolute shrinkage and selection operator (LASSO) 
regression was performed in R software by using the 
‘glmnet’ package to select robust prognostic mark-
ers from the results of previous univariate Cox regres-
sion analysis. The linear combination of gene expression 
weighted by regression coefficients (Co-effs) results from 
multivariate Cox analysis was used to calculate the risk 
score of patients. The best cutoff of the risk score was 
dependent on the Youden index of each receiver oper-
ating characteristic (ROC) curve. Kaplan–Meier curves 
and log-rank tests were generated to illustrate the rela-
tionship between the survival and risk score groups by 
SPSS.

Cell culture and breast cancer specimens
MDA-MB-231, MDA-MB-436, MDA-MB-453, MDA-
MB-468, HS-578T, BT-549 and BT-474 cells were 
purchased from American Type Culture Collection 
(ATCC). SK-BR-3 and T-47D and the normal mammary 
epithelial cell line MCF-10A were purchased from the 
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Cell Bank of Type Culture Collection of the Chinese 
Academy of Science (Shanghai, China). The high lung 
metastasis potential cell line MDA-MB-231 HM devel-
oped from its parental cell line MDA-MB-231 via four 
cycles of tail vein injections in our laboratory (patent 
number: 200910174455.4). The high lung metasta-
sis potential cell line MDA-MB-231 LM2 was kindly 
provided by Dr. Toshiyuki Yoneda (The University of 
Texas, Houston, US).

All cells were grown in the appropriate medium and 
cultured at 37  °C in a humidified atmosphere with 5% 
CO2. Total RNA was extracted from the cell lines by 
using Trizol reagent (Invitrogen).

Sixteen pairs of breast carcinomas and paraneoplas-
tic tissues were randomly collected from patients who 
underwent surgical treatment for breast cancer at the 
Fudan University Shanghai Cancer Center. RNA from 
these tissue samples was extracted by using the All-
Prep DNA/RNA/Protein Mini Kit (QIAGEN; Cat. No. 
80004) for subsequent PCR analysis. The use of all clin-
ical samples was approved by the Ethics Committee of 
the Cancer Center of Fudan University.

Quantitative real‑time polymerase chain reaction
The total RNA of cell lines and tissues was immediately 
reverse transcribed to cDNA by using the PrimeScript 
RT Reagent Kit (Perfect Real-Time; TaKaRa Biotech-
nology). The subsequent real-time polymerase chain 
reaction (RT-PCR) was performed by SYBR Premix Ex 
Taq (TaKaRa Bio) using an ABI Prism 7900 instrument 
(Applied Biosystems).

The following sequences were used for our study:

GARS: F 5′-ATG​GAG​GTG​TTA​GTG​GTC​TGT-3′,
GARS: R 5′-CTG​TTC​CTC​TTG​GAT​AAA​GTGCT-
3′,
GGCX: F 5′-GAT​GCA​AAC​CAC​TAC​TGG​TCTG-
3′,
GGCX: R 5′-CCG​CAA​TGA​AGT​ACA​CAA​TGAAG-
3′,
RNF139: F 5′-TAG​GCT​TAA​TCA​CAG​AGC​TACCA-
3′,
RNF139: R 5′-CTG​CCA​GGA​CAA​ACA​CTG​TAT-3′,
TARS: F 5′-ATT​GCC​TGT​GGA​ATT​AGT​CAAGG-3′,
TARS: R 5′-CAC​CCA​TTA​TGT​GAG​CAC​TAGAG-3′,
GAPDH: F 5′-GGA​GCG​AGA​TCC​CTC​CAA​AAT-3′,
GAPDH: R 5′-GGC​TGT​TGT​CAT​ACT​TCT​CATGG-
3′.

RNA interference
HS-578T and MDA- MB-231 LM2 cells were trans-
fected with GARS small interfering RNA (siRNA) using 
Lipofectamine RNAiMAX (ThermoFisher, NO. 13778-
150) following the manufacturer’s instructions. All 
experiments were performed 48  h after transfection. 
The siRNA sequence for GARS used in this experiment 
was (GAT​GGA​GTA​TCT​TGC​CAT​T).

Western blotting
Total cell protein was extracted with RIPA lysis buffer 
(Thermo Scientific, NO. 78510) with 1% protease 
inhibitors and phosphatase inhibitors. A total of 20 μg 
protein was separated using a 10% SDS-PAGE gel and 
electrotransferred onto PVDF membranes (Millipore 
Immobilon-P). Membranes were blocked with 10% 
nonfat milk (Sangon Biotech, NO. A600669-0250) and 
then incubated with the primary antibody overnight. 
Following washing of the membranes three times with 
0.1% Tween‐20-PBS, membranes were then incubated 
with anti-mouse anti-rabbit IgG and HRP-linked anti-
body (Cell Signaling Technology, NO. 7076, NO. 7074) 
for 2  h at room temperature and visualized with an 
ECL detection system (Share-bioBiotechnology, NO. 
SB-WB011). The primary antibodies used in our study 
are listed in Additional file 1: Table S1.

Cell proliferation assay
Cell proliferation ability was evaluated by the CCK8 
assay (Vazyme, NO. A311-02). Briefly, 100 μl of cell sus-
pension (1.5 × 103 cells per well) was seeded in 96-well 
plates and cultured at 37  °C and 5% CO2 for several 
days. At the same time of each day, the medium was 
removed, and CCK8 solution was added to each well 
and then incubated for 2 h at 37 °C. The absorbance at 
OD 450 nm of each well was measured with a Bio-rad 
microplate reader.

