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and construction of multi‑regulatory networks 
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Abstract 

Background:  As one of the most lethal cancers, pancreatic cancer has been characterized by abundant supportive 
tumor-stromal cell microenvironment. Although the advent of tumor-targeted immune checkpoint blockers has 
brought light to patients with other cancers, its clinical efficacy in pancreatic cancer has been greatly limited due 
to the protective stroma. Thus, it is urgent to find potential new targets and establish multi-regulatory networks to 
predict patient prognosis and improve treatment.

Methods:  We followed a strategy based on mining the Cancer Genome Atlas (TCGA) database and ESTIMATE 
algorithm to obtain the immune scores and stromal scores. Differentially expressed genes (DEGs) associated with 
poor overall survival of pancreatic cancer were screened from a TCGA cohort. By comparing global gene expression 
with high vs. low immune scores and subsequent Kaplan–Meier analysis, DEGs that significantly correlated with poor 
overall survival of pancreatic cancer in TCGA cohort were extracted. After constructing the protein–protein interaction 
network using STRING and limiting the genes within the above DEGs, we utilized RAID 2.0, TRRUST v2 database and 
degree and betweenness analysis to obtain non-coding RNA (ncRNA)-pivotal nodes and transcription factor (TF)-
pivotal nodes. Finally, multi-regulatory networks have been constructed and pivotal drugs with potential benefit for 
pancreatic cancer patients were obtained by screening in the DrugBank.

Results:  In this study, we obtained 246 DEGs that significantly correlated with poor overall survival of pancreatic can-
cer in the TCGA cohort. With the advent of 38 ncRNA-pivotal nodes and 7 TF-pivotal nodes, the multi-factor regulatory 
networks were constructed based on the above pivotal nodes. Prognosis-related genes and factors such as HCAR3, 
PPY, RFWD2, WSPAR and Amcinonide were screened and investigated.

Conclusion:  The multi-regulatory networks constructed in this study are not only beneficial to improve treatment 
and evaluate patient prognosis with pancreatic cancer, but also favorable for implementing early diagnosis and 
personalized treatment. It is suggested that these factors may play an essential role in the progression of pancreatic 
cancer.
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Background
Pancreatic cancer currently is one of the top three leading 
causes of cancer-related death in the United States and 
its death toll is rising dramatically [1]. The only chance 
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of cure for pancreatic cancer patients is surgical resec-
tion [2]. For decades, despite the concerted efforts, the 
five-year survival rate remains dismal for all stages com-
bined [1]. The lack of early detection tests and recogniz-
able symptoms or signs results in late diagnoses [3]. The 
advent of various systemic therapies has just provided 
limited efficacy for pancreatic cancer patients to date [4, 
5], which may be due to the abundance of tumor stromal 
content [6, 7].

The pancreatic cancer stroma, which has aptly been 
termed the tumor microenvironment (TME), is the cel-
lular milieu where the tumor is located. The stroma 
occupies the majority of the tumor mass and is hetero-
geneously comprised of dynamic assortment of non-
neoplastic cells and extracellular matrix components, 
including fibroblastic, vascular and immune cells, 
cytokines and growth factors [8, 9]. The influences of the 
stroma in pancreatic cancer are as manifold as its com-
ponents [7]. In the pancreatic TME, immune cells and 
stromal cells are the two main types of non-neoplastic 
components and have been proposed to be of value for 
the diagnosis and prognosis of tumors [10–13].

The comprehensive understanding of immune cells 
and stromal cells in pancreatic cancer tissues may shed 
light on the tumor pathophysiology and help with devel-
oping wholesome prognostic and predictive models [8, 
14]. Thus, it is important to evaluate immune scoring and 
matrix scoring to investigate the composition of stromal 
cells and immune cells and evaluate tumor purity [12, 14, 
15]. Algorithms [15, 16], such as ESTIMATE (Estimation 
of Stromal and Immune cells in Malignant Tumor tissues 
using Expression data), have been developed to predict 
tumor purity and the infiltration of non-tumor cells by 
calculating immune and stromal scores by utilizing gene 
expression data from the Cancer Genome Atlas (TCGA) 
database [17]. In this ESTIMATE algorithm, we analyzed 
immune and stromal cells of their specific gene expres-
sion characteristics to obtain immune and stromal scores 
and predict invasion of non-tumor cells [18]. Subsequent 
researches have shown the effectiveness of applying the 
ESTIMATE algorithm in various tumors [17, 19–21], 
although its utility on pancreatic cancer have not been 
fully revealed.

