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Abstract 

Lung cancer is one of the most common malignant tumours worldwide. however, emerging immunotherapy and tar-
geted therapies continue to show limited efficacy. In the search for new targets for lung cancer treatment, exosomes 
have become a major focus of research. Exosomes play an important role in the tumour microenvironment (TME) of 
lung cancer and affect invasion, metastasis, and treatment responses. This review describes our current understand-
ing of the release of exosomes derived from different cells in the TME, the effects of exosomes on T/Tregs, myeloid-
derived suppressor cells, tumour-associated macrophages, dendritic cells, and natural killer cells, and the role of 
exosomes in the endothelial–mesenchymal transition, angiogenesis, and cancer-associated fibroblasts. In particular, 
this review focuses on the potential clinical applications of exosomes in the lung cancer microenvironment and their 
prognostic and diagnostic value.
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Background
Lung cancer is one of the most commonly diagnosed can-
cer and the leading cause of cancer deaths in both sexes 
combined [1], despite improvements in diagnosis and 
treatment, such as the emergence of immune checkpoint 
inhibitors, new-generation drugs (e.g. EGFR-TKI, ALK, 
eml4), and advanced radiotherapy technology. The recur-
rence of non-small cell lung cancer (NSCLC) remains 
high, with 5-year overall survival rates ranging from 83% 
for stage IA to 36% for stage IIIA [2], and the 5-year sur-
vival rate for patients with small cell lung cancer (SCLC) 
remains fairly low at only 10% [3].

To find effective treatments and overcome low immu-
notherapy efficiency and drug resistance, increasing 
research has focused on the lung cancer microenviron-
ment. The vasculature, immune and inflammatory cells, 
extracellular matrix (ECM), and cancer-associated 
fibroblasts (CAFs) are major components of the tumour 
microenvironment (TME), which is recognised as a tar-
get-rich landscape for the development of novel agents 
in lung cancer [4, 5]. Interactions between these com-
ponents and cancer cells contribute to angiogenesis, 
intravasation, and metastasis in lung cancer. The key mol-
ecules by which cancer cells cooperate with the microen-
vironment are candidate biomarkers or drug targets [6].

Among these functional mechanisms, exosomes car-
rying large amounts of information and molecules play 
an important role in intercellular communication and 
are indispensable mediators of various processes in the 
TME [7]. Exosomes were named in 1987 and were first 
described by Johnstone et  al. in 1983 as small vesicles 
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released from maturing sheep reticulocytes containing 
externalised protein components of reticulocytes. They 
were later recognised as important regulators of cell 
function and intercellular communication.

Exosomes transport proteins (cytosolic and transmem-
brane proteins), lipids, and nucleic acids (microRNAs 
[miRNAs], mRNAs, long non-coding mRNAs, and DNA) 
to target cells, thus regulating their behaviour [8–10]. 
Exosomes, with a diameter of 30–100 nm, are intralumi-
nal vesicles formed by the inward budding of the endoso-
mal membrane and are secreted after fusion on the cell 
surface [11]. In this review, we have described the effects 
of exosomes on various cell types in the lung cancer 
microenvironment, with an emphasis on the implications 
for diagnosis and treatment.

Origin and characteristics of exosomes
Exosomes form by inward budding in the plasma mem-
brane, and are classified as early and late endosomes, 
known as multivesicular bodies. Numerous intralumi-
nal vesicles form by the invagination of multivesicu-
lar body membranes. Exosome release is regulated by 
a number of genes and proteins. For example, miR-
134 and miR-135b precisely regulate YKT6 expression 
in lung cancer cells, which in turn controls exosome 
release [12]. Furthermore, exosomes are produced 
by a variety of cells in the lung TME, including lung 
cancer cells, cancer-associated fibroblasts (CAFs), 
tumour-associated macrophages (TAMs), and dendritic 
cells (DCs). CAFs play a critical role in the epithe-
lial–mesenchymal transition (EMT), which is associ-
ated with malignant progression, via exosomes, and 
exosomal SNAI1 is crucial for this process. Exosomes 
derived from macrophages also regulate lung cancer 
cell proliferation in the TME [13]. Duan et  al. found 
that let-7a-5p could be transported from macrophages 
to lung cancer cells as a macrophage exosome cargo 
and could directly target BCL2L1, thereby promot-
ing A549 cell autophagy and cell death via the PI3Kγ 
pathway. Expression levels of the lung cancer marker 
proteins MYC, EGFR, and vimentin are also altered by 
the aberrant expression of BCL2L1 [14]. The miRNAs 
miR-193a, miR-210, and miR-5100 are transferred by 
exosomes derived from bone marrow-derived mes-
enchymal stem cells (BMSCs) to neighbouring cancer 
cells, thereby activating STAT3 signalling and promot-
ing cancer cell invasion and EMT [15]. Xu et al. found 
that microvascular endothelial cell exosomes promoted 
tumour cell survival via the upregulation of S100A16 in 
the microenvironment of SCLC with brain metastases, 
which are associated with a poor prognosis [16]. DCs 
play a critical role in adaptive immunity in lung cancer. 
They are indispensable for the response to checkpoint 