Colony formation assay
The cells were seeded in 6-well plates in culture 
medium at a density of 1 × 103 per well for several days. 
Then, the cells were fixed with methanol containing 1% 
crystal violet for 30  min. The colonies were counted, 
and the data are presented as the mean ± SD.
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Transwell invasion assay
Cell migration assays were performed in 8 um pore size 
cell culture insets with transparent PET membranes 
in 24-well plates (FALCON, NO, 353097). The bottom 
layer of the inset contained 600 µL culture median with 
20% serum, and the upper layer of the inset contained 
200 µL serum-free culture median with 5  *  104 cells. 
After culturing for 5 h for HS-578T cells and 16 h for 
MDA-MB-231 LM2 cells, the insets were fixed in meth-
anol with crystal violet for half an hour. The procedure 
for the cell invasion assay was similar to the migra-
tion assay, but Matrigel was present outside the inset 
(CORNING, NO. 35448), and the cell number in the 
inset was 1  *  105/per well. Migrating or invading cells 
were detected by counting the crystal violet-stained 
cells.

Flow cytometry
Cells were seeded in 6-well plates in culture medium at 
a density of 1 × 106 per well overnight. Then, the culture 
medium was removed, and deprived serum medium 
was used to starve the cells for 24 h to synchronize the 
cell cycle. After 24  h of serum starvation culture, the 
cells were replaced with normal medium and cultured 
for 5 h for HS-578T or 8 h for MDA-MB-231 LM2 cells 
before being harvested for cell cycle analysis. For cell 
cycle analysis, cells were harvested and fixed in ice-cold 
70% ethanol overnight, stained with propidium iodide 
(Sangon Biotech, NO. E607306-0200) according to the 
protocol, and analyzed via flow cytometry (BD Bio-
sciences, USA). The cell cycle G1, S and G2 phases of 
cells were analyzed by appropriate gating on the distri-
bution plot and analyzed by FlowJo (V10.7.1).

Biofunction enrichment analysis
The bioinformation of DEGs was identified by the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses on the DAVID website (https://​david.​
ncifc​rf.​gov/). Gene set enrichment analysis (GSEA) was 
performed to explore the potential pathways between 
the high- and low-risk score groups. Hallmark gene sets 
and Oncogenic signatures set in GSEA were used and 
the main parameters used were as follows: Enrichment 
statistic: weighted; Metric for ranking genes: Signal-
2Noise; Max size of genes: 500; Min size of genes: 30; 
and the p value for a false discovery rate (FDR) < 0.05 
was considered significantly statistically enriched. The 
visualization of tumor mutation data was performed 
using the “maftools” package in R software. GISTIC 
analysis was applied to assess the copy number varia-
tion (CNA) in each group, and a GISTIC value greater 

than 1 was defined as amplification, while a value less 
than -1 was defined as deletion [18]. The correlation of 
genes was analyzed in GeneMANIA (http://​genem​ania.​
org/), and the top 30 most corelated genes with tar-
geted genes were visualized.

Correlation of the risk score with the tumor immune 
environment
The 22 tumor-infiltrated immune cells were calculated 
by the CIBERSORT algorithm, and the value indicates 
the fraction of each immune cell type in tumor tissues. 
Tumor stromal score, immune score, ESTIMATE score, 
and tumor purity were calculated by the R package “esti-
mate”, and single-sample gene set enrichment analysis 
(ssGSEA) was used on the scRNA-Seq of CTCs and the 
different bulk RNA-Seq tumor datasets.

Drug and risk score interaction analysis
The drug_sensitive_AUC data and the RNA-Seq data of 
breast cancer cell lines were obtained from the Cancer 
Therapeutics Response Portal (CTRP) database (http://​
porta​ls.​broad​insti​tute.​org/​ctrp/). The relationship of risk 
score and drug_sensitive_AUC was analyzed by Pearson 
correlation coefficient in SPSS.

Statistical analyses
In this study, R software (version 3.6.1), SPSS (version 
25) and, Prism 8 were the primary software types used. A 
two-tailed p value less than 0.05 was used to judge statis-
tic in all our analyses.

Results
Special epithelial cell cluster identified in single CTCs
We applied principal component analysis (PCA) to all 
genes of the 116 single-cell RNA-sequence datasets of 
CTCs from GSE109761 by using t-SNE and finally par-
titioned the samples into three main clusters. The Sin-
gleR package annotates the three clusters: epithelial cells 
(Cluster 0), epithelial cells (Cluster 1), and monocytes 
(Cluster 2) (Fig.  1A). Analysis of epithelial cell marker 
genes and immune checkpoint related genes in these 
three clusters showed that Cluster 1 was different from 
the other two clusters, as it expressed significant circu-
lating tumor cell markers, low MHC-I related genes, and 
some high immune checkpoints (Fig.  1B). The highly 
expressed marker genes in Cluster 1 were enriched in 
the MAPK, PI3K-AKT, and Rap1 signaling pathways as 
well as in the cell accession and ECM receptor interac-
tion pathways (Fig. 1C). The low expression marker genes 
of Cluster 1 were enriched in some immune related path-
ways, such as the chemokine signaling pathway, cytokine-
cytokine receptor interaction, natural killer cell mediated 
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Fig. 1  Identify a special cluster with distinct gene expression and outcome in single-CTC cohorts of breast cancer. A Analysis of a breast cancer 
single-CTC RNA-Seq dataset identifies 3 clusters from unsupervised t-SNE clustering in GSE109761. B The marker genes expressed in 3 clusters of 
GSE109761. C KEGG pathway analysis of Cluster 1 highly expressed marker genes in GSE109761. D KEGG pathway analysis of marker genes with low 
Cluster 1 expression in GSE109761. E The heatmap shows the differentially expressed genes between Cluster 1 and other samples of GSE109761. F 
Analysis of a breast cancer scRNA-Seq dataset identifies 3 clusters from unsupervised t-SNE clustering in GSE144494. G Kaplan–Meier (K-M) curve 
shows the survival difference of Cluster 1 and others of GSE144494. H Different expression gene orders of GSE109761 were applied in GSE144494 as 
a validation set
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cytotoxicity, F c gamma R-mediated phagocytosis, and B 
cell receptor signaling pathway (Fig.  1D). The heatmap 
shows the expression of different marker genes between 
Cluster 1 and others (Fig.  1E). An independent set 
includes 135 single-cell RNA-sequence data of CTCs that 
were collected from GSE144494 to assess subtype repro-
ducibility. PCA and t-SNE also classified the 135 samples 
into three clusters, and the SingleR package annotated 
the three clusters to erythrocytes (Cluster 0), epithelial 
cells (Cluster 1), and erythrocytes (Cluster 2) (Fig.  1F). 
Patients who had Cluster 1 CTCs had lower overall sur-
vival than other patients (Fig.  1G). Applying a gene set 
(marker genes of Cluster 1 in GSE109761 and the gene 
order just the same as Fig.  1E) in Cluster 1 and other 
samples of GSE144494 can clearly reproduce the similar 
gene expression trend as shown in Fig.  1E (Fig.  1H). In 
this part, we found a class of CTCs with a significant epi-
thelial cell phenotype, lower immune function, and poor 
survival prognosis.

