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Clinical M2 macrophages‑related 
genes to aid therapy in pancreatic ductal 
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Abstract 

Background:  Increasing evidence supports that infiltration M2 Macrophages act as pivotal player in tumor progres-
sion of pancreatic ductal adenocarcinoma (PDAC). Nonetheless, comprehensive analysis of M2 Macrophage infiltra-
tion and biological roles of hub genes (FAM53B) in clinical outcome and immunotherapy was lack.

Method:  The multiomic data of PDAC samples were downloaded from distinct datasets. CIBERSORT algorithm was 
performed to uncover the landscape of TIME. Weighted gene co-expression network analysis (WGCNA) was per-
formed to identify candidate module and significant genes associated with M2 Macrophages. Kaplan-Meier curve and 
receiver operating characteristic (ROC) curves were applied for prognosis value validation. Mutation data was ana-
lyzed by using “maftools” R package. Gene set variation analysis (GSVA) was employed to assign pathway activity esti-
mates to individual sample. Immunophenoscore (IPS) was implemented to estimate immunotherapeutic significance 
of risk score. The half-maximal inhibitory concentration (IC50) of chemotherapeutic drugs was predicted by using the 
pRRophetic algorithm. Finally, quantitative real-time polymerase chain reaction was used to determine FAM53B mRNA 
expression and TIMER database was utilized to uncover its possible role in immune infiltration of PDAC.

Results:  Herein, 17,932 genes in 234 samples (214 tumor and 20 normal) were extracted from three platforms. 
Taking advantage of WGCNA, significant module (royalblue) and 135 candidate genes were considered as M2 
Macrophages-related genes. Subsequently, risk signature including 5 hub genes was developed by multiple analysis, 
which exhibited excellent prognostic performance. Besides, comprehensive prognostic nomogram was constructed 
to quantitatively estimate risk. Then, intrinsic link between risk score with tumor mutation burden (TMB) was explored. 
Additionally, risk score significantly correlated with diversity of tumor immune microenvironment (TIME). PDAC sam-
ples within different risk presented diverse signaling pathways activity and experienced significantly distinct sensitiv-
ity to administering chemotherapeutic or immunotherapeutic agents. Finally, the biological roles of FAM53B were 
revealed in PDAC.

Conclusions:  Taken together, comprehensive analyses of M2 Macrophages profiling will facilitate prognostic predic-
tion, delineating complexity of TIME, and contribute insight into precision therapy for PDAC.
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) as the sev-
enth leading cause of cancer associated death was one of 
the most common human malignancies globally [1, 2]. 
There was approximate 459,000 newly diagnosed patients 
and an almost 432,000 related deaths according to the 
2018 global cancer statistics [1]. Given the difficulty of 
early precision diagnosis and rapid tumor progression, a 
large number of PDAC cases presented advanced clinical 
stage or distant metastatic disease at diagnosis [2]. It is 
of great importance, thus, to develop novel and reliable 
indicators for prognostic estimation and therapeutic effi-
cacy prediction, further advance tailored therapy.

Cancer immunity harnessed an antitumor immune 
response to recognize then eliminates the tumor cells 
through activating the host’s immune system. Currently 
antitumor immunotherapy attracted people’s interest 
with the flourish of immune checkpoint inhibitors, but 
only a minority of cancer patients could benefit from it. 
Immune checkpoint blockade immunotherapy (i.e., anti-
PD-1, etc.,) have made great breakthrough in numerous 
malignant cancers, however, clinical trials of anti-PD L1 
antibodies and CTLA-4 antibodies have been mostly 
disappointing in PDAC [3, 4]. A primary reason for lim-
ited therapeutic efficacy likely lies in extremely immu-
nosuppressive tumor microenvironment [5]. Account 
for approximately 50% of the tumor cellular population, 
infiltrating immune cells mostly served as opposing roles 
in anti-tumor response [6]. There are mounting of mye-
loid-derived suppressor cells, T cells, tumor correlated 
fibroblasts and macrophages, in its microenvironment, 
almost of which significantly inhibited efficient immu-
notherapy [7]. Among which, M2 Macrophages and M2 
Macrophages-associated signaling pathways functioned 
as pivotal players in suppressing adaptive immunity, 
facilitating angiogenesis, and accelerating tumor growth 
[8, 9]. For example, previous study highlighted mac-
rophages were activated into the M2 phenotype to pro-
mote the epithelial-mesenchymal transition, invasion, 
and migration of pancreatic tumor cells [10]. Addition-
ally, High levels of CD163+ M2 macrophages infiltration 
was reported to be significantly correlated with worse 
prognosis [11]. The comprehensive analyses focusing on 
biological roles of M2 Macrophages, however, in prog-
nostic prediction and tumor microenvironment of PDAC 
remains obscure. Hence, the most reliable and promis-
ing strategy for comprehensive evaluation of tumor sen-
sitivity to clinical treatment may be one derived from 

immune profiles, identifying PDAC cases according to 
specific risk signatures correlated with M2 Macrophages 
profiling, generating individualized program to improve 
efficacy accordingly.

The human gene (Hs Q14153) was named FAM53B 
(‘family with sequence similarity 53, member B’) by 
HUGO Gene Nomenclature Committee after its identi-
fication by systematic genome data mining. The genome-
wide association study of cocaine dependence and related 
traits identified FAM53B as a risk gene [12]. In addition, 
FAM53B functioned as crucial regulators in cell prolif-
eration by bounding 14-3-3 chaperones, as well as SKIIP 
proteins, adaptor proteins connecting DNA-binding pro-
teins to modulators of transcription [13]. However, the 
possible roles of FAM53B in PDAC were still elusive, it 
will be of great importance to explore its potential roles 
in progression of PDAC.

Herein, we amalgamated two PDAC sample datasets, 
GSE16515 and TCGA-PAAD to investigate the potential 
role of M2 Macrophages profiling. The M2 Macrophages 
profiling was obtained by using CIBERSORT algorithm 
and followed by WGCNA to discovery the most signifi-
cant module correlated with M2 Macrophages. Next, the 
candidate genes in the module were further determined 
using multiple-COX regression model and 5 key genes 
were finally identified. Then, multi-genes risk model and 
an integrated prognostic nomogram was developed. The 
prognostic value was validated in subsequent analysis 
and external testing group (ICGC-PACA-CA). Moreover, 
the synergistic effect of risk score with TMB was dem-
onstrated. Additionally, the potential role of risk score 
in TIME contexture was investigated. Subsequently, the 
underlying signaling pathways and therapeutic predic-
tion of risk score were investigated. Finally, the biological 
functions of FAM53B in prognostic prediction, immune 
infiltration and immunotherapy were further explored to 
provide robust insights for clinical therapeutic strategy in 
PDAC. In summary, M2 Macrophages-based risk score 
was established to serve as robust predictive biomarker 
and prognostic indicator for clinical outcome prediction, 
contributing directions to therapeutic management for 
PDAC.