inhibitor immunotherapy [17]. There are at least two 
phenotypes of DC-derived exosomes: bone marrow 
mature DC-derived exosomes and bone marrow imma-
ture DC-derived exosomes. Researchers have identified 
139 miRNAs in mature DC-derived exosomes with key 
roles in cell biology and function [18, 19]. T lympho-
cyte- and B lymphocyte-derived exosomes also play 
important roles in the immune microenvironment. 
Recently, B lymphocytes have been shown to facilitate 
the impaired function of CTL by enzymatic activities in 
B lymphocyte-derived exosomes [20]. Additionally, chi-
meric antigen receptor (CAR)-T cells release exosomes 
that carry CAR on their surface and inhibit tumour 
growth [21]. Exosomes can be produced by a variety of 
immune cells in the TME; however, the mechanism of 
action of these exosomes in lung cancer requires fur-
ther study.

Exosome targeting and uptake
Exosomes can be ingested by a variety of cells in 
the TME and exert functions via proteins, nucleic 
acids, and other substances. First, the recognition of 
exosomes requires membrane protein interactions. 
CD169 recognises exosomes and mediates the immune 
response to exosome antigens. The adhesion of B cell-
derived and DC-derived exosomes is CD169-depend-
ent [22]. After recognising exosomes, some proteasome 
components, such as Tim family members Tim1 and 
Tim4, bind by exosomal phosphatidylserine [23]. Addi-
tionally, exosomes express chemokines, including CCLs 
and CXCLs, to attract leukocytes, providing an alter-
native explanation for exosome cellular recognition 
[24]. After recognition, exosomes are internalized into 
recipient cells. Tetraspanins on exosomes are part of 
the antigen recognition system and contribute to the 
activation of signalling pathways induced by exosomes. 
The merging of the exosome cytosol and cytoplasm 
is achieved by membrane fusion at the plasma mem-
brane or by uptake followed by fusion with the endo-
somal membrane [18]. Exosomes are taken up by many 
endocytic pathways, including clathrin-mediated endo-
cytosis, caveolin-dependent endocytosis, macropinocy-
tosis, phagocytosis, and lipid rafts [25, 26]. Caveolin-1 
and clathrin heavy chain mediate caveolae-depend-
ent endocytosis and clathrin-dependent endocytosis, 
respectively. The absorption of exosomes is reportedly 
dependent on the recipient cell and not on exosomal 
surface molecules, and this process can be visually 
observed by immunofluorescence microscopy[27, 28]. 
Extensive studies of exosome targeting and uptake have 
provided a basis for the development of new clinical 
treatment methods and dosage forms.
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Functions of exosomes in the lung cancer 
microenvironment
Tumour‑associated macrophages regulation by lung 
cancer‑associated exosomes
Tumour-associated macrophages (TAMs) have been 
linked to lung cancer cell initiation, progression, and 
metastasis in the TME [29]. The key mechanisms under-
lying such functions are classical activation and alterna-
tive activation of macrophages. The classical activation 
(M1) of macrophages is characterised by the production 
of antineoplastic and proinflammatory macrophages, 
whereas alternative activation (M2) is related to immu-
nosuppression, tumourigenesis, and angiogenesis [30]. 
Exosomes promote macrophage polarisation, resulting 
in immunosuppression, angiogenesis, and tumour pro-
gression. NSCLC exosomes can induce M0 macrophages 
and myeloid-derived suppressor cells to differentiate 
into M2 macrophages. Additionally, one study also con-
firmed that exosome induced M2 polarization might not 
be p53 gene dependent [31]. In a recent study, hypoxia 
stimulated tumour-derived exosome secretion promoted 
oxidative phosphorylation in TAMs by transferring let-
7a miRNA and by suppressing the insulin-Akt-mTOR 
pathway. Hypoxia-induced exosomes enhance mac-
rophage recruitment and promote M2-like polarisation 
in  vitro and in  vivo [32]. Another study showed that 
exosomes from hypoxic lung cancer cells polarized mac-
rophages to M2-type via miR-103a. Exosomal miR-103a 
decreased PTEN levels or increased Akt/Stat3 activation 
and several immunosuppressive factors [33]. By study-
ing SK-LU-1 lung adenocarcinoma cell derived exosomes 
and J774 macrophages, Trivedi’s team found that the 
expression of exosomal miR-125b et  al. from SK-LU-1 
cell were increased by double-targeted (wild-type p53 
and microRNA-125b) transfection of hyaluronic acid-
based nanoparticles. At the same time, J774 macrophages 
treated with these exosomes repolarized towards M1 
phenotype (pro-inflammatory and antitumour type) [34]. 
Tumour-derived exosomes influence the phenotype and 
function of macrophages. Many studies have focused on 
the effect of tumour-derived exosomes on TAMs, while 
the interaction between macrophages and other immune 
cells via exosomes remains to be further studied.