The present study, for the first time in decades, by uti-
lizing both TCGA pancreatic cancer data and immune 
scores from ESTIMATE algorithm [15], we obtained a list 
of genes, non-coding RNAs (ncRNAs) and transcription 
factors (TFs) that were associated with microenvironment 
and could predict poor outcomes in pancreatic cancer 
patients, along with possible effective drugs. Essentially, 
we have validated the correlation in the International 
Cancer Genome Consortium (ICGC) database, which 
contains a different pancreatic cancer cohort.

Methods
Acquisition of gene expression data of pancreatic cancer 
from TCGA and ICGC database
Gene expression profile of pancreatic cancer patients 
and their clinical characteristics were extracted from the 
TCGA database (https​://tcga-data.nci.nih.gov/tcga). Use 
of the TCGA data adhered to TCGA publication guide-
lines and policies. By utilizing the ESTIMATE algorithm 
to the downloaded data, we obtained the immune and 
stromal scores [22]. In addition, gene expression profiles 
and clinical data of survival and outcomes for pancreatic 
cancer patients were extracted from the ICGC database 
(https​://icgc.org) for validation. These normalized data 
were used for Limma analysis and survival analysis. The 
summary of the clinical information of pancreatic can-
cer cohorts from TCGA is presented in Additional file 1: 
Table S1.

Identification of differentially expressed genes (DEGs) 
and functional enrichment analysis
The inclusion criteria for identification of DEGs were set 
as fold change (FC) > 2 and adjusted p value < 0.05. The 
DEGs were chosen for heatmaps and clustering by means 
of pheatmap and an open source web tool ClustVis [23]. 
The KEGG pathway enrichment analysis for identified 
DEGs was conducted using a web server named KOBAS 
(version 3.0, KEGG Orthology Based Annotation System) 
[24] online database server (http://kobas​.cbi.pku.edu.cn/) 
with the thresholds of p-value < 0.05. The flow chart was 
shown in Fig. 1a.

Construction of PPI network
STRING (version 10.5) tool was utilized to establish the 
protein–protein interaction (PPI) network [25]. Subse-
quently, the visualization and analysis were achieved via 
Cytoscape (version 3.6.1, http://www.cytos​cape.org/) 
[26]. To locate densely populated regions based on topol-
ogy, we used the plug‐in Molecular COmplex DEtection 
(MCODE) to filtrate significant modules of the PPI net-
work (the parameters were set to default).

Overall survival curve
Based on the gene signature of multiple survival-asso-
ciated DEGs, Kaplan–Meier plots were generated to 
elaborate the association between patients’ 5-year over-
all survival and DEGs expression levels. The relationship 
was tested by log-rank test.

Degree and betweenness analysis of the PPI interaction 
network with module identification and pivot ncRNA 
recognition
The network was analyzed by using Network Analyzer, 
a Cytoscape plug-in, based on topological parameters 

https://tcga-data.nci.nih.gov/tcga
https://icgc.org
http://kobas.cbi.pku.edu.cn/
http://www.cytoscape.org/
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such as degree and betweenness [27]. In summary, degree 
illustrated the amount of edges linked to a specific node, 
while betweenness determined the sum of nonredun-
dant shortest paths passing through a specific node/edge, 
identifying the network bottleneck [28]. The PPI net-
work was clustered with the ClusterONE algorithms (in 
Cytoscape) so as to determine functional modules [29]. 