Materials and methods
Collection of muti‑omics data
Sequencing profile for PDAC sample together with 
normal tissues were obtained from TCGA-PAAD pro-
ject and GSE16515 dataset. The corresponding clinical 
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profiles were also downloaded from the TCGA portal 
as descripted previously. The R packages limma and sav 
was employed to perform batch calibration and normal-
ize the expression values among the two platforms. The 
principal component analysis was employed to validate 
the normalize result. The RNA sequencing profile of the 
patients from ICGC-PACA-CA dataset, which contains 
195 primary tumor samples, was obtained from ICGC 
portal (https://​dcc.​icgc.​org/). Next, four categories of 
somatic mutation data of PDAC patients were obtained 
from The Cancer Genome Atlas (TCGA) portal. We sin-
gled out the mutation files which were obtained through 
the “SomaticSniper variant aggregation and masking” 
platform for subsequent analysis. The Human Protein 
Atlas (http://​www.​prote​inatl​as.​org) was used to investi-
gate the protein levels of metastatic-related genes.

Landscape of infiltrating immune cells
With the help of CIBERSORT algorithm (http://​ciber​
sort.​stanf​ord.​edu/), the sequencing data of samples was 
analyzed and calculated to gain the abundance of 22 
tumor-infiltrating immune cells (TICs) subtypes, which 
represent the cellular constitute of the tumor immune 
microenvironment [14].

Weighted gene co‑expression network analysis
The sequencing data of the 17,932 genes of the PDAC 
patients were employed to generate a weight co-expres-
sion network using the WGCNA method. The correla-
tions between sample traits and candidate modules are 
computed to determine the models highly correlated 
with traits, in which the genes are further analyzed to 
screen hub genes [15]. In the current study, we employed 
the immune-infiltrating cells profile, namely CIBER-
SORT results, as sample phenotypes then select an 
appropriate soft threshold power (β) value to generate a 
scaleless network (the index of scale-free topologies = 
0.90). Then, similar genes were introduced into the same 
candidate module employing the “dynamic tree cutting” 
algorithm when setting the minimum size as 60. Besides, 
correlation analysis between module characteristic genes 
and sample traits was implemented by Pearson’s cor-
relation test (*p < 0.05). Finally, we placed the emphasis 
on the “M2 Macrophages” population and the module 
most significantly correlated with M2 Macrophages was 
extracted for subsequent analysis.

Functional enrichment analysis
Taking advantage of R package “org.Hs.eg.db”, the 
Entrez ID for each M2 Macrophages related gene was 
obtained. To elucidate underlying mechanisms of the 
hub genes related to M2 Macrophages in biological pro-
cess, we implemented the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) and Gene ontology (GO) path-
ways annotation with “clusterProfiler”, “enrichplot” and 
“ggplot2” packages and visualized the results.

Construction of M2 macrophages‑related prognostic 
signature
To explore the prognostic role of M2 Macrophages-asso-
ciated genes, genes from the most significant module 
were employed to assemble a prognostic risk signature in 
PDAC. Firstly, candidate genes significantly related with 
overall survival (p < 0.05) were identified using univari-
ate COX regression analysis. Next, LASSO shrinked all 
regression coefficients towards 0 and set the coefficients 
of many irrelevant features exactly to 0 based on the reg-
ulation weight λ. The optimal λ was chosen according to 
the minimum cross‐validation error in 10‐fold cross vali-
dation. Then, a multivariate Cox regression model was 
analyzed to identify hub genes and computed their cor-
responding coefficients. Finally, prognostic risk model 
including 11 hub M2 Macrophages‐correlated genes was 
developed and risk score was calculated as the formula 
below. Risk score = βgene 1 ×expression level of gene 
1 + βgene 2×expression level of gene 2 + · ···· +βgene n 
× expression level of gene n. Here, β was the regression 
coefficient in the multivariate Cox regression analysis as 
described previously [16].

Validation of the prognostic M2 macrophages‑related 
signature
According to previous risk formula, each PDAC sam-
ple obtained corresponding risk score. All samples were 
stratified into low- and high-risk subgroups when setting 
the median value of risk scores (1.3001) as the cut-off 
point. First, K-M survival curve was plotted using R pack-
age “survival” to identify prognosis difference. Besides, 
time-dependent receiver operating characteristic (ROC) 
curves were analyzed to validate prognostic value. Then, 
univariate and multivariate Cox regression analysis were 
performed for validity of risk signature as an independent 
prognostic indicator. To visualize correlation of risk score 
with clinicopathological variables, R “pheatmap” pack-
age was employed and compared clinical characteristics 
between low- and high-risk patients.

Establishment and verification of the nomogram
To identify the optimal prognostic indicator, risk score, 
age, gender, tumor grade, and clinicopathological stage 
for 1/2/3-year OS, ROC analysis was performed [17]. 
To develop a quantitative prognostic pool for PDAC 
patients, a nomogram plot integrating risk score and 
other clinicopathological features was constructed to 
predict 1-, 2‐and 3‐year overall survival rate. Then, we 

https://dcc.icgc.org/
http://www.proteinatlas.org
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
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plotted the calibration curve which could present prog-
nostic validity of nomogram.

Collection and preprocess of epigenetic mutation data
The corresponding somatic alteration information of 
TCGA-PDAC cohort were obtained from TCGA data-
set. TMB was defined as the number of somatic, cod-
ing, base replacement, and insert-deletion mutations 
per megabase of the genome examined using non-syn-
onymous and code-shifting indels under a 5% detection 
limit. The “maftools” R package [18] was employed to 
detect the number of somatic non-synonymous point 
mutations within each sample. The somatic alterations in 
PDAC driver genes were revealed for samples with low-/
high-risk scores.

Correlation of risk score with TIME characterization
To uncover the correlation between the risk score and 
tumor infiltrating immune cells, we implemented the 
seven methods including XCELL, TIMER, QUANTISEQ, 
MCPcounter, EPIC, CIBERSORT, and CIBERSORT-ABS 
to evaluate the immune infiltrating situation. Spear-
man correlation was analyzed to explore the relevance 
between risk score and the immune infiltration statues. 
We compared the differences in immune infiltrating cell 
fraction between low and high-risk subgroups.