The selection of 18 prognosis‑related genes and their 
verification
Considering the convenient application of special 
CTC clusters in solid breast cancer, we wanted to 
develop a user-friendly gene set based on the differen-
tially expressed genes between Cluster 1 and others of 
GSE109761. To identify special gene expression profiles 
of Cluster 1, we used the "limma" package and identified 
6991 differentially expressed genes by comparing Cluster 
1 and others. We then applied the 6991 selected genes in 
bulk RNA-Seq data of breast cancer from TCGA. After 
univariate Cox analysis, 534 genes with significant differ-
ences in OS and DFS were selected. To obtain more sta-
ble results, we used other RNA-Seq data from GSE17705 
to further validate the relationship between genes and 
survival, and we found 82 genes from the 534 genes were 
significantly different for DFS. Lasso regression analy-
sis was applied using the 82 genes in the TCGA cohort, 
and 18 genes were obtained with a high association with 
patients DFS (Fig. 2A). Among these 18 genes, four onco-
genes, GARS, GGCX, RNF139, and TARS, were not 
previously reported to be related to breast cancer. Large 
gene chip data and clinical conjoint analysis show that 
the high expression of these four genes correlated with 
short recurrence-free survival in breast cancer (picture 
on the left of Fig.  2B (GARS), C (GGCX), D (RNF139), 
and E (TARS)). We analyzed gene expression in 16 pairs 
of matched carcinomas and paraneoplastic tissues of our 

hospital and found that these four genes were expressed 
at significantly higher level in carcinoma tissues than in 
paraneoplastic tissues (picture on the medium of Fig. 2B 
(GARS), C (GGCX), D (RNF139), and E (TARS)). The 
gene expression result in breast cancer cell lines showed 
that these four genes were expressed at higher levels in 
breast cancer cells than in normal mammary epithelial 
cells (picture on the right of Fig. 2B (GARS), C (GGCX), 
D (RNF139), and E (TARS)).

GARS is an oncogene for breast cancer
We further chose GARS to explore its function in breast 
cancer. The data obtained from TCGA and GTEx dem-
onstrated that GARS was overexpressed in breast can-
cer tissues compared with tumor-adjacent tissues and 
healthy tissues, which is consistent with our hospital 
results (Fig.  3A, P < 0.0001). From the results of GARS 
RNA expression in breast cancer cell lines, we chose 
HS-578T and MDA-MB-231 LM2 cells to knock down 
GARS expression by siRNA. The knockdown efficiency 
of GARS was analyzed by Western blot, and siRNA sig-
nificantly decreased GARS expression in cells (Fig.  3B). 
A CCK-8 assay was performed to analyze the potential 
effect of GARS on cell proliferation. The results reflect 
that knockdown of GARS in breast cancer cells signifi-
cantly inhibited cell proliferation (Fig.  3C). The colony 
formation assay showed that knockdown of GARS weak-
ened the colony formation ability of MDA-MB-231 LM2 
cells and HS-578T cells (Fig. 3D). In the migration assays, 
the number of cells that crossed the membrane was sig-
nificantly decreased in GSRA knockdown cells (Fig. 3E). 
These results were similar in the invasion assays, in which 
the number of cells that crossed the Matrigel was signifi-
cantly decreased in GSRA knockdown cells in both cell 
lines (Fig.  3F). These results indicated that GARS pro-
motes the proliferation and invasion capacity of breast 
cancer.

GARS controls the mTOR signaling pathway to promote 
breast cancer progression
To explore the GARS-related pathway that impacts its 
ability to promote tumor progression, we used GSEA to 
identify the most enriched pathways in the high GARS 
group in the TCGA dataset. The mTOR signaling path-
way genes showed significant enrichment in the high 
GARS expression group (Fig. 3G). Thus, we used Western 
blotting to verify the classical proteins in the mTOR sign-
aling pathway. AKT and mTOR phosphorylation levels 

Fig. 2  Constitution of risk score and its verification. A Flow chart of the 18-risk score constituting gene selection. Kaplan–Meier (K–M) curves show 
the recurrence-free survival of patients with high and low expression of GARS (B), GGCX (C), RNF139 (D), and TARS (E) (picture on the left). The gene 
expression of GARS (B), GGCX (C), RNF139 (D), and TARS (E) in 16 pairs of matched breast carcinomas and paraneoplastic tissues (picture on the 
medium). Gene expression of GARS (B), GGCX (C), RNF139 (D), and TARS (E) in breast cancer cell lines (picture on the right)

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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were decreased in GARS knockdown cells compared with 
control cells. EIF4EBP1 (4E-BP1) is an important down-
stream target of mTOR and controls the mRNA trans-
lation of many tumor progression-related genes. The 
phosphorylation level of 4E-BP1 was decreased in GARS 
knockdown cells, while the level of total 4E-BP1 in these 
cells was increased, which means that the mRNA trans-
lation process was inhibited in GARS knockdown cells 
(Fig. 3H). These findings suggested that GARS promotes 
breast cancer progression by activating the PI3K/AKT/
mTOR pathway.