Based on the PPI network, ClusterONE could detect the 
protein complex module by altering the most valuable 
incident and boundary nodes time and again to locally 
optimize the cohesiveness measure of cluster quality 
metrics [29]. The pivot ncRNAs that significantly modu-
late distinct modules and sub-networks were identified 
by hypergeometric test [30].

e
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Fig. 1  Immune scores and stromal scores were associated with pathologic stages and overall survival of pancreatic patients. a Work flow of the 
present study. b Distribution of immune scores of different pathologic stages. Box‐plot showed significant association between pathologic stages 
and the level of immune scores (n = 177, p = 0.00798). c Distribution of stromal scores of different pathologic stages. Box‐plot showed no significant 
association between pathologic stages and the level of stromal scores (n = 177, p = 0.1172). d TCGA cohort samples were divided into two groups 
based on their immune scores: the 139 cases with immune scores higher than 0 and the 38 cases with immune scores lower than 0. As shown in 
the Kaplan‐Meier survival curves, median survival of the low score group was significantly longer than high score group (p = 0.024 in log-rank test). 
e Similarly, TCGA cohort samples were divided into two groups based on their stromal scores: the 135 cases with stromal scores higher than 0 and 
the 42 cases lower than 0. The median survival of the low score group was longer than the high score group, althougth not statistically different as 
indicated by the p = 0.37 in log-rank test
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Analysis of targeting drugs
The DrugBank online database (https​://www.drugb​ank.
ca/) [31, 32] is contained of biochemical and pharmaco-
logical information of any kinds of drugs. In this study, 
we filtered the data from DrugBank to determine the 
drug target information of module genes in PPI net-
work and subsequently built drug-target gene interaction 
networks.

Timer 2.0 database analysis
To analyze the association of gene expression and 
immune infiltration levels of immune cells including 
CD8+ T cell, CD4+ T cell, Treg cell, B cell, neutrophil, 
macrophage, dendritic cell, natural killer cell and mono-
cyte, the online public resource Tumor Immune Estima-
tion Resource 2.0 (TIMER 2.0; http://timer​.cistr​ome.org/) 
was utilized [33, 34].

Results
Immune and stromal scores were associated 
with pathologic stages and overall survival of pancreatic 
cancer patients
The gene expression profiles and clinical information of 
all 177 pancreatic cancer patients (with initial pathologic 
diagnosis) were downloaded in TCGA PAAD cohort. 
We included all the pancreatic cancer cases with com-
plete gene expression data and clinical information in the 
TCGA in our analysis. There clinicopathologic informa-
tion was listed in Additional file  1: Table  S1. According 
to the clinical information recorded in the TCGA data-
base, we divided all pancreatic cancer cases into Stage 
I (21/177, 11.9%), Stage II (146/177, 82.5%) and Stage 
III and IV (7/177, 4.0%) subgroups based on the overall 
stage of cancer. Their immune and stromal scores were 
obtained from the ESTIMATE website. The numerical 
distribution of the two scores was shown in Fig.  1B. In 
accordance with ESTIMATE algorithm, immune scores 
were distributed between − 1559.87 and 3037.78 and 
stromal scores ranged from − 1843.32 to 2179.19, respec-
tively. As shown in Fig.  1b, the pancreatic cancer cases 
at Stage II subgroup had the highest average immune 
score (p < 0.01), followed by Stage III and IV, while the 
Stage I samples had the lowest immune score. Similarly, 
the rank order of stromal scores across pancreatic can-
cer subgroups from highest to lowest was Stage III and 

IV > Stage II > Stage I, although the differences were not 
statistically significant (Fig.  1c), indicating that immune 
scores were meaningful in the correlation of subgroup 
classification.

To find out the potential correlation of immune and/or 
stromal scores with overall survival, we divided the 177 
pancreatic cancer cases into high vs. low score groups 
(using zero as the cut-off point) and performed survival 
analysis using clinical follow-up data for each set of sam-
ples. Kaplan–Meier survival curves indicated that 5-year 
survival rate of cases with low immune scores was longer 
(Fig.  1d log-rank p = 0.024). Consistently, although not 
statistically significant, longer 5-year overall survival was 
observed in cases with lower, compared to higher, stro-
mal scores (Fig. 1e, log-rank p = 0.37).

