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Abstract 

Background:  Pyroptosis is a form of programmed cell death triggered by inflammasomes. However, the roles of 
pyroptosis-related genes in thyroid cancer (THCA) remain still unclear.

Objective:  This study aimed to construct a pyroptosis-related signature that could effectively predict THCA prognosis 
and survival.

Methods:  A LASSO Cox regression analysis was performed to build a prognostic model based on the expression pro-
file of each pyroptosis-related gene. The predictive value of the prognostic model was validated in the internal cohort.

Results:  A pyroptosis-related signature consisting of four genes was constructed to predict THCA prognosis and all 
patients were classified into high- and low-risk groups. Patients with a high-risk score had a poorer overall survival (OS) 
than those in the low-risk group. The area under the curve (AUC) of the receiver operator characteristic (ROC) curves 
assessed and verified the predictive performance of this signature. Multivariate analysis showed the risk score was an 
independent prognostic factor. Tumor immune cell infiltration and immune status were significantly higher in low-
risk groups, which indicated a better response to immune checkpoint inhibitors (ICIs). Of the four pyroptosis-related 
genes in the prognostic signature, qRT-PCR detected three of them with significantly differential expression in THCA 
tissues.

Conclusion:  In summary, our pyroptosis-related risk signature may have an effective predictive and prognostic capa-
bility in THCA. Our results provide a potential foundation for future studies of the relationship between pyroptosis and 
the immunotherapy response.
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Introduction
Thyroid cancer (THCA) is the most common form of 
endocrine cancer worldwide and the number of THCA 
cases is icreasing [1]. Thyroid nodules are one of the most 
common clinical findings [2]. THCA can be divided into 
at least four subtypes, papillary thyroid carcinoma (PTC), 
follicular thyroid cancer (FTC), medullary thyroid cancer 

(MTC) and anaplastic thyroid cancer (ATC), based on 
the histological features of a THCA tumor. PTC is the 
most frequent histological subtype and accounts for 
more than 90% of all thyroid cancer cases [3]. The major-
ity of PTC cases have a relatively better prognosis after 
surgery and 131I treatment compared to that of the other 
THCA subtypes [4]. However, cervical lymph node 
metastasis (LNM) is a potential factor that can lead to 
some patients suffering local recurrence and poor prog-
nosis [5,6]. Therefore, it is important to construct novel 
prognostic models or find novel biomarkers which will 
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make targeted therapies more feasible and improve the 
survival of patients with PTC.

Pyroptosis is a form of programmed cell death trig-
gered by inflammasomes [7,8]. Pyroptosis has been found 
to be closely associated with some diseases like diabetic 
nephropathy and atherosclerosis. Some studies have 
found that pyroptosis is involved in the proliferation, 
invasion and metastasis of tumors. Pyroptosis results in 
cell swelling, plasma membrane lysis, chromatin frag-
mentation and the release of intracellular proinflam-
matory compounds. Pyroptosis is distinguished from 
other forms of programmed cell death morphologically 
although it shares certain similar characteristics with 
apoptosis. Generally, cells undergoing pyroptosis exhibit 
DNA damage and chromatin condensation during the 
early stage, followed by plasma membrane blebbing as 
well as caspase activation without losing cell membrane 
integrity [9]. Caspase-1 activation leads to the canonical 
inflammasome-induced pyroptosis pathway. Human cas-
pase-4,5 and murine caspase-11 activation leads to the 
non-canonical inflammasome-induced pyroptosis path-
way [10,11]. The pore-forming domain, the main execu-
tor of pyroptosis, found in these caspases is similar to the 
one found in the crystal structure of the human gasder-
min (GSDM) superfamily (GSDMA, GSDMB, GSDMC, 
GSDMD, DFNA5 and DFNB59). Multiple studied have 
shown the abnormal expression of the GSDM family in 
human cancers, which implicates the potential roles in 
the tumorigenesis and the development. The association 
between pyroptosis and cancer is complicated. Pyrop-
tosis appears to exert a dual function in cancer progres-
sion and treatment. Not only does pyroptosis result in 
the release of inflammatory factors which stimulate the 
transformation of normal cells into tumor cells, but it 
can promote tumor cell death. Pyroptosis plays different 
roles in many different types of cancer. It may be proved 
beneficial in preventing colorectal tumor development, 
and it inhibits tumor growth in hepatocellular carcinoma 
[12,13]. Recent studies have explored and identified novel 
pyroptosis-related signatures in some cancers. For exam-
ple, a pyroptosis-related signature was constructed to 
predict patient prognosis and response to immunother-
apy in gastric cancer [14]. Pyroptosis-related genes also 
play an important role in tumor immunity and can be 
used to predict the prognosis of ovarian cancer [15]. A 
prognostic signature for lung adenocarcinoma was built 
based on pyroptosis-related regulators [16]. However, the 
prognostic value of pyroptosis-related genes in THCA 
has not yet been elucidated.