GARS accelerated the cell cycle of breast cancer
KEGG analysis using the most positively related genes 
of GARS from the TCGA dataset revealed many tumor-
related pathways, including the cell cycle (Fig.  3I). As 
GARS regulates cell proliferation, we started to explore 
the potential underlying mechanism. We first examined 
cell cycle patterns in control and GARS knockdown cells. 
As shown in Fig. 3J, GARS knockdown cells had a higher 
proportion of G0/G1 phase cells and a lower proportion 
of S and G2 phase cells after release for some time. These 
results revealed that GARS knockdown prevents cells 
from entering the S phase from the G0/G1 phase. Cell 
cycle-regulating proteins were measured by Western blot 
to examine whether GARS knockdown truly alters the 
expression of cell cycle checkpoint proteins. The results 
revealed that knockdown of GARS significantly down-
regulated the expression of CCND1, CDK2, phosphoryl-
ated CDK2, and PCNA; however, knockdown of GARS 
upregulated the expression of the cell cycle-inhibiting 
protein P27 (Fig.  3K). These results suggest that GARS 
may regulate the cell cycle by upregulating CDK2 and 
CyclinD1 expression in breast cancer.

The risk score construction
Based on gene expression and regression coefficient val-
ues from multivariate Cox analysis of the 18 genes, we 
established a simple risk score = (COPS5 * 1.694701 + C
PT1A * 1.608622 + GARS * 1.411987 + GGCX * 0.90329
2 + HCCS  *  0.929408 + HMGB3  *  1.229127 −  KRT15  * 
0.492186  −  N4BP2L1  *​  0.320413  ​−  PRKCB​  *  1.00390​
9 + RNF1​39 * 0.957​138 − R​PS18 * 6.0​77616 + ​SCARB2 * ​
3.14392  −  ​SERPINA1  *​  1.7831​67 + SHMT2​  *  1.2​

26157 + TA​RS  *  2.705​961 + TNFRSF14 * 0.634075  − 
TOR1B  *  0.247428 + TXN  *  2.918599).We applied the 
risk score in circulating tumor cell cohorts, and the epi-
thelial cell cluster (Cluster 1 in GSE109761 (Fig. 4A (left 
picture)); Cluster 1 in GSE144494 (Fig. 4B (left picture))) 
had a significantly higher risk score than the others. 
The area under the curve (AUC) of the receiver operat-
ing characteristic (ROC) curve that shows the relation-
ship of the risk score and epithelial cell cluster was 0.813 
(p < 0.0001) in GSE109761 (Fig.  4A (right picture)) and 
0.750 (p < 0.0001) in GSE144494 (Fig. 4B (right picture)). 
These results mean that the risk score classification had 
high consistency with the special epithelial cell cluster 
(Cluster 1) in CTC cohorts.

The risk score related to high metastasis and poor survival 
in breast cancer
We used the risk score in different breast cancer cohorts, 
and the DFS was significantly lower in the high-risk 
score group than in the low-risk score group, as shown 
in Kaplan–Meier (K-M) curves (TCGA (Fig. 4C); META-
BRIC (Fig. 4D); GSE25066 (Fig. 4E)). Univariate and mul-
tivariate Cox analyses demonstrated that the risk score 
was an independent prognostic factor for survival in 
breast cancer (Table 1). We applied the risk score classi-
fication to different cohorts and found that the risk score 
was associated with some clinicopathological features, 
such as the TNM stage. Box diagrams show that the risk 
score was higher in high TNM stages (TCGA (Fig.  4F); 
METABRIC (Fig. 4H); GSE25066 (Fig. 4J)). We know that 
the TNM stage is an important prognostic signature for 
breast cancer. To investigate whether the risk score clas-
sification could reclassify the TNM stage, we applied the 
risk score classification in each TNM stage. The risk score 
classification could reclassify patients in TNM stage 1 
into two significantly different DFS groups, as well as in 
TNM stages 2 and 3 (TCGA cohort (Fig.  4G), META-
BRIC cohort (Fig. 4I) and GSE25066 cohort (Fig. 4K)).

We examined the risk scores of primary and lung 
metastasis tumors in the GSE2603 and GSE5327 cohorts. 
The risk score was significantly elevated in lung metasta-
sis tumors compared with the primary tumors, as shown 
in Fig. 4L (GSE2603) and M (GSE5327). In the GSE2034 
cohort, patients with bone metastasis had a higher risk 

(See figure on next page.)
Fig. 3  GARS is an oncogene for breast cancer. A The expression of GARS in breast cancer, tumor-adjacent tissues, and normal tissues from the GTEx 
and TCGA datasets. B Validation of GARS knockdown efficacy in breast cancer cell lines by Western blot. C Cell proliferation capacity was examined 
in control and GARS knockdown cell lines by CCK-8 assay. D A colony formation assay was carried out to evaluate the proliferation abilities of breast 
cancer cells in control and GARS knockdown conditions. Cell migration assay (E) and invasion assay (F) for HS-578T cells and MDA-MB-231 LM2 in 
control and GARS knockdown conditions. G GSEA found that mTOR signaling pathway genes were enriched in the high GARS expression group. H 
Western blot analysis of AKT-mTOR signaling pathway proteins in control or GARS knockdown cells. I KEGG analysis of the most positively related 
genes of GARS. J Cell cycle analysis was performed with flow cytometry in cells (control or GARS knockdown cells) after release at the same time. K 
Western blot analysis of cell cycle-related proteins in control or GARS knockdown cells
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Fig. 3  (See legend on previous page.)
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Fig. 4  The risk score correlated with aggressive clinicopathology types in breast cancer. The mean value of the risk score in Cluster 1 or others in 
GSE109761 (A; left picture) and GSE144494 (B; left picture). Receiver operating characteristic curve (ROC) analysis of the risk score for detecting 
Cluster 1 patients in GSE109761 (A; right picture) and GSE144494 (B; right picture). Kaplan–Meier curves for DFS according to the risk score 
classification in TCGA (C), METABRIC (D), and GSE25066 (E). The mean value of the risk score in different TNM stages in the TCGA (F), METABRIC 
(H), and GSE25066 (J) cohorts. Reclassification of survival curves according to the risk score classification within each TNM stage in the TCGA (G), 
METABRIC (I), and GSE25066 (K) cohorts. Boxplots show the risk score of primary tumors and metastases of patients who later developed metastasis 
to the lung (L: GSE2603; M: GSE5327), bone (N: GSE2034), or brain (O: GSE2034). The Kaplan–Meier survival plots depict metastasis-free survival for 
distant metastasis (P: GSE5327), distant relapse (Q: GSE17707), total relapse (L: GSE2034), and lung metastasis (S: GSE2603); (T: GSE5327) based on 
the premetastatic primary tumor risk score classification