The Estimation of Stromal and Immune Cells in Malig-
nant Tumors using Expression Data (ESTIMATE) algo-
rithm [19], as a new algorithm based on the unique 
properties of the transcriptional profiles, could estimate 
the tumor cellularity and the tumor purity.

The immune score and stromal score were calculated to 
quantify the relative enrichment of immune and stromal 
cells which form the basis for the ESTIMATE score to 
predict tumor purity.

Gene set variation analysis
Predominantly, pathway analyses were carried out to 
evaluate activation of hallmark pathways and metabolic 
pathways, which were described in the MSigDB data-
bases (https://​www.​gsea-​msigdb.​org/​gsea/​msigdb) [24]. 
Then, we applied Gene set variation analysis (GSVA) [25] 
in the GSVA package (version 1.36.3) to assign pathway 
activity estimates to assess the relative pathway activities 
in individual samples.

Prediction of patients’ response to immunotherapy
According to previous research, expression patterns of 
immune checkpoint blockade-related hub targets might 
contribute into efficacy of immunotherapy admin-
istration [20]. In this study, we fetched 47 immune 
checkpoint blockade-related genes (i.e., PDCD1, etc.,) 
and explored their expression levels in risk-low/high 

samples. To further explore the potential role of risk 
score in immunotherapeutic prediction, Immunophe-
noscore (IPS) was used as a novel and robust predic-
tor of response to immunotherapeutic regimens, which 
quantify the determinants of tumor immunogenicity 
and characterize the cancer antigenomes and intratu-
moral immune landscapes [21]. The scoring system was 
constructed based on a panel of immune-related genes 
from the four classes: suppressor cells (SC), effector 
cells (EC), checkpoints or immunomodulators (CP) and 
MHC-related molecules (MHC). The weighted aver-
aged Z score was computed by averaging the sample-
wise Z scores of the four classes within the respective 
category and the sum of the weighted averaged Z score 
was termed as the IPS.

Prediction of chemotherapeutic effect
To estimate the sensitivity of chemotherapy, the R pack-
age pRRophetic was employed to estimate the half-max-
imal inhibitory concentration (IC50) of PDAC samples 
in different ICI score groups. By constructing the ridge 
regression model based on Genomics of Drug Sensitiv-
ity in Cancer (GDSC) (www.​cance​rrxge​ne.​org/) cell line 
expression spectrum and TCGA gene expression profiles, 
the package pRRophetic could estimate IC50 of chemo-
therapeutic drugs [22].

Experimental validation
HPNE (human pancreatic cell line) and four human pan-
creatic cancer cell lines (BxPC-3 cells, PANC-1 cells, and 
MiaPaCa-2 cells) were purchased from the Cell Bank of 
the Type Culture Collection of the Chinese Academy of 
Sciences, Shanghai Institute of Biochemistry and Cell 
Biology. The cell lines were all cultured in Roswell Park 
Memorial Institute (RPMI-1640) medium plus 10% fetal 
bovine serum (FBS; Invitrogen, Carlsbad, CA, USA). All 
cell lines were grown without antibiotics in a humidi-
fied atmosphere of 5% CO2 and 99% relative humidity at 
37℃. Three different cell lines were subjected to quanti-
tative real-time polymerase chain reaction (qRT-PCR). 
Quantitative real-time PCR was analyzed as described 
previously [23]. All samples were analyzed in triplicates. 
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
levels were used as the endogenous control and relative 
expression of FAM53B was calculated using the 2-ΔΔCt 
method. The sequences of primers used for PCR were 
as follows: FAM53B, 5′-CCT​CAG​CAT​CAG​CGA​CCA​
CAAC-3′ (forward) and 5′-CGG​CAA​CTG​GAC​ATC​TCA​
TCGG-3′ (reverse); and GAPDH, 5′-CAG​GAG​GCA​TTG​
CTG​ATG​AT-3′ (forward) and 5′-GAA​GGC​TGG​GGC​
TCA​TTT​-3′ (reverse).

https://www.gsea-msigdb.org/gsea/msigdb
http://www.cancerrxgene.org/
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Statistical analysis
The Wilcoxon test was employed to compare two groups, 
whereas the Kruskal-Wallis test was carried out to com-
pare more than two groups. Survival curves were ana-
lyzed by the Kaplan-Meier log rank test. The chi-square 
test was performed to correlate the risk score subgroups 
with somatic mutation frequency, and the Spearman 
analysis computed the correlation coefficient. CIBER-
SORT algorithm results with p < 0.05 were adopted for 
further analysis. Two-tailed p < 0.05 deemed statistical 
significance. R software (version 4.0.3) was utilized for all 
statistical analyses.

Results
Removing of batch effect
To delete the batch effect in two datasets, the limma 
and sav algorithm (see Section Method) was employed. 
A total of 17,932 genes were collectively probed in 
two different PDAC cohorts (TCGA-PAAD project 
and GSE16515 microarray). Given the batch effect 
from different platforms, PDAC samples were gath-
ered by batches based on the top two principal compo-
nents (PCs) of unnormalized mRNA expression levels 
(Fig. 1A). After removal of batch effect, the scatter-plot 

based on principal component analysis (PCA) of nor-
malized sequencing presented that the batch effect was 
successfully removed by cross-platform normalization 
(Fig. 1B).

Landscape of TIME in PDAC
To elucidate the comprehensive landscape of TIME, 
the CIBERSORT algorithm was employed (Additional 
file 1: Table S1). Figure 1C presented the abundance of 
22 TICs types. The involvement of TIME patterns with 
clinical phenotypes was explored and depicted in the 
comprehensive heatmap (Fig.  1D). To further reveal 
the potential connection between these infiltrating 
immune cells, the correlation was presented to visual-
ize the comprehensive landscape of TIME (Fig.  1E). 
Notably, M0 Macrophages was most negatively corre-
lated with CD8+ T cells (r = − 0.56; p < 0.05), whereas 
naïve CD4+ T cells were most positively correlated 
with memory B cells (r = 0.55; p < 0.05). When it comes 
to M2 Macrophages, which was most positively corre-
lated with plasma cells (r = 0.35; p < 0.05), most nega-
tive correlation was with M2 Macrophages (r = − 0.5; 
p < 0.05).