Comparison of gene expression profile with immune 
and stromal scores in pancreatic cancer
To explore the correlation of global gene expression pro-
files with immune and/or stromal scores, we analyzed 
the RNAseq - HTSeq - FPKM data of all 177 TCGA 
pancreatic cancer cohorts. As the heatmaps shown in 
Fig.  2a and b, there were evident gene expression pro-
files between cases of high vs. low immune/stromal score 
groups. According to the immune scores, a total of 2224 
DEGs were screened with 1922 upregulated and 302 
downregulated genes in high vs. low score groups (FC > 2, 
p < 0.05). When it comes to stromal scores, there were 
1982 up-regulated genes and 160 down-regulated genes 
screened in high vs. low score groups (FC > 2, p < 0.05). 
In addition, the Venn diagrams in Fig.  2c, d showed 
1611 commonly up-regulated genes and 104 commonly 
down-regulated genes in the high score groups. There is 
a certain degree of overlap between the DEGs in high-
scoring and low-scoring groups of the immune score and 
the stromal score, especially in the up-regulation group. 
Among the differentially up-regulated genes, 1611 genes 
were shared between immune and stromal score groups, 
accounting for 70.3% of the genes, while the 104 common 
down-regulated genes accounted for 29.1%. It is worth 
mentioning that only immune scores were significantly 
correlated with 5-year overall survival of patients. There-
fore, we were determined to focus on the DEGs from 
immune score groups for all the following analyses in this 
manuscript.

Fig. 2  Comparison of gene expression profile with immune scores and stromal scores in pancreatic cancer. Heatmaps were drawn based on the 
methods of average linkage and Pearson distance measurement. Genes with higher expression were shown in red while lower expression genes 
were in green. a Heatmap of the DEGs of immune scores higher than 0 vs. immune scores lower than 0 (p < 0.05, FC > 2). b Heatmap of the DEGs of 
stromal scores higher than 0 vs. stromal scores lower than 0 (p < 0.05, FC > 2). c, d Venn diagrams showing the number of commonly upregulated 
(c) or downregulated (d) DEGs in immune and stromal score groups. Top 10 terms of GO (e), KEGG pathway (f) and KEGG disease (g) were acquired 
from KOBAS 3.0 annotation and enrichment tool. p < 0.05

(See figure on next page.)

https://www.drugbank.ca/
https://www.drugbank.ca/
http://timer.cistrome.org/
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Then, by using KOBAS 3.0, functional enrichment 
analysis of all upregulated 2224 genes in high-immune 
score group was carried out in order to sketch the pos-
sible effect of the DEGs between the two immune score 
groups (high and low). The DEGs we obtained in the 
GO annotation and relevant pathways were enriched in 
the KEGG database. As shown in Fig.  2e–g, numerous 
genes were associated with tumor microenvironment or 
immune function.

Correlation of expression of individual DEGs in overall 
survival
To determine the separate effects of the 2224 DEGs on 
5-year overall survival, Kaplan–Meier survival curves 
were generated, of which 246 genes in total were iden-
tified to be significantly associated with poor overall 
survival prediction (log-rank p < 0.05, Additional file  1: 
Figure S1 showed the designated genes).

Protein‑protein interactions among genes of prognostic 
value
To investigate the interactions among the above DEGs, 
we utilized the STRING tool and yeasted PPI net-
works. By limiting the genes with interactions to be 
only included in these 246 DEGs, we established a PPI 
network that was significantly associated with 5-year 
overall survival using Cytoscape software. As suggested 
by Fig.  3a, 93 nodes and 158 edges composed the net-
work. As former studies reported [35–37] that biologi-
cal significance exists in PPI networks (nodes = proteins; 
edges = interactions between proteins), it is generally 
believed that important proteins often cooperate with 
many other proteins (such as TFs). In other words, nodes 
(proteins) with larger node degrees (more interactions 
and cooperations) in the network are thus more impor-
tant for further study.

Functional enrichment analysis for DEGs of prognostic 
value
To further clarify the main biological functions of the 
93 screened DEGs, we performed functional enrich-
ment clustering analysis of the 93 gene nodes using the 
gene set enrichment analysis (GSEA) method (p < 0.05, 
FDR < 0.25). As shown in Fig.  3b and c, these genes 

showed strong association with biologically significant 
processes such as immune response, cell and subcellular 
composition and movement of cell or subcellular compo-
nent, which was consistent with the result of PPI network 
analysis.