Therefore, our study was aimed at developing a novel 
prognostic signature based on pyroptosis-related genes 
to systematically explore the relationship between the 
signature and clinicopathological features and overall 

survival (OS) in THCA patients. Furthermore, tumor 
immune microenvironment (TIME), mutation profile 
and the response to ICI treatment associated with the 
signature in THCA were further explored. The signa-
ture could predict the prognosis and immunotherapy 
response. In addition, this study provides a better under-
standing of the relationship between pyroptosis and 
immunotherapy response in THCA patients.

Materials and methods
Data collection
A flowchart was illustrated in Additional file  1: Figure 
S1 to show the research methodology. We downloaded 
568 gene expression profiles (58 normal samples and 
510 tumor samples) of THCA and OS clinical informa-
tion from The Cancer Genome Atlas (TCGA) database 
(https://​portal.​gdc.​cancer.​gov/). Patients were randomly 
divided into a training set (n = 251) and a test set 
(n = 251) (Additional files 3, 4, 5). There were no signifi-
cant differences in clinical variables between the two sets 
(Table 1). A total of thirty-three pyroptosis-related genes 
were obtained from prior reviews [17–19].

Differentially expressed genes (DEGs) identification
We identified DEGs in all tumor and normal samples 
using the “limma” package in R language (version 4.0.4). 
A p value of < 0.05 was set as the screening criterion. The 
DEGs were signed with * if p < 0.05, ** if p < 0.01 and *** if 
p < 0.001.

Construction of the protein–protein interaction (PPI) 
network
A PPI network was constructed using the Search Tool for 
the Retrieval of Interacting Genes/Proteins (STRING) 
database (http://​www.​string-​db.​org/) to explore the inter-
actions between these DEGs.

Consensus clustering of pyroptosis‑related genes
THCA patients were clustered into different subgroups 
based on the pyroptosis-related DEGs using the “Con-
sensusClusterPlus” package in R [20].

Construction of pyroptosis‑related prognostic signature
Patients with THCA were divided into a training set and 
a test set at a 1:1 ratio. The training set was used to iden-
tify prognostic pyroptosis-related genes and develop a 
prognostic risk signature. The predictive capability was 
validated in the test set and total set. A univariate Cox 
proportional hazard regression was employed to identify 
the pyroptosis-related genes with prognostic values of 
OS. To prevent omissions, a cut-off p value < 0.2 was set 
to identify prognostic variables. Subsequently, we used a 
least absolute shrinkage and selection operator (LASSO) 
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penalized Cox proportional hazards regression to avoid 
overfitting and constructed the prognostic signature with 
the “glmnet” package [21]. The model was determined 
by penalty parameter (λ) with tenfold cross-validation 
following the minimum criteria (i.e. the value of λ corre-
sponding to the lowest partial likelihood deviance). The 
risk scores of each THCA patient were calculated based 
on the gene expression level and its coefficient. The risk 
score was calculated as follows: risk score = sum (pyrop-
tosis gene expression level × corresponding coefficient). 
Patients were classified into high- and low-risk groups 
according to the median risk score. Principal Component 
Analysis (PCA) and t-distributed Stochastic Neighbor 
Embedding (t-SNE) were implemented using the “stats” 
and “Rtsne” packages, respectively. To validate the pre-
dictive power, Kaplan–Meier survival curves were ana-
lyzed using the “survival” and “survminer” packages and 
the area under the curves (AUCs) were calculated with 
the “survivalROC” package [22].

Functional enrichment analysis
All samples were divided into high- and low-risk groups 
according to the prognostic signatures. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses were conducted using the 
“clusterProfiler” package in R software according to the 
DEGs (|log2FC|≥ 1 and FDR < 0.05) between the high- 
and low-risk groups. Meanwhile, GSEA was performed 
in the Hallmark gene set “h.all.v7.4.symbols.gmt” to ana-
lyze the enriched biological pathways of key genes using 
GSEA 4.1.0. A NOM p-value of < 0.05 was considered 
statistically significant.

Estimation of tumor‑infiltrating immune cells
The immunoscore of every patient was obtained from 
the ESTIMATE algorithm using the “estimate” package 
[23]. CIBERSORT is a deconvolution algorithm based 
on RNA-Seq data to estimate the composition ratio of 
immune cells [24]. We calculated the relative proportions 
of 21 types of infiltrating immune cells in all tumor sam-
ples based on THCA transcriptional profiles. A Wilcoxon 
rank-sum test was used to evaluate the difference in the 
level of immune cell infiltration in high- and low-risk 
groups.

Evaluation of immune status
Single-sample GSEA (ssGSEA) was used to calculate the 
scores of 16 infiltrating immune cells and the activity of 
13 immune-related pathways in the high- and low-risk 
groups using the “GSVA” package of R [25]. We also com-
pared the expression of the HLA gene between the high- 
and low-risk groups.

Mutation analysis
The mutation data of THCA patients were also obtained 
from the TCGA data portal (https://​portal.​gdc.​can-
cer.​gov/). The data were further analyzed using the 
“maftools” package [26]. We calculated the tumor muta-
tion burden (TMB) score of every patient as follows: 
(total mutation ÷ total covered bases) × 10^6 [27].