Fig. 1  Principal component analysis (PCA) of the gene expression datasets. The points of the scatter plots visualize the samples based on the top 
two principal components (PC1 and PC2) of gene expression profiles without (A) and with (B) the removal of batch effect. The colors represent 
samples from three different datasets, respectively. Landscape of immune cell infiltration in tumor immune environment of PDAC. Subpopulation 
of 22 immune cell subtypes (C) and proportional heatmap of the 22 TICs in each PDAC samples (D). E Intrinsic correlation of 22 infiltrating immune 
cells in PDAC. The cross-out cell indicates that the co-expression correlation between two genes is not significant (p > 0.05)
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Establishment of the WGCNA network
The sequencing file of 17,932 genes together with the 
subpopulations of immune infiltration were analyzed 
to develop the WGCNA co-expression network. In 
order to construct the scaleless network, the optimal 
soft threshold power (β) was set as 9 since it was the 
first power value when the index of scale-free topolo-
gies achieve 0.90 (Fig. 2A). Genes with similar expres-
sion patterns were introduced into the same module 
by dynamic tree-cutting algorithm (module size = 60), 
making a hierarchical clustering tree with different 
modules. Hierarchical clustering analysis was per-
formed according to weighted correlation, and the clus-
tering results were segmented based on the set criteria 
to obtain 22 gene modules (Fig.  2B). Each column of 
Fig. 2C presented the 22 TICs types, and each row pre-
sented the candidate module with traits vector genes. 
It was worth mentioned that the royalblue module was 
highly correlated with M2 Macrophages (cor = − 0.46, 
p = 1e−12) among 22 candidate modules. Our primary 
concern was the M2 Macrophages, and so we fetched 

the genes (Additional file 1: Table S2) in the royalblue 
module for further research.

KEGG and GO enrichment analysis
To explore the biological function of M2 Macrophages-
related genes in physiological process, GO and KEGG 
pathway enrichment were analyzed (Additional file  1: 
Tables S3 and S4). For KEGG analysis, the top enriched 
terms were Primary immunodeficiency, Hematopoi-
etic cell lineage and Cytokine−cytokine receptor inter-
action (Additional file  2: Figure S1A). The result of GO 
enrichment pathways presented that the M2 Mac-
rophages-related hub genes were mostly enriched in B 
cell activation, immune response−activating signal trans-
duction and immune response−activating cell surface 
receptor signaling pathway in biological processes (BP); 
membrane raft, external side of plasma membrane and 
membrane microdomain in cellular components (CC); 
phospholipid binding, RNA polymerase II−specific and 
DNA−binding transcription activator activity in molecu-
lar function (MF; Additional file 2: Figures S1B–D).

Fig. 2  Selection of the appropriate soft threshold (power) and construction of the hierarchical clustering tree. A Selection of the soft 
threshold made the index of scale-free topologies reach 0.90 and analysis of the average connectivity of 1–20 soft threshold power. B M2 
Macrophages-related genes with similar expression patterns were merged into the same module using a dynamic tree-cutting algorithm, creating 
a hierarchical clustering tree. C Heatmap of the correlations between the modules and immune-infiltrating cells (traits). Within every square, the 
number on the top refers to the coefficient between the cell infiltrating level and corresponding module, and the bottom is the p value



Page 7 of 17Xu et al. Cancer Cell Int          (2021) 21:582 	

Development of risk signature
To further investigate prognostic value of candidate 
genes, we extracted the expression data and follow-up 
information from the TCGA-PAAD project. With the 
help of univariate Cox analysis, 22 M2 Macrophages-
related genes were identified with significant prognostic 
value (p < 0.05, Additional file  1: Table  S5). In order to 
avoid overfitting, the prognostic signature, Lasso regres-
sion were conducted on these hub genes and recognized 
9 M2 Macrophages-related genes related to prognosis in 
PDAC (Fig.  3A), and the optimal values of the penalty 
parameter were determined by 10-round cross-valida-
tion (Fig. 3B). Multivariate COX regression analysis was 
performed, 5 M2 Macrophages-related genes (FAM53B, 
SPINK2, ABCB4, GH1, INTU) were determined as the 
hub genes, all of which were considered as beneficial 
prognostic indicator (all HRs < 1, Table  S6). Although, 
three of these genes (SPINK2, GH1, INTU) have a 
p-value > 0.05, prognostic accuracy was improved by 
synergistic effect of them (Additional file  2: Figure 
S2A–C). Genomics expression value in TCGA database 
showed that the expression patterns of most genes were 
abnormally expressed in PDAC tissue compared with 

normal tissue (Additional file  2: Figure S3A–E). The 
HPA database was used to explore protein expression 
levels in PDAC samples. The results showed that rela-
tive to normal samples, proteins (ABCB4, FAM53B, and 
INTU) were significantly dysregulated in tumor tissues 
(Additional file  2: Figure S4A–J). Furthermore, between 
low- and high-genes expression subgroups Survival 
analysis shown that abnormal mRNA expression of most 
hub genes resulted in significant different overall survival 
time (most p < 0.05, Additional file 2: Figure S5A–E).

According to the median expression of hub genes, all 
samples were divided into high expression group and 
low expression group. Then, GSEA was performed to 
identify the functional enrichment of high and low hub 
genes expression. KEGG enrichment term exhibited 
that high expression of ABCB4 was mainly associated 
with calcium signaling pathway, cell adhesion molecule, 
and neuroactive ligand receptor interaction (Fig.  4A). 
Genesets including cortisol metabolism, negative regu-
lation of fatty acid biosynthesis, and negative regulation 
of vascular endothelial cell proliferation were enriched 
in patients with high ABCB4 expression (Fig. 4B). The 
three KEGG signaling pathways most significantly 