Module mining of PPI networks
To perform the module mining on the previously men-
tioned PPI networks, we obtained a total of 7 modules 
using the MCODE tool in Cytoscape. It is worth men-
tioning that one module contained more than 10 nodes 
(Fig. 4). CXCL5, which have been reported to recruit and 
activate leukocytes and play a role in cancer progression, 
was also indicated to be one of the key genes in the PPI 
network. The genes in the module, including CXCL9, 
CXCL10, CXCL11, PPY, LPAR3, HCAR3 and so on, 
were mainly associated with the prognosis of pancreatic 
cancer or other tumors as listed according to each node 
degree in Table 1.

Validation in the ICGC database
To validate the prognostic significance of the 93 prog-
nosis-related genes identified from the TCGA cohort, 
we downloaded and analyzed gene expression data and 
its corresponding clinical information of a cohort of 95 
pancreatic cancer cases from ICGC. It showed that this 
set of data contained 79 of 93 prognostically significant 
genes and their prognostic values in pancreatic cancer 
were visualized by Kaplan–Meier survival curves. A total 
of 26 genes were found to be significantly associated with 
poor prognosis (Additional file  1: Figure S1), while five 
of them, including SYT12, GJB5, RHOJ, GJB3 and IFI27, 
were of particular interest as they have not been previ-
ously associated with poor outcomes in pancreatic can-
cer cases.

Degree and betweenness analysis with prognosis‑related 
DEGs and multi‑regulatory network construction
By using RAID 2.0 and TRRUST v2 database respectively, 
we investigated the interaction between human ncRNAs 
along with TFs and the 93 prognosis-related genes. We 
obtained 8437 out of 1,954,911 pairs of ncRNAs with 
genes and 179 out of 8427 pairs of TFs with genes. These 
interaction pairs were imported into Cytoscape software 
to build a multi-regulatory network with 2228 nodes and 

(See figure on next page.)
Fig. 3  PPI networks among genes of prognostic value and functional enrichment analysis. a PPI networks among DEGs (93 nodes) that were 
significantly associated with 5-year overall survival. The color of a node in the network reflected the log (FC) value of the Z score of gene expression. 
The size of a node indicated the number of interacting proteins with the designated protein. b, c Results of GSEA. GSEA was performed for the 93 
DEGs to further screen the significant GO between the higher immune score group and lower immune score group. GSEA, gene set enrichment 
analysis
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8616 edges, including 2021 miRNA nodes, 3 lncRNA 
nodes, 89 TF nodes and 91 mRNA nodes (Fig.  5). In 
order to obtain more accurate and significant results, 
we used the degree and betweenness analysis method to 
further screen factors including ncRNAs, TFs and drugs 
that have significant regulatory effects on prognosis-
related DEGs. Here, a pivotal node was defined as having 
interactions with at least two prognosis-related genes and 
the hypergeometric p value was less than 0.05.

ncRNAs regulate genes associated with significant 
prognosis
To explore ncRNAs that can significantly regulate prog-
nosis-related mRNAs, we screened the RAID 2.0 database 
for pivotal ncRNA nodes. By using degree and between-
ness analysis, we obtained a total of 42 ncRNA-pivotal 
nodes, including 39 miRNA nodes and 3 lncRNA nodes. 
The 10 most hypergeometrically significant ncRNAs, 
including WSPAR, has-miR-4425, has-miR-4536-5p, 
has-miR-410-5p, has-miR-8064, has-miR-6871-5p, has-
miR-4767, has-miR-608, has-miR-4481 and has-miR-
3605-3p, were listed in Additional file  1: Figure S2 (in 
which the expression of has-miR-4481 was not reported 
in pancreatic cancer).

TFs regulated genes associated with significant prognosis
To explore TFs that can significantly regulate prognosis-
related genes, we screened the TRRUST v2 database for 
pivotal TF nodes. Accordingly, we put nodes that inter-
acted with at least two prognosis-related genes (hyper-
geometric p < 0.05) into the candidate TF node set. Since 
we only found one TF, RFWD2, based on the hypergeo-
metric p value, we loosened the p value cut-off to 0.1 and 
obtained 7 TF-pivotal nodes as listed in Additional file 1: 
Figure S3. Subsequently, we analyzed the association of 
the expression level of RFWD2 and immune cell infil-
tration by utilizing the TIMER 2.0 database (Additional 
file 1: Figure S4).