Quantitative PCR
Sixty-five matched tumorous and non-tumorous tis-
sue specimens of PTC were collected from the First 

Table 1  The clinical characteristics in training, test and total sets

Variables Type Total set (n = 502) Test set (n = 251) Training set (n = 251) P value

Age  ≤ 60 389 (77.49%) 198 (78.88%) 191 (76.1%) 0.5214

 > 60 113 (22.51%) 53 (21.12%) 60 (23.9%)

Gender Female 367 (73.11%) 184 (73.31%) 183 (72.91%) 1

Male 135 (26.89%) 67 (26.69%) 68 (27.09%)

Stage Stage I–II 333 (66.33%) 174 (69.32%) 159 (63.35%) 0.2297

Stage III–IV 167 (33.27%) 77 (30.68%) 90 (35.86%)

Unknow 2 (0.4%) 0 (0%) 2 (0.8%)

T T1-2 307 (61.16%) 164 (65.34%) 143 (56.97%) 0.0662

T3-4 193 (38.45%) 86 (34.26%) 107 (42.63%)

Unknow 2 (0.4%) 1 (0.4%) 1 (0.4%)

M M0 282 (56.18%) 137 (54.58%) 145 (57.77%) 0.9415

M1 9 (1.79%) 5 (1.99%) 4 (1.59%)

Unknow 211 (42.03%) 109 (43.43%) 102 (40.64%)

N N0 229 (45.62%) 112 (44.62%) 117 (46.61%) 0.7067

N1 223 (44.42%) 114 (45.42%) 109 (43.43%)

Unknow 50 (9.96%) 25 (9.96%) 25 (9.96%)

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Affiliated Hospital of China Medical University. The 
clinicopathological characteristics of 65 THCA patients 
from our hospital are displayed in Table  2. Total RNA 
was extracted from tissue samples using RNAiso (Takara, 
Dalian, China), then RNA was reverse transcribed into 
cDNA with the QuantiTect Reverse Transcription Kit 
(Takara, Shiga, Japan). Quantitative Real-Time PCR 
(qRT-PCR) analyses were performed with SYBR-Green 
(Takara, Shiga, Japan) to validate gene expression, and 
the level of GAPDH served as an internal control. The 
relative expression was calculated based on the compara-
tive Ct (2−ΔΔCt) method [28]. The primers’ sequences are 
listed in Table 3.

Results
Identification of DEGs in the TCGA cohort of THCA
Based on the P-value < 0.05, a total of 22 differentially 
expressed genes were identified from 33 pyroptosis-
related genes. Among them, 15 were up-regulated 
(CASP1, CASP3, CASP5, CASP6, GSDMA, GSDMB, 
GSDMD, NOD1, NOD2, ELANE, NLRC4, PRKACA, 
GPX4, PYCARD, IL18) and 7 were down-regulated 
(NLRP6, IL6, TNF, PJVK, SCAF11, TIRAP and CASP9) in 
THCA tumors. The heatmap shows the RNA expression 

levels of these genes (Fig.  1A). In addition, we analyzed 
the correlation among pyroptosis-related genes: GPX4 
was significantly negatively correlated with SCAF11 
(Cor = −  0.67), while CASP1 and NOD2, and CASP4 
were significantly positively correlated (Cor = 0.84) 
(Fig.  1B). A protein–protein interaction (PPI) network 
with the minimum required interaction score (high-
est confidence 0.9) was constructed to further explore 
the interactions among these pyroptosis-related genes 
(Fig. 1C).

Consensus clustering of pyroptosis‑related genes
In order to investigate the connections between the 
expression of the pyroptosis-related DEGs and THCA 
subtypes, we performed a consensus clustering analy-
sis using the ConsensusCluserPlus package based on 
the 22 pyroptosis-related DEGs. The number of clusters 
was represented by the letter “k”. The k = 3 was identi-
fied with optimal clustering stability from k = 2 to 9. 
Finally, the THCA patients were clustered into three sub-
types, namely, Cluster1 (n = 270), Cluster2 (n = 210) and 
Cluster3 (n = 22) (Fig.  2A). We also analyzed the gene-
expression pattern between three subtypes of PCA. The 
results suggested that Cluster1, Cluster2 and Cluster3 
could gather together (Fig. 2B). There were no statistical 
differences between the three clusters and OS (Fig. 2C). 
When the gene expression profile and clinicopathologi-
cal features between the three subtypes were compared 
with a heatmap, no significant correlations were found 
between clinicopathological features in the three sub-
types (Fig. 2D).