Fig. 3    Establishment of the prognostic risk signature. A LASSO coefficient profiles of 22 candidate genes. A vertical line is drawn at the value 
chosen by 10-fold cross‐validation. B Ten‐time cross‐validation for tuning parameter selection in the lasso regression. The vertical lines are plotted 
based on the optimal data according to the minimum criteria and 1-standard error criterion. The left vertical line represents the 9 genes finally 
identified. C Kaplan–Meier curve analysis presenting difference of overall survival between the high-risk and low-risk groups. D Distribution 
of multi-genes model risk score. E The survival status and duration of PDAC patients. F Univariate Cox regression results of overall survival. G 
Multivariate Cox regression results of overall survival
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associated with FAM53B high expression were shown 
in Fig. 4C, where FAM53B high expression was signifi-
cantly enriched in calcium signaling pathway, cell adhe-
sion molecule, and chemokine signaling pathway. The 
three GO pathways most significantly associated with 
FAM53B high expression were shown in Fig. 4D, where 
FAM53B high expression was positive in humoral 
immune response, regulation of immune effector pro-
cess, and regulation of lymphocyte activation. As 
shown in Fig.  4E, the top 3 KEGG signaling pathways 
most significantly enriched in GH1 high expression 
were chemokine signaling pathway, cytokine–cytokine 
receptor interaction, intestinal immune network for 
IgA production, respectively. In addition, the GO 
pathways in leukocyte migration, lymphocyte medi-
ated immunity, regulation of immune effector process 
were described as the GH1-associated signaling path-
ways with the greatest enrichment (Fig. 4F). As shown 
in Fig. 4G, the genes of INTU were mainly enriched in 
KEGG terms including the primary immunodeficiency 
and the GO terms including the hormone metabolism, 
glucocorticoid biosynthesis, glucocorticoid metabo-
lism mainly enriched in the in PDAC (Fig.  4H). The 
results of GO and KEGG revealed that CDK2 involved 
in a variety of tumors including Cytosol/DNA/sensing 

pathway, RIG I Receptor like signaling pathway and 
immune response regulation signal pathway (Fig. 4I, J).

Subsequently, 5 hub genes were incorporated into a 
risk signature for PDAC patients. The risk score was 
computed: risk score = (− 0.0924 ∗ expression value of 
FAM53B) + (− 0.4320 ∗ expression value of SPINK2) + 
(− 0.5483 ∗ expression value of ABCB4) + (− 7.7451 ∗ 
expression value of GH1) + (− 0.5285 ∗ expression value 
of INTU). Finally, each PDAC sample with correspond-
ing risk score were classified into low-/ high-risk sub-
groups based on the median cut-off value (1.3001).

Validation of risk prognostic signature
K–M survival curve demonstrated that high-risk sam-
ples presented significant shorter OS time than patients 
with low-risk (p = 7.876e−06; Fig.  3C). Besides, distri-
butions of dot pot of survival status and risk score sug-
gested that low-risk PDAC patients had longer overall 
survival time (Fig. 3D, E). Then, univariate Cox analysis 
pointed out that the hazard ratio (HR) of risk score was 
2.176 (95% CI 1.628−2.908; Fig.  3F). And the results of 
multivariate Cox regression analysis (HR = 2.056, 95% 
CI 1.520−2.781; Fig. 3G) supported risk score performed 
as an independent prognostic indicator in PDAC. These 

Fig. 4    GSEA for samples with high and low expression of 5 hub genes.  A The enriched gene sets in KEGG collection by the high ABCB4 expression 
sample. B The enriched gene sets in GO collection by the high ABCB4 expression sample.  C The enriched gene sets in KEGG collection by the high 
FAM53B expression sample.  D The enriched gene sets in GO collection by the high FAM53B expression sample.  E The enriched gene sets in KEGG 
collection by the high GH1 expression sample.  E The enriched gene sets in GO collection by the high GH1 expression sample.  F The enriched gene 
sets in KEGG collection by the high INTU expression sample.  G The enriched gene sets in GO collection by the high INTU expression sample.  H 
The enriched gene sets in KEGG collection by the high SPINK2 expression sample.  I The enriched gene sets in GO collection by the high SPINK2 
expression sample
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results suggested that an excellent capacity of our 5 hub 
genes signature for clinical outcome prediction.

The signature was employed in the PACA-CA cohort to 
validate the external prognosis predictive performance. 
The results presented the distributions of five genes 
expression patterns, samples survival status, and cor-
responding risk score in the external validation cohort 
(Additional file 2: Figure S6A–C). Although there was no 
statistical significance, survival analysis presented that 
PDAC patients with high-risk presented poorer progno-
sis relative to low-risk group patients (Additional file  2: 
Figure S6D, p = 6.832e−01). The ROC analysis (AUC 
value = 0.57) also indicated that this risk score model 
held good prognosis predictive performance in the 
PACA-CA group (Additional file  2: Figure S6E). These 
results indicated that the signature had a steady and 
robust prognostic value. 

Correlation of risk signature with clinicopathological 
variables
Subsequently, the distribution of clinical variables in 
low/high-risk subgroups was uncovered and visualized 
(Fig.  5A). Figure  5B–G presented that fraction of clini-
cal subtypes based on age, gender, tumor grade, clinical 
stage, T status and N category in high-/low-risk sub-
group, respectively.

Stratification analysis were employed to validate 
whether risk score still could identify difference of prog-
nosis when PDAC patients were clustered into clinical 
variables groups. When patients were divided based on 
age, we found that our risk score was still predictive of 
patient outcomes, with higher scores indicating poorer 
outcomes (Additional file 2: Figure S7A, B). Consistently, 
risk score presented powerful prognostic predicting abil-
ity for patients in male or female gendered (Additional 
file  2: Figure S7C , D), 1-2 or 3-4 pathological grade 
patients (Additional file  2: Figure S7E, F), patients in 
early- and late-stage (Additional file  2: Figure S7G, H), 
patients T1-2 or T3-4 status (Additional file 2: Figure S7I, 
J), patients in N0 category (Additional file 2: Figure S7K), 
and patients in M0 category (Additional file  2: Figure 
S7L). These findings, combined with results of univari-
able and multivariable regression analysis, emphasized 
that our risk score was indeed good prognostic predictive 
indicator independent from other clinical parameters.

Construction of prognostic nomogram
Subsequently, ROC curves were plotted and AUC value 
for the 1-, 2-, and 3-year OS reached 0.742, 0.729, and 
0.758, respectively, suggesting great prognostic valid-
ity (Fig.  6A). To further validate risk score was indi-
cator with the best prognostic value among multiple 

Fig. 5    Clinical significance of the prognostic risk signature. A Heatmap presents the distribution of clinical feature and corresponding risk score in 
each sample. Rate of clinical variables subtypes in high or low risk score groups. B Age, C Gender, D WHO grade, E clinical stage, F T status and G N 
status
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clinicopathological variables, age, gender, clinical stag-
ing, tumor grade, T status and N status were assigned as 
the candidate prognostic factors. These clinical features 
were incorporated to perform the AUC analysis for 1-, 
2-, and 3-year OS and we found that risk score obtained 
the highest AUC value (Fig.  6B–D). Then, a prognostic 
nomogram consisting of risk score and clinical stage was 
developed for quantitative prognosis prediction (Fig. 6E). 
Gender, stage, tumor grade, T category and N category 
were excluded out of nomogram given of which AUC 
values did not reach at 0.6. Finally, calibrate curves sug-
gested excellent prognosis predictive performance of 
nomogram model (Fig. 6F–H).