Dendritic cells regulation by exosomes in the TME 
of lung cancer
Dendritic cells (DCs) play an essential role in the regu-
lation of tumour-specific immune responses. DC-based 
immunotherapy is unsatisfactory due to the poor immu-
nogenicity of cancer cells and low uptake efficiency of 
antigens, even though DCs are the most potent anti-
gen-presenting cells [35]. Lung tumour cell-associated 
exosomes can more effectively deliver a variety of tumour 

antigens to DCs [36]. Wang et  al. have reported that 
tumour-associated exosomes stimulate DC maturation 
and enhance MHC cross-presentation, which directly 
promotes a tumour-specific cytotoxic T lymphocyte 
response. Exosomes also reduce PD-L1 expression on 
DCs, resulting in a decrease in the Treg population 
[37]. Additionally, in  vitro analyses have shown that 
DC-derived exosomes can transfer MHC class I and 
II complexes to DCs and trigger CD8+ and CD4+ T 
lymphocyte activation [38, 39]. It has been shown that 
exosomes activate DC maturation, while DCs incubated 
with exosomes derived from Rab27a-overexpressing cells 
promote CD4+ T cell proliferation [40].

Interaction between NK cells and exosomes 
in the TME
Natural killer (NK) cells are independent, non-specific 
immune cells. They can directly kill tumour cells with-
out MHC restriction to the target [41]. However, tumour 
cells impact normal functions of NK cells and impair 
cytotoxicity in the TME. The degree of NK cell infiltra-
tion is positively related to the survival rate in lung can-
cer [42]. Decreased expression of the NK cell-activated 
receptor NKG2D in the TME indicates immune toler-
ance [43]. Hypoxia inhibits the immune function of NK 
cells. Exosomes derived from hypoxic tumour cells trans-
fer TGF-β1 to NK cells and inhibit NK cell function by 
suppressing NKG2D. Additionally, miR-23a in hypoxic 
exosomes acts as an immunosuppressive factor by inhib-
iting CD107a expression in NK cells [44]. NKG2D endo-
cytosis decreases the expression of surface receptors and 
regulates signalling in NK cells [45]. Exosome-associated 
NKG2D ligand could combine with NKG2D, triggering 
signalling in NK cells [46]. DNAX accessory molecule-1 
(DNAM1), which functions like NKG2D, is another key 
receptor of NK cells. DNAM1 is expressed more in infil-
trating NK cells of primary lung tumours compared to 
the expression in surrounding normal tissues. NK cells 
have a cytolytic effect in lung tumours via exosomal 
DNAM1 receptor-ligand binding and endocytosis [47].