Construction of pyroptosis‑related risk signature
We performed a univariate Cox regression analysis to 
identify the prognosis-related genes. The 12 genes that 
met a criterion with P-value < 0.2 were significantly asso-
ciated with survival in the training set. Among them, 4 
genes (GPX4, IL18, PRKACA and NOD1) were protec-
tive genes with HR < 1, while 8 genes (TNF, IL1B, IL6, 

Table 2  The clinicopathological features of THCA (N = 65)

Characteristics Samples (N = 65) Percentage (%)

Age

 ≤ 60 58 89

 > 60 7 11

Gender

 Female 46 71

 Male 19 29

Tumor size

 < 2 cm 42 65

 ≥ 2 cm 23 35

Extrathyroidal invasion

 Yes 8 12

 No 57 88

Multicentricity

 Yes 26 40

 No 39 60

Stage

 Stage I–II 59 91

 Stage III–IV 6 9

T

 T1–2 44 68

 T3–4 21 32

N

 N0 20 31

 N1 45 69

Table 3  Premier sequences for qRT-PCR analysis

Premier Sequences (5′–3′)

PJVK-F GGA​AGG​CGA​GGT​AAC​CAT​ATTG​

PJVK-R TTC​TGC​TGC​TCC​TTG​ACT​GAC​

NOD1-F CGA​GAC​ACA​GAG​CCA​GAA​GGT​

NOD1-R CGC​CGT​AGT​CGT​TGA​GAT​TGTT​

IL18-F AGT​TCT​CTT​CAT​TGA​CCA​AGGA​

IL18-R CAT​ACC​TCT​AGG​CTG​GCT​ATCT​

GAPDH-F GTC​TCC​TCT​GAC​TTC​AAC​AGCG​

GAPDH-R ACC​ACC​CTG​TTG​CTG​TAG​CCAA​
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GSDMC, NLRC4, ELANE, PJVK and GSDME) were 
detrimental genes with HR > 1 (Fig.  3A). To minimize 
overfitting, the set underwent LASSO Cox regression 
analysis, and 4 of the 12 genes were chosen to con-
struct a risk signature based on the optimum λ value 
(Fig. 3B, C). The formula of the four-gene signature was 
as follows: Risk score = (−  0.059 × IL18) + (0.2427 × 
GSDMC) + (0.2389 × PJVK) + (− 0.023 × NOD1). Sub-
sequently, all patients with THCA in the training set were 
classified into the high- and low-risk groups based on the 
median risk score. PCA and t-SNE indicated that patients 
with different risks were distributed into two directions 
(Fig.  4A, B). Patients with high-risk scores had a sig-
nificantly poorer OS than patients in the low-risk group 
(p = 0.005) (Fig.  4C). The areas under the curve (AUC) 
of the risk signature were 0.886 at 1-year, 0.733 at 3-year 
and 0.844 at 5-year (Fig. 4D). In addition, we ranked the 
patients’ risk scores and analyzed their distributions in 
the training set (Fig.  4E). The survival status of THCA 
patients in the training set was presented in the dot plot 
(Fig. 4F). The heatmap showed the expression patterns of 
4 prognostic genes between two risk groups (Fig. 4G).

Furthermore, the predictive capability of risk signa-
ture was verified in the test set and total set. The risk 

scores of every patient were calculated and the patients 
were divided into high- and low-risk groups in two sets 
as previously described. PCA and t-SNE confirmed that 
the patients in the different subgroups were separated 
into two clusters (Figs. 5A, B, 6A, B). Kaplan–Meier sur-
vival curves indicated that the OS of high-risk patients 
was lower than that of the low-risk groups in the test 
group (p = 0.041) (Fig.  5C). The 1-year AUC was 0.578, 
the 3-year AUC was 0.715 and 5-year AUC was 0.767 
(Fig. 5D). The distribution of the risk score, survival sta-
tus and the expression of 4 pyroptosis-related genes in 
the test set are presented in Fig. 5E–G.

The results in the total set were similar to those in the 
training set and test set. The OS was significantly differ-
ent between the two risk groups (p < 0.001) (Fig. 6C). The 
AUCs for 1-year, 3-year and 5-year were 0.779, 0.738 and 
0.804 (Fig.  6D). The distribution of risk score, patients’ 
survival status and expression heatmap of 4 prognostic 
genes are also displayed in Fig. 6E–G.

Independent prognostic value of the risk signature
A univariate Cox regression analysis was performed to 
explore the relationship between clinicopathological vari-
ables and risk score on OS of THCA patients in the total 

Fig. 1  Expression of the pyroptosis-related genes in THCA. A The heatmap showed the expression levels of 33 pyroptosis-related genes in normal 
and tumor samples. *P < 0.05, **P < 0.01, ***P < 0.001. B Pearson correlation analysis of the 33 pyroptosis-related genes in THCA. C PPI network 
indicated the interactions of the pyroptosis-related genes
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set (Table 4). The risk score could serve as an independ-
ent prognostic factor for THCA in the total set referring 
to the results of the multivariable Cox regression analy-
sis. Meanwhile, the ROC curve indicated that the AUC 

increased when combining the risk score with other clin-
icopathological features, which suggested that the risk 
score was an independent prognostic factor (Fig. 7A–C).