Association of risk signature with TMB
Recent researches have highlighted that high tumor bur-
den mutation (TMB) was significantly associated with 
abundance of CD8+ T cells, which could identify can-
cer cells then leading to anti-tumor immune response 
[24–26]. For that, we speculated that TMB might act as 
a nonnegligible prognostic factor of responsiveness to 
antitumor immunotherapy and aimed to investigate the 
potential interaction between risk score and TMB to 
uncover the hereditary variations of risk score subtype. 
Firstly, the TMB level was detected both in high- and 
low- risk score subgroups. It was discovered that TMB 
level was higher in high-risk score subgroup compared 

with low-risk samples (p = 0.0046, Fig.  7A). Then, the 
patients were assigned into distinct subtypes on the line 
of the TMB immune set point, as stated before [27]. Sur-
vival curve demonstrated that high TMB value signifi-
cantly suggested shorter overall survival time (p  = 0.005, 
Fig.  7B). Subsequent correlation analysis further vali-
dated that the TMB was significantly and positively 
related with the risk score (R = 0.19, p =  0.021; Fig. 7C). 
To further explore the validity of consistent prognos-
tic significance of risk score and TMB, we validated the 
cooperative effect of two indicators in prognostic pre-
diction of PDAC. As demonstrated in stratified survival 
curve, there was no interference of TMB status with risk 
score prognostic predictive performance. Risk score sub-
groups exhibited evident prognosis distinctions in both 
low and high TMB status subtypes (p  < 0.001; Fig.  7D). 
In summary, these results suggested that risk score might 
act as independent prognostic predictor and hold the 
potential to evaluate the clinical outcome of antitumor 
immunological treatment.

Besides, we explored and visualized the distribution of 
gene mutation in both the high-and low-risk score sub-
types. The comprehensive landscape of somatic variants 
visualized the mutation patterns and clinical features of 
the top 20 driver genes with the most frequent altera-
tion (Fig.  7E, F). The significantly mutated gene (SMG) 
mutational landscapes presented that KRAS (65% vs. 

Fig. 6    Validation of prognostic efficiency of risk signature. A ROC analysis was employed to estimate the prediction value of the prognostic 
signature. B–D Areas under curves (AUCs) of the risk scores for predicting 1-, 2-, and 3-year overall survival time with other clinical characteristics. E 
Nomogram was assembled by stage and risk signature for predicting survival of PDAC patients. F One-year nomogram calibration curves. G Two‐
year nomogram calibration curves. H Three‐year nomogram calibration curves
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44%) experienced higher somatic mutation rates in high-
risk core subtype, while ARID1A (5% vs. 2%) possessed 
higher somatic mutation rates in the low-risk score sub-
group. These findings might contribute novel insight into 
the intrinsic connection of M2 Macrophages infiltration 
and somatic variants in immunotherapy of PDAC.

Risk signature in TIME context of PDAC
Since M2 Macrophages-based risk score and infiltration 
immune cells had intrinsic and intimate connection, we 
further explored the potential contribution of risk score 
in complexity and diversity of TIME. The result showed 
that risk score was negatively and significantly corre-
lated with subpopulations of CD8+ T cells and resting 
memory CD4+ T cells, while positively correlated with 
abundance of Monocytes, M0 Macrophages, Endothe-
lial cells and T cell regulatory (Tregs; Additional file  2: 
Figures  S8-S11). Furthermore, Spearman correlation of 
risk score with immune infiltration was further analyzed 
(Fig. 8A) and the detailed results were provided in Addi-
tional file 1: Table S7. The results of ESTIMATE analysis 
exhibited that stromal score and immune score experi-
enced significantly higher trend in risk-low group. Like-
wise, ESTIMATE score was remarkably upregulated in 
samples with lower risk (Fig. 8B).

Enrichment of signaling pathways in low/high risk groups
To further reveal the biological roles of distinct risk 
groups in tumorigenicity and progression, gene set vari-
ation analysis (GSVA) was performed (Fig. 9A, B). Sub-
jects from lower risk group showed heightened activities 
of mTOR signaling pathway, JAK/STAT signaling path-
way, B cell receptor signaling pathway and T cell receptor 
signaling pathway. Most genes with high expression lev-
els in high-risk group were enriched in TGF-β signaling 
pathway, P53 signaling pathway and NOTCH signaling 
pathway.

Predicting of patients’ clinical outcome to immunotherapy
Given that the information on immunotherapeutic treat-
ment was not available in TCGA-PAAD dataset, further 
analysis was explored for response to immunotherapy. 
Next, it was discovered that most immune checkpoint 
blockade-related genes (i.e., PDCD1 and CTLA4, etc.) 
experienced significantly negative correlation with risk 
score (Fig.  9C). In this risk scoring system, there were 
no significant differences in the IPS–PD1/PDL1/PDL2 
blocker score, IPS–CTLA4 blocker score and IPS–
CTLA4 and PD1/PDL1/PDL2 blocker score (Additional 
file  2: Figure S12A–C). However, high-risk patients 

Fig. 7    The correlation between the risk Score and TMB. A Difference of TMB between patients from the low-/high-risk score subgroups. B 
Kaplan-Meier curves for high and low TMB groups. C Scatterplots depicting the positive correlation between risk scores and TMB. D Kaplan-Meier 
curves for patients stratified by both TMB and risk score. The oncoPrint was constructed using high risk score (E) and low risk score (F)
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Fig. 8    Estimation of abundance of tumor-infiltrating cells.  A Patients in the high-risk group were more positively associated with tumor-infiltrating 
immune cells, as shown by Spearman correlation analysis. Correlation between prognostic risk signature with hub immune checkpoint genes

Fig. 9    Enrichment pathways of GSVA. A Heatmap showing the correlation of representative pathway terms of Hallmark with risk score. B Heatmap 
showing the correlation of representative pathway terms of KEGG with risk score. Prediction of Immunotherapeutic Response. C Correlation of 
expression level of immune checkpoint blockade genes with risk score. D IPS score distribution plot. Estimation of Risk Score in Chemotherapeutic 
Effect. E Sensitivity analysis of Metformin in patients at high and low risk score. F Sensitivity analysis of Nilotinib in patients at high and low risk 
score. G Sensitivity analysis of Sunitinib in patients at high and low risk score. H Sensitivity analysis of Paclitaxel in patients at high and low risk score
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possessed higher IPS score (PD-1/PD-L1/PD-L2 negative 
and CTLA-4 negative; Fig. 9D), suggesting patients with 
high-risk were more suitable for novel ICB target-based 
treatment rather than PD1/CTLA4 immunotherapy. 
Taken together, these results strongly recommend that 
risk score was correlated with the response to immuno-
therapies, further predicting prognosis accordingly.