Treg/T cell regulation by exosomes in the TME
The proportion of CD4+CD25+Foxp3+ T regulatory 
cells (Tregs) and functional alterations of T lympho-
cyte subsets in the TME are critical for the immune 
escape of lung cancer cells [48]. Lung cancer cell-
derived exosomes act on DCs, thereby increasing Treg 
differentiation in the TME, decreasing the propor-
tion of CD4+ T cells, and decreasing IFN-γ produc-
tion. However, PD-L1 blockage partially modulates the 
exosome-induced DC-associated immunosuppressed 
microenvironment [49]. PD-L1-mediated immunother-
apy is widely used in clinical settings. Exosomal PD-L1 
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is a new target for the regulation of T cell immune 
function and the tumour immune microenvironment. 
Tumour cell-derived exosomal PD-L1 suppresses T 
cell activation and contributes to immunosuppression. 
However, blocking of exosomal PD-L1 and anti-PD-
L1 antibodies can inhibit tumour growth [50, 51]. In 
addition, Microsatellite instability (MSI)is also closely 
associated with PD-1/PD-L1 expression and MSI 
tumours have high immunogenicity [52]. The transfer 
of exosomes containing Let-7d from Tregs to helper T 
lymphocyte 1 (Th1) cells contributes to the prevention 
of diseases, thereby providing a mechanism underlying 
Treg-mediated immunosuppression by miRNA-con-
taining exosomes [53]. Epidermal growth factor recep-
tor (EGFR) is closely related to lung cancer. Huang et al. 
found that exosomes containing EGFR could induce 
tolerogenic DCs and generate tumour antigen-specific 
Tregs [54]. The oncogenic Ras protein Kirsten rat sar-
coma viral oncogene homolog (KRAS) is frequently 
mutated in lung cancer. CD4+ naïve T lymphocytes 
incubated with tumour-derived exosomes from mutant 
KRAS+/+ NSCLC cells induce Foxp3+ Treg generation 
by phenotypic switching. Foxp3 regulates Treg func-
tions [55]. This conversion is related to IFN signalling, 
which eventually results in immunosuppression [56].

Myeloid‑derived suppressor cells interact 
with exosomes in the TME
Myeloid-derived suppressor cells (MDSCs) are divided 
into the following two groups: M-MDSCs, which are 
morphologically similar to monocytes, and PMN-
MDSCs, which resemble polymorphonuclear cells 
[57]. MDSCs require the activation of inflammatory 
cytokines, such as IL-6 and TNF-α, and tumour-asso-
ciated cytokines, such as GM-CSF and M-CSF, to form 
a population of immunosuppressive cells [58]. MDSCs 
regulate T cell function to form an immunosuppressive 
microenvironment, and exosomes with cytokines play a 
role in this process. Tumour exosomal PGE2 and TGF-β 
strengthen the induction of MDSCs, activate the upreg-
ulation of Cox2, IL-6, VEGF, and ARG-1 in MDSCs, 
and promote T-exosome-mediated tumour prolifera-
tion [59]. MDSCs are the main target cell population 
of exosomes from lung cancer cells. MDSCs internalise 
lung cancer-derived exosomes together with soluble fac-
tors (miR-126-3p, miR-27b, miR-320, and miR-342-3p) 
and upregulate the expression of suppressive mole-
cules, including ARG-1 and TGF-β [60]. Little is known 
about the role of exosomes in MDSCs, and there is no 
direct evidence that exosomes from lung cancer cells 
can directly regulate the phenotypes and functions of 
MDSCs.

Regulation of epithelial‑mesenchymal transition 
by lung cancer‑derived exosomes
Epithelial-mesenchymal  transition  (EMT) is a key 
mechanism for initiating lung cancer cell invasive-
ness and metastasis [61]. Exosomes relay signals from 
CAFs to lung cancer cells and play an important role 
in EMT [62]. A recent study has revealed that CAFs 
deliver SNAI1 exosomes to lung cancer cells to induce 
EMT. Markers of EMT, including E-cadherin, vimentin, 
and α-smooth muscle actin (α-SMA), are upregulated 
during exosome-induced EMT [13]. ZEB1 mRNA is a 
major EMT transcription factor in mesenchymal cells in 
NSCLC. Oncogenic exosomes derived from mesenchy-
mal NSCLC cells can transfer chemoresistance and mes-
enchymal phenotypes to recipient cells by ZEB1 mRNA 
in exosomes [63]. These results provide the mechanism 
by which parental epithelial cells transform into mesen-
chymal lung cancer cells with the chemoresistance phe-
notype. miRNAs in exosomes also affect lung cancer 
carcinogenesis and metastasis. One of these miRNAs, 
miR-499a-5p, is upregulated in lung cancer cell lines and 
their exosomes. Tumour-derived exosomal miR-499a-5p 
has diagnostic and therapeutic value and promotes EMT 
via the mTOR signalling pathway in lung cancer [64]. 
Exosomal miR-9 from lung cancer cells effectively acts 
on HUVECs by downregulating the SOCS5-JAK-STAT 
pathway, which promotes endothelial cell migration and 
angiogenesis [65]. Increasing research has demonstrated 
the important role of bone marrow-derived mesen-
chymal stem cells (BMSCs) in EMT. Exosomes derived 
from BMSCs, which are components of the lung cancer 
microenvironment, mediate the transfer of miR-193a-3p, 
miR-210-3p, and miR-5100 and promote cancer cell inva-
sion and EMT by activating STAT3 signalling [15]. These 
results suggest that transcription factors, mRNAs, and 
microRNAs in exosomes all play important role as medi-
ators of EMT, thereby promoting lung cancer cell inva-
sion, infiltration, and metastasis.