Page 11 of 19Li et al. Cancer Cell International          (2021) 21:708 	

Table 1  Univariate and Multivariate Cox Analysis of variables with DFS

Variables Univariate analysis Multivariate analysis

HR (95%CI) p HR (95%CI) p

TCGA​

 Age (> 50 vs ≤ 50) 1.293 (0.885–1.889) 0.184

 T  < 0.0001 0.007

  T1 1 (reference) 1 (reference)

  T2 1.525 (0.967–2.405) 1.138 (0.710–1.825)

  T3 2.521 (1.436–4.424) 1.928 (1.062–3.500)

  T4 9.417 (4.725–18.767) 3.178 (1.441–7.006)

 N  < 0.0001 0.003

  N0 1 (reference) 1 (reference)

  N1 1.416 (0.919–2.184) 1.152 (0.738–1.797)

  N2 2.821 (1.733–4.594) 1.748 (1.024–2.986)

  N3 4.246 (2.446–7.370) 2.976 (1.611–5.498)

 Molecular subtypes 0.009 0.088

  Luminal A&B 1 (reference) 1 (reference)

  HER2 positive 2.902 (1.346–6.258) 2.041 (0.926–4.498)

  Triple negative 1.535 (0.949–2.485) 1.469 (0.884–2.442)

  Risk score (high vs low) 2.833 (1.994–4.025)  < 0.0001 2.506 (1.723–3.644)  < 0.0001

METABRIC

 Age (> 50 vs ≤ 50) 1.403 (1.204–1.635)  < 0.0001 1.326 (1.134–1.551)  < 0.0001

 T  < 0.0001  < 0.0001

  T1 1 (reference) 1 (reference)

  T2 1.559 (1.381–1.759) 1.371 (1.211–1.552)

  T3 2.316 (1.804–2.974) 1.784 (1.381–2.305)

 N  < 0.0001  < 0.0001

  N0 1 (reference) 1 (reference)

  N1 1.321 (1.162–1.501) 1.245 (1.093–1.418)

  N2 2.162 (1.769–2.641) 1.887 (1.540–2.314)

  N3 4.144 (3.300–5.203) 3.411 (2.699–4.311)

 Molecular subtypes 0.099 0.857

  Luminal A&B 1 (reference) 1 (reference)

  HER2 positive 1.244 (0.986–1.570) 1.011 (0.793–1.288)

  Triple negative 0.925 (0.783–1.094) 0.955 (0.805–1.132)

  Risk score (high vs low) 1.413 (1.255–1.591)  < 0.0001 1.294 (1.145–1.463)  < 0.0001

GSE25066

 Age (> 50 vs ≤ 50) 1.072 (0.728–1.579) 0.723

 T  < 0.0001 0.049

  T1 1 (reference) 1 (reference)

  T2 1.520 (0.470–4.914) 1.472 (0.453–4.776)

  T3 2.200 (0.673–7.188) 1.788 (0.544–5.877)

  T4 4.370 (1.326–14.404) 2.885 (0.857–9.714)

 N  < 0.0001 0.002

  N0 1 (reference) 1 (reference)

  N1 2.670 (1.504–4.741) 2.271 (1.275–4.048)

  N2 5.088 (2.650–9.768) 3.689 (1.881–7.236)

  N3 4.162 (1.944–8.911) 2.509 (1.142–5.515)

 Molecular subtypes  < 0.0001  < 0.0001

  Luminal A&B 1 (reference) 1 (reference)

  HER2 positive 3.734 (0.513–27.197) 3.854 (0.510–29.123)

  Triple negative 3.519 (2.365–5.236) 3.157 (2.108–4.729)

  Risk score (high vs low) 2.159 (1.452–3.209)  < 0.0001 1.948 (1.304–2.910) 0.001

The variables with p < 0.1 in univariate Cox Regression Analysis were selected for the further multivariate Cox Regression Analysis

DFS disease free survival, HR hazard ratio, CI confidence interval, vs versus
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score than patients with primary breast cancer (Fig. 4N), 
and patients with brain metastasis also had a higher risk 
score than patients with primary breast cancer, although 
the difference was not statistically significant (Fig.  4O). 
The K-M curves show that the high-risk score was associ-
ated with high distant metastasis risk (Fig. 4P; GSE5327), 
distance relapse (Fig.  4Q; GSE17707), and total relapse 
(Fig.  4L; GSE2034) events. Site-specific metastasis-free 
survival demonstrated that the risk score was signifi-
cantly associated with lung metastasis (Fig. 4S (GSE2603) 
and T (GSE5327)).