Prediction of response to chemotherapy
Based on the pRRophetic algorithm, the IC50 of four 
chemotherapeutic drugs (Metformin, Nilotinib, Pacli-
taxel, and Sunitinib) were estimated in PDAC patients. 
Metformin, Nilotinib, and Sunitinib exhibited higher 
IC50 in patients with high-risk score (all p < 0.05; Fig. 9E, 
G). In contrary, the IC50 of Paclitaxel was higher in low-
risk samples (p = 4.4e−05; Fig.  9H). These results sup-
ported the suggestion of patients with different risk score 
were sensitive to distinct chemotherapeutic drugs.

The potential role of FAM53B in prognosis, immune 
infiltration and immunotherapy
FAM53B was hub gene with the most significant dysreg-
ulated expression level among these prognostic M2 Mac-
rophages-related genes. For that, the biological function 

of FAM53B in PDAC was further investigated in subse-
quent analyses. The expression levels of FAM53B were 
between tumor samples and normal tissues according to 
TCGA and GTEx datasets. For tumor tissues and normal 
specimens, FAM53B expression value exhibited a higher 
trend in tumor tissues (Fig. 10A). With the help of qRT-
PCR, the expression levels of FAM53B in human pan-
creatic cell line and four distinct pancreatic cancer cell 
lines were detected. Consistently, normal pancreatic cells 
presented significantly lower FAM53B values than PDAC 
cells (Fig. 10B). To estimate the prognostic performance 
of FAM53B, survival analysis was performed between 
FAM53B low- and high-expressed samples. It was dis-
covered that lower expression level of FAM53B signifi-
cantly suggested higher OS rate (P = 0.00053, Fig. 10C). 
However, there was no significant differences of FAM53B 
expression between distinct clinical subtypes (i.e., female 
and male, etc., Additional file 2: Figure S13A–G).

To uncover the potential function of FAM53B in 
immune infiltration, correlation of FAM53B expression 
level with infiltrating immune was explored by using 
TIMER dataset. It was discovered that arm-level gain 
was predominant type of mutation in immune infiltra-
tion (Fig.  10D). Additionally, expression of FAM53B 

Fig. 10  The clinical significance of FAM53B in PDAC. FAM53B are upregulated in PDAC samples based on TCGA dataset (A) and cell lines (B), and 
lower FAM53B expression level was significantly correlated with improved prognosis (C). D Copy number of immune cells in PDAC. E Correlation 
analysis of prognosis-related genes with infiltrating B cells, CD4+T cells, CD8+T cells, Macrophages, Neutrophils and Dendritic cells using TIMER. 
The association between the expression levels of FAM53B with CD274 (F), CTLA4 (G), PDCD1 (H), and PDCD1LG2 (I) using TIMER
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presented significant correlation with B cell (r = 0.416; P 
= 1.47e−08), CD8+ T cells (r = 0.349; p = 2.93e−06), 
CD4+ T cells (r = 0.426; p = 8.03e−09), Macrophages 
(r = 0.471; P = 7.95e−11), Neutrophils (r = 0.31; p = 
3.73e−05), and Dendritic cells (r = 0.444; p = 1.22e−09; 
Fig. 10E).

Subsequently, correlation of FAM53B with immu-
notherapeutic hub genes adjusted by tumor purity to 
explore the biological role of FAM53B in immunother-
apy. These findings presented that FAM53B experienced 
significant positive correlation with CD274 (r = 0.238; p 
= 1.73e−03), CTLA4 (r = 0.508; p = 1.30e−12), PDCD1 
(r = 0.585; p = 4.42e−17) and PDCD1LG2 (r = 0.352; p 
= 2.30e−06; Fig. 10F–I), indicating FAM53B indispensa-
ble regulator in immunotherapy of PDAC.

Discussion
Pancreatic ductal adenocarcinoma (PDAC) is considered 
as a devastating malignancy and will rank the second 
leading cause of tumor associated deaths by 2030 [28]. 
It is common knowledge that such genomic alternation 
as regulation of non-coding RNA [29], DNA methylation 
[30] and KRAS mutation [31] served as crucial regulators 
in PDAC progression. With the rise of immunotherapy, 
immune checkpoint immunotherapy has significantly 
revolutionized anticancer therapeutic strategy [32–34]. 
Existing immunotherapy produce encouraging results in 
only minority of PDAC cases, however, may be because 
by immunosuppressive characterization of TIME [35]. 
M2 Macrophages, functioned as pivotal roles in regula-
tion of antitumor immunity, held promising potential to 
be next immunotherapeutic target, leading to precision 
prognostic prediction further advance tailored treatment 
[36, 37].

More and more emphasis has been placed on infiltrat-
ing immune cells in research of human PDAC [38, 39], 
especially M2 Macrophages. It was well established that 
M2 Macrophages was considered as the critical players in 
the immunosuppressive matrix-remodeling, which favor 
cancer growth [40]. A previous study indicated that high-
density M2-Macrophages were significantly correlated 
with poor prognosis of patients with PDAC [41]. Wang 
et al. reported that the polarization of M2 macrophages 
could result in the improved invasiveness of pancreatic 
tumor cells in vivo and in vitro [10]. These results empha-
sized that M2 Macrophages may serve as a nonnegligible 
role in the tumor progression tumor progression, such 
as immune suppression, cancer initiation and promo-
tion, establishment of premalignant niche and distant 
metastasis.

In this work, we gathered two distinct PDAC cohort 
and GSE16515 to explore potential role of M2 Mac-
rophages-related genes in distinct population. A total of 

214 tumor samples, and corresponding 17,932 genes were 
employed in further study. Firstly, CIBERSORT algo-
rithm were performed to obtain the subpopulations of 
22 infiltrating immune cells. Next, we determined most 
significant modules (royalblue) and in which 153 candi-
date genes positively associated with M2 Macrophages-
related genes by using WGCNA method. Additionally, 
the results of the functional annotation presented that 
hub genes were mostly enriched in immunological activ-
ity and microbial infection, especially B cell activation. 
Furthermore, it was discovered that abnormal expression 
value of these genes further remarkedly affected progno-
sis in PDAC samples, respectively.