Cancer‑associated fibroblasts regulation by lung 
cancer‑derived exosomes
Cancer-associated fibroblasts (CAFs) are a major cel-
lular component of TME in most solid cancers. Lung 
cancer cells can transform the phenotype of fibroblasts 
via exosomes and related factors. Exosome-associated 
miR-142-3p promotes the transformation of lung fibro-
blast cells to CAFs via TGF-β signalling [66]. Interacted, 
CAFs also promote tumour cells proliferation. It is gen-
erally believed that CAFs promote tumour angiogenesis. 
Some studies have shown that exosomes from patients 
with lung cancer can induce cancer cell reprogramming 
[67]. Exosomes that overexpress miR-210 can activate 
the functions of CAFs and increase the expression of 
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proangiogenic factors, such as MMPs, FGF2, and VEGFA 
[68]. CAFs deliver the transcription factor SNAI1 to lung 
cancer cells via exosomes, thereby inducing epithelial 
transformation via CDH1 encoding E-cadherin and VIM 
encoding Vimentin [13]. In terms of energy metabolism, 
exosomes supply nutrients to starving cancer cells by a 
mechanism similar to micropinocytosis. CAF-derived 
exosomes with amino acids, lipids, and TCA-cycle inter-
mediates [69, 70] are ingested by cancer cells for central 
carbon metabolism and promote tumour growth under 
nutrient deprivation or nutrient stress conditions [71]. 
In addition to controlling somatic cell senescence, tel-
omerase can also inhibit lung cancer cells. Telomerase is 
activated in more than 90% of the cancer cells [72, 73]. 
Similarly, hTERT mRNA has been detected in exosomes 
isolated from sera of patients with lung cancer. The trans-
fer of exosomal telomerase from cancer cells into fibro-
blasts may contribute to alterations in the TME [74].

Angiogenesis regulation by exosomes in the TME
Various studies have evaluated the role of hypoxia dur-
ing interactions between immune cells and EMT com-
ponents. Lung cancer-derived exosomes increase under 
hypoxic conditions and play a critical role in angio-
genesis. miRNAs in lung cancer cell-derived exosomes 
have important functions under hypoxic conditions 
[75]. Exosomal miR-23a targets prolyl hydroxylase 
1 and 2 (PHD1 and 2) and suppresses expression in 
endothelial cells. Hypoxia-inducible factor-1α (HIF-1α) 
accumulates in endothelial cells, thereby increasing 
angiogenesis. Additionally, exosomal miR-23a inhib-
its the tight junction protein ZO-1, which is related to 
vascular permeability and cancer cell migration [76]. 
Radiotherapy, one of the most important treatment 
approaches in lung cancer, also affects exosome pro-
duction. In an in  vitro experiment, exosomes released 
from γ-irradiated cells or hypoxic cells activated lung 
tumour progression. Furthermore, angiopoietin-like 
4 (ANGPTL4) derived from exosomes contributes to 
angiogenesis, suggesting that it is a potential diagnostic 
biomarker of lung cancer [77]. The process of tumour 
angiogenesis is also closely related to fibroblasts and 
their proangiogenic factors. According to Fan et  al., 
miR-210 is encapsulated in exosomes, secreted by lung 
cancer cells, and eventually acts on fibroblasts. The ten-
eleven translocation 2 (TET2) and JAK2/STAT3 sig-
nalling pathway of CAFs is a target of miR-210 in the 
process of angiogenesis, which promotes the release of 
the proangiogenic factors vascular endothelial growth 
factor (VEGF), MMP9, and FGF2 [68]. The overex-
pression of tissue inhibitor of metalloproteinase-1 
(TIMP-1) also leads to the accumulation of miR-210 
in exosomes and thus promotes angiogenesis [78]. The 