Fig. 2  Identification of consensus clusters based on the pyroptosis-related genes. A Consensus clustering matrix for k = 3. B Principal Component 
Analysis (PCA) of the RNA expression profile in TCGA cohort. C Heatmap and clinicopathologic features of the three clusters. D Kaplan–Meier curves 
of overall survival (OS) in three clusters

Fig. 3  Univariate Cox regression analysis and LASSO analysis. A Forest plot showing the result of univariate Cox regression analysis of OS, 12 genes 
with p < 0.2. B Cross-validation for tuning parameter selection in the LASSO regression. C LASSO analysis of 12 prognostic pyroptosis-related genes
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Risk signature and prognostic analysis 
of clinicopathological factors
We analyzed the relationships between the risk signature 
and clinicopathological factors. The results suggested 
that there were significant differences between the dif-
ferent ages and N stages. The risk score was significantly 
lower in patients with N1 stage and age below 65. Never-
theless, the risk signature was not correlated with gender, 
T stage, M stage and clinical stage (Fig. 8A). Additionally, 
survival analysis showed patients with high-risk scores 
were inclined to have a poorer OS in all subgroups (Addi-
tional file 2: Figure S2). The heatmap displayed the rela-
tionship between prognostic gene expression and clinical 
factors (Fig. 8B).

Functional analyses based on the risk signature
To further elucidate the potential biological functions 
and pathways that are correlated with the risk score, GO 
enrichment and KEGG pathway analyses were performed 
according to the DEGs between the high- and low-
risk groups. The results suggested that the DEGs were 
mainly enriched in immune response, cytokine–cytokine 
receptor interaction and chemokine signaling pathway 
(Fig. 9A, B).

Gene set enrichment analyses (GSEA)
The transcript messages of THCA patients classified by 
risk score into high- and low-risk subgroups were ana-
lyzed by GSEA. The results revealed that the majority of 
pyroptosis-related prognostic signature genes regulate 
the immune and malignant hallmarks of THCA tumors. 
Specifically, biological pathways such as allograft rejec-
tion, apoptosis, IL2-Stat5 signaling, IL6-Jak-Stat3 signal-
ing, inflammatory response, P53 pathway signaling, and 
TNFA signaling via NF-κB were found to be enriched in 
the low-risk group (Fig. 9C).

Difference of the tumor‑infiltrating immune cell 
populations between high‑ and low‑risk groups
Immune cells played an important part in the tumor 
immune microenvironment (TIME) and we analyzed the 
difference of the tumor-infiltrating immune cell popula-
tion in the high- and low-risk groups to evaluate the rela-
tionship between the prognostic signature and TIME. 
The CIBERSORT algorithm was utilized to calculate the 
relative proportion of 22 types of immune cells in each of 
the THCA patients. The ratios of naive B cells, activated 
CD4 memory T cells, resting dendritic cells, and resting 
mast cells were significantly higher in the low-risk group 

Fig. 4  Construction of risk signature in the training set. A PCA plot, B t-SNE analysis of TCGA cohort in training set. C Kaplan–Meier curves for 
OS of THCA patients in high- and low-risk groups. D Time-dependent ROC analysis. E The distribution of risk score, (F) survival status, and (G) the 
expression patterns of 4 pyroptosis-related genes in high- and low-risk groups
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(Fig.  10A). Moreover, the correlation analyses between 
the risk score and degree of immunocyte infiltration 
indicated that activated NK cells (R = 0.23, P = 0.0025) 
and activated mast cells (R = 0.16, P = 0.039) were posi-
tively correlated with risk score. However, the risk score 
was negatively correlated with activated CD4 memory 
T-cells (R = −  0.25, P = 0.00086), resting dendritic cells 
(R = − 0.25, P = 0.001), and resting mast cells (R = − 0.19, 
P = 0.011) (Fig. 10B).

Numerous studies have shown that immunotherapy 
is emerging as a new hope in cancer treatment, and 
immune checkpoint proteins play important parts in the 
immune response. Therefore, we compared the expres-
sion levels of common immune checkpoint proteins in 
the high- and low-risk groups. The results indicated that 
low-risk patients had significantly higher expression 
levels of PD-1 (programmed cell death 1), PD-L1 (pro-
grammed cell death ligand 1), PD-L2 (programmed cell 
death ligand 2), CTLA-4 (cytotoxic T-lymphocyte-asso-
ciated protein 4), TIGIT (T Cell Immunoreceptor with Ig 
and ITIM Domains) and TIM-3 (T-cell immunoglobulin 
and mucin-domain containing-3) (p < 0.01) (Fig.  10C). 
The results indicated that patients with low pyroptosis-
related signature score might have a better opportunity 
for ICI treatment.

Comparing the immune status between the high‑ 
and low‑risk groups
To further evaluate the relationship between the 
immune status and the risk score, we quantified the 
infiltrating scores of 16 immune cells and the activ-
ity of 13 immune-related pathways between the high- 
and low-risk groups in the TCGA cohort of THCA 
using single-sample gene set enrichment analysis 
(ssGSEA). The heatmap shows the immune status of 
29 immune signature gene sets in the high- and low-
risk groups (Fig. 11A). The scores of aDCs, DCs, iDCs, 
macrophages, mast cells, neutrophils, pDCs, Tfh, Th1 
cells, Th2 cells, TIL and Treg were significantly differ-
ent between the two subgroups (Fig.  11B). Except for 
the cytolytic activity pathway, the immune-related 
pathways had higher activity in the low-risk group 
than in the high-risk group (Fig.  11C). The low-risk 
group showed not only more immune activities, but 
significantly lower tumor purity (Fig.  11D). Addition-
ally, we analyzed the expression levels of HLA related 
genes. The results suggested that the low-risk group 
had higher expression levels of HLA genes compared to 
those in the high-risk group (Fig. 11E).