Mutation variations between low‑ and high‑risk score 
groups
We analyzed the total tumor mutation burden (TMB) 
of the risk score classification and found that the high-
risk score group had higher TMB than the low-risk 
score group (Fig. 5A). We then explored the most fre-
quently mutated genes in the low- and high-risk score 
groups separately. The waterfall plot shows the top 
30 genes with high mutation rates in each risk group, 

and the most mutated genes were somewhat different. 
The top mutated gene in the low-risk score group was 
PIK3CA, which was mutated in 37% of patients in this 
group, while the mutation rate was 26% in the high-
risk score group (Fig. 5B). The top mutated gene in the 
high-risk score group was TP53, which was mutated in 
45% of patients in this group, while the rate was 23% 
in the low-risk score group (Fig. 5B). By using the GIS-
TIC, we analyzed copy number alterations between the 
high- and low-risk score groups. The high-risk score 
group sustained a significantly higher CNA rate for 
most genes than the low-risk score group (results not 
shown). We found that some immune-related genes 
had significantly high CNA rates in the high-risk score 
group, and these immune gene-related CNA changes 
occurred mostly on chromosomes 9, 17 and X (Fig. 5C, 
D).

The relationship of risk score and immune features
To explore the relationship between risk score and 
immune features, we applied ssGSEA in single-CTC 
sets GSE109761 and GSE144494. The high-risk score 

Fig. 5  Risk score associated with tumor mutation. A The tumor mutation burden (TMB) in the low- and high-risk score groups in the TCGA cohort. 
B The waterfall plot shows the top 30 genes with the highest mutation rates in the low- and high-risk score groups in TCGA. C Chromosome sites 
of some immune-related genes with high copy number alteration (CNA) rates. D Immune-related genes with significantly high CNA rates in the 
low- and high-risk score groups
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group showed significantly low enrichment in most 
immune features, such as NK cells, B cells, and neutro-
phils, etc. (Fig.  6A, B). These results indicate that the 
high-risk score group may belong to the immune defi-
cient state. We then analyzed the immune states of risk 
score classification in solid breast cancer samples. In 
both the TCGA and METABRIC cohorts, we found that 

the immune score, stromal score, and estimate score 
were significantly lower in the high-risk score group 
than in the low-risk score group. However, the tumor 
purity was higher in the high-risk score group (Fig. 6C, 
D). The fractions of twenty-two types of immune cells 
were analyzed in the TCGA and METABRIA cohorts 
separately, and infiltrated T cells, B cells, neutrophils, 

Fig. 6  Risk score related to a low immune infiltration environment in breast cancer. A Unsupervised clustering of ssGSEA scores of immune 
signatures in the single-CTC cohort A GSE109761 and B GSE144494 according to the risk score classification. The box diagram shows the 
immune score, stromal score, ESTIMATE score, and tumor purity in the low- and high-risk score groups in the TCGA (C) and METABRIC (D) cohorts. 
Comparison of the fraction of twenty-two types of immune cells between the low- and high-risk score groups in the TCGA (E) and METABRIA (F) 
cohorts. G–J The PD-1/PD-L1 therapy response rate in the low- and high-risk score groups verified in four separate cohorts
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and NK cells were significantly lower in the high-risk 
score group, while the macrophage types 0 and 2 were 
statistically higher in the high-risk score group (Fig. 6E, 
F).

As we found that the risk score was negatively cor-
related with some immune features, including immune 
checkpoints, we sought to determine whether the risk 
score could predict the immunotherapy response. We 
applied our risk score in four independent datasets 
in which the patients received immunotherapy. As 
expected, the high-risk score group contained fewer 
therapy response patients in all four sets (Fig. 6G: Cho 
et al. [19]; Fig. 6H: Hugo et al. [20]; Fig. 6I: Braun et al. 
[21]; Fig. 6J: Diana Miao et al. [22]), which means that 
the high-risk score patients may not be sensitive to 
immunotherapy.

Pathway analysis of the risk score
The 18 genes that make up the risk score and their most 
correlated genes are shown in Fig. 7A. We compared the 
ssGSEA scores of 1387 constituent pathways from three 

pathway databases, NCI-PID, BioCarta, and Reactome, 
with our risk score. The risk score was positively cor-
related with mTOR signaling, CDK regulation of DNA 
replication signaling, mechanism of protein import into 
the nucleus signaling, etc. In contrast, the risk score was 
negatively related to immune-related pathways such as 
JNK signaling in the CD4_TCR pathway, phosphoryla-
tion of CD3 and TCR zeta chains, Downstream TCR 
signaling, etc. (Fig. 7B). The hallmark gene signature set 
of GSEA in TCGA and GSE17705 shows that the genes in 
the high-risk score group were enriched in the MTORC1 
SIGNALING and G2M CHECKPOINT SIGNALING 
pathways, which is consistent with the ssGSEA results 
(Fig. 7C). The oncogene signature set of GSEA in TCGA 
and GSE17705 also showed that the mTOR signal-
ing pathway was enriched in the high-risk score group 
(Fig. 7D).

Risk score and drug‑sensitive analysis
As the pathway analysis revealed that the high-risk group 
was active in the PI3K-AKT-mTOR and CDK pathways, 

Fig. 7  Bioinformatics and drug sensitivity analysis of the risk score. A The 18 genes that make up the risk score and their most correlated genes. 
B The Pearson correlation of ssGSEA scores of pathways from NCI-PID, BioCarta, and Reactome datasets with our risk score. C GSEA of HALL-MARK 
pathway sets in the TCGA and GSE17705 cohorts. D GSEA of oncogene signature set in the TCGA and GSE17705 cohorts. E The scatter plot shows 
the drug-sensitive correlation of the risk score and PI3K/AKT/mTOR inhibitors in the CTRP dataset. F The scatter plot shows the drug-sensitive 
correlation of the risk score and CDK inhibitors in the CTRP dataset
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we used the gene expression and drug sensitive_AUC 
data from the CTRP dataset to validate the effect of those 
two pathway inhibitors on the risk score. The scatter plot 
shows that the risk score was negatively related to PI3K 
(Fig.  7E) and CDK pathway (Fig.  7F) inhibitors, which 
means that the higher the risk score was, the more sensi-
tive these drugs were.