STAT3 signalling pathway is not only a target for exoso-
mal miRNAs in the promotion of angiogenesis but also 
boosts the release of miRNAs. STAT3 upregulates exo-
somal miR-21 levels in transformed HBE cells. Interest-
ingly, miR-21 in exosomes further activates the STAT3 
signalling pathway in HBE cells, which increases VEGF 
levels and induces tumour angiogenesis [79]. Based on 
the important effect of exosomal miRNAs on angio-
genesis, they have been evaluated as treatment targets 
in NSCLC. For example, exosomal miR-497 effectively 
inhibits the expression of VEGF-A and suppresses 
tumour growth. Therefore, it may be a tool for the 
development of lung cancer therapies [80].

Microenvironmental regulation by exosomes
The premetastatic TME (pre-metastatic niche) in lung 
cancer is an important cause of induction of metastasis. 
Primary lung cancer-derived exosomal RNAs promote 
neutrophil recruitment by activating TLR3 in lung epi-
thelial cells via the NF-kB and MAPK pathways [81]. 
TGF-β has long been a pivotal adaptor in the lung can-
cer TME. It contributes to the development of cancer 
and directly impairs T cell immune function [82, 83]. 
Recent studies have found that TGF-β also has a regu-
latory effect on exosomal factors. TGF-β-pretreated 
A549 cell-derived exosomes increase the expression 
of MMP2 at the gene and protein levels and regulates 
vascular permeability [84]. Thyroid transcription fac-
tor-1 (TTF-1) is mainly expressed in lung adenocarci-
nomas and regulates angiogenesis activity in the TME. 
Both vascular endothelial growth factor (VEGF) and 
granulocyte–macrophage colony-stimulating factor 
(GM-CSF) are regulated by TTF-1, which reprograms 
lung adenocarcinomas that secrete TME factors in 
angiogenesis [85]. Leucine-rich-alpha2-glycoprotein 1 
(LRG1) is upregulated in NSCLC tissues and promotes 
NSCLC cell invasion. NSCLC cell-derived exosomes 
with LRG1 activate the TGF-β signalling pathway 
and thus promote angiogenesis [86]. CAF-derived 
exosomes also play a role in the microenvironment 
of lung cancer by promoting EMT. MiR-210 secreted 
by CAF-exosomes could target UPF1, promote the 
PTEN/PI3K/AKT signalling pathway, and contribute 
to NSCLC invasion by regulating EMT factors, such as 
E-cadherin, N-cadherin, and vimentin [87]. These stud-
ies suggest that exosomal RNAs and proteins are novel 
therapeutic targets and predictive markers of tumour 
metastasis in lung cancer.

Table  1 shows the interaction of exosomes between 
different cells in TME of lung cancer and the effect of 
exsome from lung cancer cell on TME was illustrated on 
Fig. 1.
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Roles of exosomes in treatment resistance
The progression of multidrug resistance is the major 
obstacle to maintain effectiveness of chemotherapy in 
lung cancer [88]. The TME is enriched with DDP-resist-
ant lung cancer cell-derived exosomes. These exosomes 
with miR-100-5p could be absorbed by other lung can-
cer cells and exerted their DDP resistance function. Qin 
and colleagues explained that cancer cells could be regu-
lated by miRNAs themselves and the TME in vitro [89]. 
These results have been verified in  vivo using a gemcit-
abine-resistant (GR) cell line. GR cell-derived exosomes 
transfer miR-222-3p, thereby contributing to malignancy 
in NSCLC by targeting SOCS3 after endocytosis. Addi-
tionally, the miR-222-3p level in serum exosomes may 
predict gemcitabine sensitivity and worse prognosis in 
NSCLC [90]. Radiotherapy is another promising method 
to completely cure localized non-metastatic cancer, in 
addition to surgical resection. The level of serum exoso-
mal miR-208a could be elevated by X-ray irradiation in 
patients with NSCLC. miR-208a could target p21 and 
activate the AKT/mTOR pathway, thereby promoting 