Fig. 5  Validating the 4 pyroptosis-related genes risk signature in the testing set. A PCA plot, B t-SNE analysis for THCA in testing set. C Kaplan–Meier 
curves for OS of THCA patients in high- and low-risk groups. D Time-dependent ROC analysis. E The distribution of risk score, F survival status, and 
(G) the expression patterns of 4 pyroptosis-related genes in high- and low-risk groups
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A pyroptosis‑related risk signature and mutation profile
Gene mutation is one of the significant factors in tumori-
genesis and development. We evaluated the relationship 

between the signature and mutation profile in THCA 
patients. The top three mutated genes in THCA patients 
were BRAF, NRAS and HRAS. The most frequently 

Fig. 6  Validating the 4 pyroptosis-related genes risk signature in the total set. A PCA plot, (B) t-SNE analysis for THCA in total set. C Kaplan–Meier 
curves for OS of THCA patients in high- and low-risk groups. D Time-dependent ROC analysis. (E) The distribution of risk score, (F) survival status, and 
(G) the expression patterns of 4 pyroptosis-related genes in high- and low-risk groups

Table 4  Univariate and multivariate Cox regression analyses

Variables Univariate analysis Multivariate analysis

HR HR.95L HR.95H P HR HR.95L HR.95H P

Training set

 Age 1.16 1.07 1.25 0.00 1.16 1.06 1.26 0.00

 Gender 0.50 0.06 4.15 0.52 0.50 0.06 4.57 0.54

 Stage 3.20 1.42 7.18 0.00 2.65 0.91 7.74 0.07

 Riskscore 5.58 1.24 25.11 0.03 15.80 1.25 199.28 0.03

Test set

Age 1.16 1.08 1.26 0.00 1.20 1.08 1.34 0.00

 Gender 4.27 1.14 15.98 0.03 3.04 0.49 18.92 0.23

 Stage 2.07 1.17 3.66 0.01 0.91 0.39 2.10 0.82

 Riskscore 1.15 1.06 1.25 0.00 1.19 1.05 1.36 0.01

Entire set

 Age 1.16 1.10 1.22 0.00 1.17 1.11 1.25 0.00

 Gender 1.92 0.69 5.30 0.21 1.09 0.33 3.60 0.88

 Stage 2.42 1.53 3.80 0.00 1.49 0.81 2.75 0.20

 Riskscore 1.15 1.06 1.24 0.00 1.20 1.09 1.32 0.00
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mutated genes in the high- and low-risk groups are 
shown in Fig.  12A. The level of TMB was markedly 
higher in the high-risk group than that in the low-risk 
group (p = 0.0026) (Fig. 12B). Furthermore, we observed 
that TMB was associated with OS (p = 0.033) (Fig. 12C).

The expression levels of four prognostic genes
We further validated the expression of the four prognos-
tic genes (IL18, GSDMC, PJVK and NOD1) in 65 pairs of 
clinical samples from patients with PTC using qRT-PCR 
analysis according to the bioinformatics analysis results. 

The results of the qRT-PCR showed that the mRNA 
expression of NOD1 and IL18 were significantly higher in 
PTC tissues (p < 0.05). However, the expression of PJVK 
was decreased in PTC samples (p < 0.001) (Fig. 13), which 
was consistent with the results of bioinformatic analysis.

Discussion
THCA is the most common endocrine malignancy and 
PTC accounts for more than 85% of all thyroid cancer 
cases. Thyroid nodules are very common. Ultrasound 
guided fine needle aspiration (US-FNA) is the most 

Fig. 7  The time-dependent ROC to evaluate the prognostic power based on risk score and clinical factors in (A) 1-year, (B) 3-year, (C) 5-year

Fig. 8  The relationships between risk signature and clinic-pathologic parameters (A) (age, gender, T stage, M stage, N stage and clinical stage). B 
Heatmap showing the connections between clinicopathologic factors and high- and low-risk groups
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Fig. 9  Functional enrichment analysis based on the DEGs. A Bar plot graph for GO enrichment. B Bubble graph for KEGG pathways. C Gene set 
enrichment analysis (GSEA) showed the significantly enriched hallmarks of tumor sets based on the risk signature in TCGA​

Fig. 10  The associations of tumor-infiltrating immune cells and risk scores and immunotherapy gene expression analysis. A The infiltrating levels of 
immune cells in high- and low-risk groups. B Correlation between the risk score and infiltration abundances of immune cells. C The gene expression 
of PD-1, PD-L1, PD-L2, CTLA4, TIGIT and TIM-3 in high- and low-risk groups
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commonly available way to evaluate thyroid nodules. 
However, rapid On-Site Evaluation (ROSE) is found to 
be the most helpful with small sized nodules or nodules 
that are more difficult to sample for less experienced 
radiologists [2]. Patients with PTC have a > 90% 10-year 
survival rate after proper surgical treatment and radio-
therapy [29]. In radiotherapy, we must consider harmful 
effects of radiation for normal tissues surrounding tumor 
tissues. Accurate calculation of out-of-field dose to be 
critical for informing risk estimates, such as estimation 
of out-of-field dose variation using Markus ionization 
chamber detector [30]. Although the incidence of PTC 
has increased significantly over the past few decades, the 
presence of LNM can lead to locoregional recurrence and 
mortality. Therefore, exploring novel therapeutic targets 
of THCA is still a major challenging issue.