Discussion
In this study, we used scRNA-seq of CTCs to identify a 
cluster of epithelial cells that had more aggressive char-
acteristics than other CTCs in breast cancer. Applying 
the differentially expressed genes selected from the sin-
gle-CTCs clusters in bulk sequence data of solid breast 
cancers, we identified 18 genes that were closely related 
to breast cancer patient prognosis. The risk score estab-
lished by the 18 genes had a strong association with DFS 
and OS in breast cancer that was verified by a series of 
datasets. We explored the relationship of the risk score 
and tumor immune infiltration features by many meth-
ods and found that the high-risk score related to a defec-
tive immune infiltration environment and immune 
checkpoint therapy response rate were lower in the high-
risk score patients. The GSEA shows that the genes in the 
high-risk score group were enriched in the mTOR, and 
G2M CHECKPOINT SIGNALING pathways, and the 
subsequent drug-sensitive analysis shows that the high-
risk score patients may be more sensitive to AKT-mTOR 
and CDK pathway drugs.

Extraction and analysis of liquid biomarkers such as 
CTCs is a noninvasive method that can screen tumors 
and determine the prognosis or drug sensitivity of can-
cer patients. Recently, scientists have tried many tech-
niques to isolate single or cluster CTCs from the blood 
of patients, and with the improvement of deep-seq tech-
niques, single-CTC RNA could be qualitatively compat-
ible with single-cell RNA sequencing tests [23–26]. The 
development of these techniques made use and thorough 
analysis of CTCs possible. Tumor cells leave the primary 
focus in two main ways and enter the blood circulation to 
become CTCs through epithelial-mesenchymal transition 
(EMT) of cells or directly enter the blood through the gap 
of endothelial cells of the neovasculature [27, 28]. CTCs 
play an important role in the metastasis of cancers, but 
they also face some threats, such as immune cell recogni-
tion and killing or blood flow shear force, that may elimi-
nate them [29]. The molecules expressed in CTCs could 
protect them from recognition by immune cells. Beccelli 
et al. and his colleagues found that CD47 and other pro-
tein expression on the CTC surface can reduce immune 
cell killing of CTCs [30]. Low expression of human leu-
kocyte antigen class I (HLA-I) protein in CTCs has been 
found in many cancers and is correlated with aggressive 

malignancy of tumors, and in some types of cancer, it is 
also related to the low response rate to treatment [31, 
32]. CTC molecular and mechanistic dissection can help 
us explore the heterogeneity of tumors and promote the 
clinical use of tumor CTCs. Here, the gene expression 
results of CTCs from breast cancer and a more detailed 
classification were analyzed in our study. We used differ-
ent expression marker genes in CTCs to identify a cluster 
of cells that highly expressed cancer-associated cell-sur-
face markers and expressed low level of HLA-I class pro-
teins and other proteins, such as CD47. As expected, the 
cluster of cells showed more aggressive characteristics 
both in pathway analysis and Kaplan–Meier curve sur-
vival analysis. The subsequent analysis based on the dif-
ferentially expression genes of the identified cluster CTCs 
and others could be more reliable.

By comprehensive analysis of gene expression in 
CTCs and bulk solid breast cancer datasets, we deter-
mined 18 genes that had a strong survival relationship 
with breast cancer. Some of these 18 genes were previ-
ously reported to be related to breast cancer prognosis. 
COPS5, also known as CSN5, is a component part of the 
COP9 signalosome, but its amplification is required for 
primary human breast epithelial cell malignant transfor-
mation [33]. SERPINA1 is a suppressive gene in breast 
cancer and is the target gene directly regulated by PIWI-
interacting small noncoding RNAs (piR-36026) and the 
response to molecular therapy [34]. SHMT2 catalyzes the 
first step of one-carbon metabolism, and the high expres-
sion of SHMT2 was significantly correlated with poor 
survival in breast cancer [35, 36]. Among these 18 genes, 
some were reported to influence the tumor immune envi-
ronment. COPS5 was found to stabilize PD-L1 in breast 
cancer through deubiquitination of the PD-L1 molecule 
[37]. TNFRSF14 (HVEM) has been observed to have a 
prognostic impact in breast cancer depending on the 
level of tumor-infiltrating lymphocytes (TILs), and the 
worst outcome occurs in patients with high TNFRSF14 
expression and low TIL tumors [38]. Interestingly, some 
of the genes included in the 18 genes were not reported 
to be major markers in breast cancer, such as GARS, 
GGCX, RNF139, and TARS, etc. which can help us to 
find new prognostic markers for further analysis.

In this study, we selected GARS for further analysis 
of its function in breast cancer. GARS is a glycyl-tRNA 
synthetase and is related to protein synthesis and ned-
dylation [39]. The function of GARS in cancer has been 
reported in only a few tumors. Chen et al. used iTRAQ 
proteomics technology in samples from urothelial carci-
noma and chronic kidney disease patients and found that 
GARS was more highly expressed in urothelial carcinoma 
and could be used as a diagnostic marker for urothelial 
carcinoma [40]. Rahane et al. reported that the mutation 
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of GARS may play an oncogenic driver role in adrenocor-
tical carcinoma [41]. We found that GARS act as an onco-
gene in breast cancer. Inhibition of GARS decreased the 
cell growth, colony formation, migration, and invasion 
of breast cancer cells. Bioinformatics analysis and West-
ern blot analysis helped us find that GARS may influence 
the malignant progression of breast cancer through the 
AKT/mTOR pathway. Knockdown of GARS also blocks 
the cell cycle in breast cancer. The cell cycle inhibitor 
kinase p27 was significantly higher in GARS knockdown 
cells. As GARS related to neddylation and p27 could be 
degraded by ubiquitin progression, we speculate that 
GARS may improve p27 degradation, which accelerates 
the cell cycle in breast cancer [42]. These experiments 
verified the important role of GARS in breast cancer and 
the accuracy of the breast cancer-related markers that we 
found by using multiomics.