To further validate prognostic value of these genes, we 
fetched the sequencing profile and clinical information 
from TCGA-PDAC project. Subsequently, we conducted 
univariate, LASSO and multivariate COX analysis to 
identify 5 hub genes, then computed risk score and con-
structed prognostic signature. The excellent prognostic 
performance of risk model was validated by K-M analy-
sis and ROC curves. We demonstrated that risk signature 
performed well as an independent prognostic predic-
tor in univariable and multivariable regression analysis. 
Besides, further validation was analyzed in external data-
set (ICGC-PACA-CA cohort). In addition, risk signature 
remained powerful prognostic ability in clinical variables 
stratified survival curves. These results suggested that 
our five-genes risk signature can be applied as an inde-
pendent prognostic molecular biomarker in predicting 
clinical outcome for PDAC. Additionally, prognostic risk 
score-age nomogram was constructed and confirmed to 
facilitate clinical practice.

Finally, GSEA enrichment was employed to explore 
the biological roles of FAM53B in tumors and it was dis-
covered that the highly expressed FAM53B was mostly 
enriched in humoral immune response, regulation of 
immune effector process, and regulation of lympho-
cyte activation, and was positive in chemokine signaling 
pathway. These results indicate that FAM53B is widely 
involved in the regulation of signaling pathways involved 
in tumor immunity, providing computational and bio-
informatics biology-based insights for further under-
standing the functions served by FAM53B in anti-tumor 
strategies.

Currently, several clinical data pointed out a correla-
tion between genetic alternations with responsiveness 
to immunological treatment [42, 43]. We calculated and 
determined the TMB, which is a predictive indicator of 
sensitivity to immunological treatment, increased signifi-
cantly with risk score elevated. Subsequent stratified sur-
vival curve demonstrated that risks score held prognostic 
predictive capability which was independent of TMB, 
suggesting that TMB and risk score represent different 
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aspects of immunobiology. Besides, risk score together 
with mutation data revealed the significant distinction 
of genes variant frequency between high and low risk 
score group from the level of transcriptome. In this work, 
the ARID1A mutation rates were revealed to be mark-
edly augmented in the low-risk score subtype, while the 
mutation rate of the SMGs of KRAS was increased in the 
patients with high-risk score. The mutation of KRAS, the 
major event in PDAC, conferred permanent KRAS acti-
vation to activate various transcription factors and sign-
aling pathways [44].

Given risk signature derived from infiltrating immune 
cells statues, we further investigate the biological func-
tion of risk score in TIME characterization and immu-
notherapy. These findings highlighted that risk score was 
negatively correlated with subpopulations of activated 
immune cell (i.e., CD8+ T cells, etc.,), whereas positively 
correlated with immunosuppressive cells (i.e., Tregs, 
etc.,), indicating immune activated phenotype of low-
risk subgroup with matching OS advantage. Interestingly, 
higher stromal score was enriched in low-risk group, 
indicating stromal elements were activated, which could 
inhibit the antitumor effect of immune cells. By contrary, 
high-risk samples had relatively low immune scores but 
more abundance of tumor-promoting immune cells, 
suggesting immunosuppressive condition of high-risk 
group. Taken together, these findings highlighted that 
the stromal activation in low-risk group might suppress 
an effective antitumor immune response of abundant and 
activated immune cell infiltration, while the “immune-
exhausted phenotype” of high-risk group might lead to 
immune evasion and immunotherapy resistance.

It was worthy mentioned that GSVA results indicated 
that mTOR signaling pathway, JAK/STAT signaling path-
way were activated in low-risk group, whereas high-risk 
group were associated with TGF-β signaling pathway, 
P53 signaling pathway and NOTCH signaling pathway. 
These results showed that the underlying molecular 
mechanism diverse well between different risk samples. 
In addition, risk scoring scheme revealed that sensitivity 
of chemotherapy drugs was associated with risk score. 
For that, PDAC patients might be more suitable for dis-
tinct combination administration with molecule-tar-
geting and chemotherapeutic agents according to risk 
stratification.

Moreover, risk score was significantly and negatively 
associated with ICB-related genes (i.e., PDCD1, etc.,), 
highlighting samples with low-risk might be more influ-
enced by immune checkpoint blockade. And high-risk 
group present higher IPS score (PD-1/PD-L1/PD-L2 
negative and CTLA-4 negative) and may exhibit a bet-
ter response to novel target-based (i.e., TIGHT, etc.,) 
immunotherapy.

Among these M2 Macrophages-related genes in our 
risk model, the biological functions of FAM53B have 
not been revealed yet in PDAC. In addition, FAM53B 
expression was discovered to independently affect OS 
of patients with PDAC. FAM53B, refers to family with 
sequence similarity 53, member B, serves as a crucial 
regulator in the maintenance of a pluripotent state[12]. 
Recently, accumulating researches focusing on the 
biological roles of FAM53B in tumors have been pub-
lished. Such as, a research from Sun et  al. indicated 
that FAM53B accelerated the invasion, migration, and 
proliferation of ovarian cancer cells, suggesting that 
FAM53B was an oncogene in ovarian cancer [45]. Qi 
et al. indicated that FAM53B may act as a critical role 
to facilitate proliferation and invasion of cancer cells 
in multiple myeloma (MM) [46]. In this work, prog-
nostic performance and effects on TIME features and 
immunotherapy of FAM53B were elucidated. It was 
discovered that FAM53B is significantly overexpressed 
in PDAC cells and could play as a poor prognostic pre-
dictor in PDAC. In addition, FAM53B experienced inti-
mate correlation with immune infiltration (i.e., B cells, 
etc.,) in PDAC. Moreover, FAM53B expression value 
exhibited significant positive correlation with immu-
notherapy hub genes (i.e., CTLA4, and PDCD1, etc.). 
However, the underlying biomolecular mechanism of 
FAM53B in PDAC remains obscure, requiring further 
validation.

Collectively, the landscape of TIME was deciphered 
by employing distinct datasets and using comprehen-
sive bioinformatic analysis. Besides, the distinction of 
M2 Macrophages-based risk scoring scheme was dem-
onstrated to contribute to clinical outcome prediction, 
genes mutation, TIME heterogeneity and therapeutic 
response. Moreover, the potential role of FAM53B was 
explored in PDAC. Even though, further experimental 
and clinical validation were required for these findings at 
different centers and larger cohort.
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