Recently, the possible beneficial effects of cancer 
therapies promoting pyroptosis have attracted consid-
erable attention. Pyroptosis, an inflammatory form of 
programmed cell death, influences the proliferation, inva-
sion and metastasis of tumor cells. It is a more recently 
identified pathway of programmed cell death that is 
stimulated by a range of microbial infections and non-
infectious stimuli [31]. Pyroptosis is regulated via a cas-
pase-1-dependent or caspase-1-independent mechanism 

[32]. Pyroptosis exerts a dual function in cancer progres-
sion and treatment mechanisms [16]. It plays a vital role 
in cellular lysis and release of pro-inflammatory cytokines 
when a host defends against infections [33]. Pyroptosis 
results in the release of intracellular proinflammatory 
contents and induces an inflammatory response leading 
to the death of adjacent healthy cells, which contributes 
to the development and progression of malignancies [9]. 
Additionally, pyroptosis can promote tumor cell death 
which makes pyrolysis a potential novel therapeutic tar-
get for cancer treatment. However, the potential role of 
pyroptosis-related genes in THCA remains unknown. 
Therefore, we aimed to discover potential diagnostic 
markers for targeted therapy of pyroptosis to improve 
the survival of patients with THCA as well as explore the 
prognostic and diagnostic value of pyroptosis. Our study 
suggested that using immunotherapy to induce pyropto-
sis may be an effective therapeutic direction to improve 
patient prognosis.

In our study, we analyzed the mRNA expression pat-
terns of 33 pyroptosis-related genes in THCA sam-
ples and normal samples and 22 were differentially 
expressed. Among these genes, 15 were up-regulated 
and 7 were down-regulated. We identified three sub-
groups of THCA using consensus clustering analysis 

Fig. 11  Comparison of the ssGSEA scores in high- and low-risk groups. A The immune status, (D) tumor purity and (E) the expression of HLA 
related genes in high- and low-risk groups. The boxplot showed the enrichment scores of (B) 16 immune cells and (C) 13 immune-related functions 
between high- and low-risk groups
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according to the expression of pyroptosis-related genes 
and no significant differences were found in the clin-
icopathological features. We then derived four prog-
nostic risk signatures from these pyroptosis-related 

genes based on the univariate Cox regression analysis 
and LASSO Cox regression analysis. The prognostic 
value of the four prognostic-relevant risk signatures 
was evaluated in THCA patients and validated using 
a TCGA internal dataset. Interleukin (IL)-18, belong-
ing to the IL-1 superfamily, is a proinflammatory and 
immune regulatory cytokine. IL-18 was originally 
identified as an interferon (IFN)-γ-inducing factor and 
involved in Th1 and Th2 responses in T cells, natural 
killer (NK) cells and macrophages [34]. IL-18 plays 
a dual role in cancer, as it promotes tumor develop-
ment, progression and metastasis and it enhances anti-
tumor immunity and reduces tumor growth in a matter 
depending on cancer progression [35]. IL-18 in com-
bination with IL-12, through the activation of NK and 
cytotoxic T-cells, produced IFN-γ, which contributed 
to tumor immunity and had anti-tumor activity in dif-
ferent preclinical models. At present, IL-18 has been 

Fig. 12  The mutation profile and TMB in high- and low-risk groups. A Mutation profile of THCA patients in high- and low-risk groups. B The 
relationship between the risk signature and TMB. C The association between TMB and OS