cell proliferation and inducing radio-resistance. There-
fore, exosomal miR-208a could serve as a target to 
enhance the efficacy of radiotherapy [91]. Some miR-
NAs have a radiosensitising effect. For example, miR200c 
and miR148b both inhibit proliferation by regulating 
EMT and possess radiosensitising effects [92, 93]. Wu 
et  al. found that exosomal miR-96 isolated from H1299 
enhanced cell malignancy and cisplatin resistance by tar-
geting LIM-domain only protein 7 (LMO7) [94]. The role 
of exosomes in resistance to targeted therapy has also 
been investigated. Exosomal PLAUR regulates the EGFR/
AKT/survivin signalling pathway and induces gefitinib 
resistance [95]. Similarly, exosome-derived miR-564 and 
miR-658 also induce gefitinib resistance, and targeting 
these miRNAs may reverse resistance [96]. Additionally, 
UCA1 in exosomes may be another therapeutic target 
for patients with EGFR-positive lung cancer. Resistance 
to tyrosine kinase inhibitors has become a main fac-
tor limiting clinical efficacy for patients with advanced-
stage NSCLC. Zhang et al. confirmed that serum lncRNA 
RP11‑838N2.4 expression was improved in patients with 

Fig. 1  The effect of exosome from lung cancer cell on TME
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resistance to erlotinib. Furthermore, the knockdown of 
the lncRNA RP11‑838N2.4 could promote erlotinib cyto-
toxicity [97]. Another target for the reversal of erlotinib 
resistance is the lncRNA H19. H19 from exosomes can 
regulate ATG7 expression by binding to miR-615-3p, 
thereby promoting erlotinib treatment resistance. There-
fore, H19 may be another target for patients with erlo-
tinib resistance [98].

Exosomes as diagnostic and therapeutic targets
Exosomes in the TME may be novel diagnostic and thera-
peutic targets for NSCLC. YKT6 in lung cancer cells reg-
ulates exosome release. A clinical study has shown that 
in NSCLC, YKT6 in tumour samples is associated with a 
shorter disease-free survival and overall survival [12].

Various lncRNAs have been identified as promising 
therapeutic targets. MiR-96 is a candidate serum bio-
marker and therapeutic target for NSCLC. Melanoma 
differentiation-associated gene-9 (MDA-9)/Syntenin is 
another therapeutic target for lung adenocarcinoma; 
this locus promotes cancer invasion and metastasis as 
a key regulator of Slug and Slug-mediated EMT [99]. 
NSCLC cell-released exosomal miR-619-5p could pro-
mote angiogenesis by targeting RCAN1.4 and induced 
the growth and metastasis of lung cancer cells. A clini-
cal study found that miR-619-5p was expressed at higher 
level in exosomes isolated from the plasma of patients 
with NSCLC compared with the level in healthy individ-
uals[100]. Exosome-derived EGFR has also recently been 
identified as a diagnostic marker for NSCLC based on 
its high expression in plasma exosomes of patients with 
NSCLC, and it can be specifically captured by CD81 anti-
bodies [101]. In terms of angiogenesis, radiation-induced 
ANGPTL4 derived from exosomes contributes to angio-
genesis and lung cancer cell migration, suggesting that 
exosomal ANGPTL4 is a therapeutic target [77].

Exosomes of the TME as prognostic biomarkers 
for lung cancer
Exosomes are promising tools for tumour diagnosis and 
treatment [4, 8]. MicroRNAs in exosomes may be diag-
nostic biomarkers for lung cancer. Zhang et  al. found 
that the downregulation of exosomal let-7a-5p with the 
upregulation of the target gene BCL2L1 could be a useful 
biomarker for poor survival in patients with lung adeno-
carcinoma [102]. A large number of studies have shown 
that miR-21 is associated with survival and is actively 
involved in the modulation of malignant transforma-
tion and progression in NSCLC [103]. Exosomal miR-
106b may elevate the expression of MMP-2 and MMP-9, 
which play a role in angiogenesis in the TME, and may 
enhance the invasive ability of NSCLC. Additionally, 
serum exosomal miR-106b in patients with lung cancer 

is associated with the TNM stage and lymph node metas-
tasis [104]. Another TME factor with prognostic value is 
NEK2, a target of miR-486-5p, which is associated with 
the TNM stage. Exosomal miR-486-5p is downregulated 
in the serum of patients with lung cancer and contributes 
to tumour formation via effects on the EMT [105]. High 
levels of MDA-9/Syntenin and Slug are related to poor 
overall survival in patients with lung adenocarcinomas 
[99]. Exosomes are also a new tool for gene sequenc-
ing of targeted therapies. Clinical studies have shown 
that RNA/DNA detection in exosomes can improve the 
detection rate of patients who are positive for EGFR 
mutations (including the L858R and T790M mutations) 
[106, 107].