We used 18 genes to build a risk score for breast can-
cer. Intratumoral heterogeneity in breast cancer has been 
well documented, and subclones consist of distinct geno-
types that have distinct behaviors. Detailed classification 
of tumors at the clinical and genetic levels is helpful for 
individual treatment making. In recent years, with the 
development of in-depth sequencing technology and 
the removal of restrictions to use this technology for 
researchers, many attempts have been made to identify 
special gene cohorts of tumors to better predict the out-
comes of patients. MammaPrint relies on 70 gene expres-
sion data points from microarray-based measurements 
and is used for predicting the prognosis of early-stage 
breast cancer patients [43]. Oncotype DX, which includes 
21 genes, was designed to predict the benefit of chemo-
therapy in early-stage invasive breast cancer patients with 
the ER-positive/HER2-negative type [44]. Our 18-genes 
score can be applied in all types and stages of breast can-
cer patients, and a high score indicates a high metasta-
sis tendency and poor survival rate. The TNM staging 
system, due to its practice and simplicity, is the most 
widely used cancer staging system [45]. The TNM stage 
can classify patients with breast cancer into roughly four 
prognostic groups. We applied our 18-genes risk score in 
each TNM stage group and found that the risk score can 
better reclassify the same group of patients into a more 
accurate risk level, which means our risk score can add 
prognostic and predictive information to classical param-
eters for breast cancer patients.

We compared the mutation variations between the 
low- and high-risk score groups and found that higher 
TMB and TP53 mutations occurred in the high-risk score 
group. TP53 mutation correlated with high epigenomic 
instability and poor prognosis in breast cancer, which 
can partly explain why the high-risk score group patients 
had aggressive malignancy behavior. The copy number 

variation between the high- and low-risk score groups 
also showed a significant difference. Some immune-
related genes had higher CNA rates in the high-risk score 
group, such as CD274 (PD-L1) and PDCD1LG2 (PD-L2). 
In our study, the high-risk score group had high dele-
tion of PD-L1/PD-L2 genes. A previous study revealed 
that amplification of PD-L1 and PD-L2 are important 
biomarkers for immunotherapy, Gupta et  al. found that 
the amplification of PD-L1/PD-L2 may play a poten-
tial mechanism of resistance to chemotherapy in breast 
cancer [46]. These results imply that the high-risk score 
group patients may benefit less from immune checkpoint 
treatment and benefit more from chemotherapy, which is 
consistent with our drug-sensitive analysis.

Immune checkpoint inhibitor (ICI) therapies have 
been successfully applied in many tumors and opened 
a promising new way for cancer therapy [47]. Some ICI 
therapies have also been attempted in breast cancer, such 
as atezolizumab, which was approved for use in breast 
cancer by combination with nab-paclitaxel [48]. Many 
attempts have been made to identify patients who could 
benefit most from ICI treatment. The tumor immune 
microenvironment is critical to the ICI treatment 
response, and researchers have analyzed it in pan-cancer 
of TCGA dataset [49]. Tumors with an immune-excluded 
and immune-desert phenotype rarely respond to anti-
PD-1/PD-L1 therapy because of active T-cell exclusion 
or lack in the tumor parenchyma or stroma [50, 51]. The 
immune-inflamed type of tumor has abundant adaptive 
and innate immune cell infiltration, and it predicts a sig-
nificantly better ICI therapy response and good survival 
prognosis in tumors [51, 52]. In our study, the risk score 
shows a significant correlation with the tumor immune 
micro-environment. The data show that the risk score 
was negatively correlated with the infiltration of most 
immune cell types, including TILs, NK cells, and CD8+ T 
cells, etc. These results appeared not only in breast can-
cer but also in other solid tumors, revealing its universal 
application in tumors. We analyzed the response rate of 
ICI treatments according to our risk score classification 
and found that the high-risk score group had a signifi-
cantly lower response rate than the low-risk score group 
in many kinds of tumors. All these findings indicate 
that the high-risk score group patients tended to have 
immune-excluded or immune-desert phenotypes, so ICI 
treatment may not be useful for them.

In the comprehensive pathway analysis through 
KEGG, GSEA, and ssGSEA, the PI3K/AKT/mTOR 
pathway and cell cycle regulatory-related pathways 
were significantly active in the high-risk score group. 
The PI3K/Akt/mTOR signaling pathway has been 
found to be hyperactive in almost all tumors, includ-
ing breast cancer [53]. This pathway is involved in many 
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cellular activities, such as cell growth, proliferation, 
survival, metabolism, and immune response regula-
tion [54, 55]. The dysregulation of this pathway leads 
to uncontrolled cell proliferation, genomic instability, 
and metabolic reprogramming that promote the malig-
nant development of tumors [56]. Cell cycle regulatory 
related pathways tightly regulate each cell cycle phase 
in normal cells [57]. Once dysregulated, these path-
ways may induce breast epithelial cells to transform to 
the active state, leading to oncogenic changes [58]. The 
abnormal activation of these pathways partly explained 
the aggressive behavior of the high-risk score group 
patients. Therefore, blocking PI3K/AKT/mTOR and the 
cell cycle pathway may be helpful for risk score-high 
breast cancer patients, and the subsequent drug-sensi-
tive analysis targeted to these pathways confirmed this.

In summary, we identified an aggressive cluster of 
single CTCs of breast cancer based on its distinct gene 
expression pattern. By using the differentially expressed 
genes selected from the single-CTCs clusters, we con-
structed an 18-gene risk score in bulk solid breast 
cancer datasets. The risk score classified patients into 
distinct metastasis and survival prognosis groups, and 
their immune cell infiltration status was also different. 
Immune checkpoint inhibitors may not be sensitive 
to risk score-high patients, while drugs that target the 
abnormally activated pathways in this group, such as 
the PI3K/AKT/mTOR pathway and cell cycle regulated 
pathways, may be helpful for those patients. Our risk 
score contains fewer genes and can easily be applied 
in the clinic. We hope in the future, that there will be 
large-scale prospective studies to validate our results.
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