Fig. 13  The expression levels of PJVK (A), NOD1 (B) and IL18 (C) 
quantified using qRT-PCR analysis in 65 paired thyroid cancer tissues 
and no-tumorous samples
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studied as a novel treatment approach and immune 
checkpoint therapy to significantly improved cancer 
treatment. Thus, IL-18 combined with immune-check-
point therapy might be a potential treatment for early-
stage tumors [36, 37]. The human gasdermin (GSDM) 
family (GSDMA, GSDMB, GSDMC, GSDMD, DFNA5 
and DFNB59), which modulates multifunctional signal 
processes, can regulate cell pyroptosis [38]. The abnor-
mal expression of the GSDM family in human cancers 
has been previously demonstrated, which implies their 
potential roles in tumorigenesis [39]. Multiple studies 
have shown that dysregulation of GSDMC expression 
is correlated with the biological processes of multiple 
cancers. Saeki et al. [38] found that GSDMC inhibition 
of tumor cell growth behaved like a potential tumor 
suppressor in the gastrointestinal epithelium. Watabe 
et  al. [40] proved that GSDMC overexpression pro-
moted tumor cells metastasis and proliferation in B16 
melanoma cells. We found that high GSDMC expres-
sion was associated with poorer survival, which sug-
gested that GSDMC might participate in tumor cell 
tumorigenesis and progression in thyroid cancer. PJVK, 
also called DFNB59, lacks the C-terminal domains. 
All members of the GSDM superfamily except for 
PJVK have a complete two-domain structure [41]. We 
regarded PJVK as a pyroptosis-related gene with a com-
plete N-terminal domain and a similar pore-forming 
activity to other GSDMs [15]. PJVK has been found 
expressed in heart, brain and kidney, however, the 
regulatory roles of PJVK are not well understand [42]. 
At present, PJVK was demonstrated to be associated 
with hearing impairment in humans and is located on 
chromosome 2 [43]. We found high PJVK expression 
in tumor tissues from patients with a relatively poor 
prognosis. The nucleotide-binding oligomerization 
domain protein-1 (NOD1), one of the most important 
members of the NOD-like receptor (NLR) family, can 
induce pro-inflammatory responses and is involved in 
the apoptotic signaling pathway in some tumor cells 
[44]. Several studies have indicated that NOD1 plays 
an important role in the development and progression 
of gastric cancer, colon cancer, breast cancer and cervi-
cal cancer [45, 46]. NOD1 was downregulated in tumor 
samples in our study and its high expression predicted 
better survival, which suggested that the NOD1 may 
be a tumor suppressor gene. The risk score was calcu-
lated from the risk signatures and classified the patients 
into high- and low-risk groups. Kaplan–Meier sur-
vival curves showed that the OS of high-risk patients 
was lower than that of the low-risk groups. The AUC 
of the ROC curve showed the risk signature was effi-
cient in predicting survival prognosis. Univariate and 
multivariate Cox regression analyses indicated that 

the risk score was not only an independent risk factor 
for prognosis, but could predict the clinical character-
istics of THCA. The functional enrichment analyses 
indicated that immune-related pathways were signifi-
cantly enriched in the low-risk groups. Therefore, we 
reasonably speculated that the cell pyroptosis could 
participate in the TIME. To elucidate the association 
between infiltrating immune cells and THCA, we esti-
mated the infiltration of tumor immune cells between 
high- and low-risk groups of patients and found that 
the high-risk groups had higher proportions of naive 
B-cells naïve, activated CD4 memory T-cells, resting 
dendritic cells, and resting mast cells, while the low-
risk groups’ scores were positively correlated with the 
proportions of activated NK cells and activated mast 
cells. Patients with low-risk scores had higher overall 
immune activity based on the ssGSEA analysis. The 
tumor purity was significantly enriched in the high-risk 
group, which suggested the lower infiltration of stromal 
and immune cells. Recently, cancer immunotherapy 
has gained wide acceptance as a potential therapeutic 
agent or an alternative to standard chemotherapy and 
has made great progress in the field of cancer therapy 
[47, 48]. Therefore, we explored the response of com-
mon immune checkpoints inhibitors and the expres-
sion of PD-1, PD-L1, PD-L2, CTLA4, TIGIT and TIM-3 
increased significantly in low-risk patients. Our study 
suggested that patients with low-risk score had higher 
expression of common immune checkpoint molecules. 
According to above findings, we speculate that low-risk 
patients might have a better, more beneficial response 
from treatment with checkpoint inhibitors of PD-1, 
PD-L1, PD-L2, CTLA4, TIGIT and TIM-3. TMB was 
a significant independent predictor of the responses to 
immunotherapy in diverse cancers. In this study, the 
predictive value of the risk signature is independent of 
TMB. We found that the low-risk groups showed lower 
TMB.

However, at present, there are very few studies of 
pyroptosis in the thyroid cancer field, and investigation 
of the potential mechanisms may be meaningful in the 
future. The exploration of prognostic value of pyropto-
sis-related genes sets the stage for future mechanism 
research. Our study still has some limitations that need 
to be considered. All analyses were performed using a 
small TCGA cohort, a larger external validation cohort 
should be used to verify the predictive power of the sig-
nature in THCA, preferably validated using GEO data-
sets. Unfortunately, no survival information of THCA 
could be obtained from the GEO cohort. Furthermore, 
some basic experiments are also required to investi-
gate the correlation between the model and the tumor 
microenvironment.
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Conclusion
Taken together, we constructed a pyroptosis-related 
prognostic signature of genes that possessed predic-
tive power based on a comprehensive analysis of RNA 
sequencing data and clinical data of THCA available in 
TCGA database. The signature was significantly asso-
ciated with the tumor immunity. This study provided 
a better understanding of the relationship between 
pyroptosis and immunotherapy response in THCA 
patients. The pyroptosis-related signature could pro-
vide new possibilities to predict the prognosis and 
contribute to the development of new individualized 
therapeutic strategy for future studies of patients with 
THCA.
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