Table  2 expresses a summary of exosomes related 
experiments and studies contributing to radiotherapy, 
chemotherapy, targeted therapy, diagnosis and prognosis.

Exosomes as biomarkers for liquid biopsy of lung 
cancer
Liquid biopsy is a diagnostic procedure that describes 
information about cancer-derived substances obtained 
from blood sample. The sample information of the liq-
uid biopsy mainly comes from: circulating tumour cells 
(CTCs) of blood sample, circulating cell-free DNA 
(cfDNA) released into the blood from tumour cells and 
normal cells and cell-free RNA (cfRNA) enriched in 
exosomes from tumour cells [108]. It makes up for the 
inadequacy of tissue biopsy in advanced NSCLC patients 
with poor state, lung cancer very early detection, the side 
effects of interventional biopsy procedures, insufficient 
tissue quantity, and false positive molecular detection 
analysis [109]. Liquid biopsy is expected to be another 
important means for lung cancer diagnosis and gene 
sequencing analysis. Clinical diagnosis of patients with 
lung cancer pneumomeningeal metastasis (LM) is diffi-
cult. Serum exosomal miR-483-5p and miR-342-5p may 
play a role in the diagnosis of these patients and may 
replace cerebrospinal fluid in predicting LM of NSCLC 
[110]. Similarly, exosomal miR-17-5p expression is sig-
nificantly up-regulated in NSCLC patients. Based on this, 
the combination of exosomal miR-17-5p, carcinoembry-
onic antigen (CEA), cytokeratin 19 fragment (CYFRA21-
1) and squamous cell carcinoma antigen (SCCA) is 
considered to be a newly developed diagnostic panel of 
NSCLC [111]. Extracellular Vesicle (EVs)-Derived CD5L 
protein expression was detected to be associated with 
cancer tissue in clinic. This result suggests that CD5L 
may be another potential biomarker for noninvasive 
diagnosis of NSCLC. The EVs were detected to be about 
76-194  nm in diameter, which included the category of 
exosomes [112]. In addition, the combination of miR-
21-5p, miR-223-3p, miR-155-5p and miR-126-3p may be 
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a potential diagnostic biomarker for lung cancer [113]. In 
terms of EGFR mutation detection, combining exosomal 
RNA and cfDNA (exoNA) can improve the sensitivity of 
EGFR mutation detection in liquid biopsy from NSCLC 
patients. The sensitivity of EGFR mutation positive 
detection by exoNA method can reach 98% [114]. Exoso-
mal nucleic acids are more sensitive to the identification 
of associated mutations than cfDNA. This is of great sig-
nificance for the selection of targeted therapy [115].

PD-L1 in serum exosomes can be used as a quantitative 
factor for tumour PD-L1 status, which may be helpful in 
predicting the clinical outcome of anti-PD-1 therapy in 
NSCLC patients [116]. With the development of immu-
notherapy, microsatellite instability (MSI) and mismatch 
repair deficiency (MMRD) tumours have high immuno-
genicity and have been used as predictive biomarkers for 
PD-1 inhibitor efficacy and demonstrated in clinical tri-
als of anti-PD-1 therapy [117]. MSI can also be diagnosed 
by analysis of miRNA-mRNA network in exosomes 
biomarker sources and therapeutic applications [118]. 
Detection of MSI and MMRD gene sequences in 
exosomes by liquid biopsy is of great significance for 
PD-1 and PD-L1 immunotherapy [119].

Conclusion
Functional studies of non-coding RNAs and proteins in 
exosomes provide new insights into reshaping the TME. 
In terms of clinical application, a large number of non-
coding RNAs and proteins have been found in exosomes, 
which are expected to become an indispensable tool for 
the diagnosis and prediction of lung cancer in clinic. 
However, there remains a lack of clinical studies with 
large samples to provide evidence support. It is particu-
larly important to identify the precise components that 
act key roles in tumour processes. Ongoing experimental 
and clinical studies of exosomes may provide new ideas 
for improvement of TME and treatment of lung cancer.
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