Construction of a multi‑factor regulatory network based 
on the pivot nodes
Next, we pruned the multi-regulatory network con-
structed above based on the obtained ncRNA nodes and 
TF nodes and removed the rest of the non-pivot nodes. 
Since there were four miRNAs, including hsa-miR-3978, 
hsa-miR-4276, hsa-miR-4481 and hsa-miR-4535, whose 
expressions were not found in pancreatic cancer, thus, 
the final network included 119 nodes and 241 edges, 
including 7 TFs, 3 lncRNAs and 35 miRNAs.

Explore drugs that have a therapeutic effect on pancreatic 
cancer
To explore more effective drugs that can significantly 
regulate prognosis-related genes, we screened the Drug-
Bank database for pivotal interaction nodes. Similarly, a 
pivotal node was defined as having interactions with at 
least two prognosis-related genes and the hypergeomet-
ric p value was less than 0.05. A total of 17 drug-pivot 
nodes were obtained (hypergeometric p < 0.05). The 10 
most significant drugs including Amcinonide and Octre-
otide were listed in Table 2.

Fig. 4  Module mining of PPI networks. The PPI network data 
from STRING was further analyzed by Cytoscape. Circles and lines 
represented genes and the interaction of proteins between genes, 
respectively. The color of a node in the network reflected the log (FC) 
value of the Z score of gene expression. The size of a node indicated 
the number of interacting proteins with the designated protein

Table 1  Module mining results of  the  genes associated 
with the prognosis of pancreatic cancer or other cancers

Degree Gene logFC Reference

13 ANXA1 1.172288 PMID:25854353, PMID:27412958

13 LPAR3 1.616316 PMID:22876164, PMID:26440309

11 SSTR1 − 1.20245 PMID:15706439, PMID:18823376

11 SSTR5 − 1.21848 PMID:15706439, PMID:26474434

11 CXCL5 2.994452 PMID:21356384

11 INSL5 − 1.03296 PMID:25514935

11 CXCL10 2.382618 PMID:25415223, PMID:26423423

11 CXCL11 1.970112 PMID:30747226

11 CCL28 1.114131 PMID:28092365

11 CXCL9 2.672843 PMID:30685120, PMID:23394575

11 HCAR3 1.282322

11 PPY 1.816823

3 KISS1R − 1.62753 PMID:23969598, PMID:30123188

3 P2RY2 1.056005 PMID:30420446
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Discussion
Recently, increasing evidence has proven that tumor 
microenvironment plays an essential role in the process 
of pancreatic cancer [38–41]. Immune cells and stromal 
cells, the two main types of non-neoplastic components, 
have been reported to accelerate tumor immune escape 
and progression [42, 43]. More and more studies have 
revealed that stroma not only served as a physical barrier 
to drug delivery and facilitated chemotherapy resistance, 
but also supported tumor growth and metastasis [44]. 
Although gemcitabine is presently the standard option in 
the treatment of pancreatic cancer, stromal components 
including tumor-associated macrophages have been 
proven essential in delivering gemcitabine resistance 
in pancreatic cancer cells [45]. Thus, investigating the 
mechanism of tumor microenvironment and identifying 
stromal components could impel a deeper understanding 
and contribute to a better prognosis of pancreatic cancer 
patients in clinical practice.

In the present study, we identified numerous tumor 
microenvironment related DEGs which contributed to 
pancreatic cancer overall survival in the TCGA database. 
Especially, by comparing global gene expression in abun-
dant cases with high vs. low immune scores, we obtained 
246 genes that significantly correlated with poor over-
all survival in TCGA pancreatic cancer training cohort. 
By constructing PPI network and limit the genes only 
in the 246 DEGs, we obtained 93 gene nodes, in which 
79 of them were validated in ICGC pancreatic cancer 
cohort. The subsequent GSEA method confirmed their 
strong association with biologically significant processes 
including immune response and cell and subcellular 
composition. The module mining further assured their 
association with the prognosis of pancreatic cancer and 
beyond. Afterwards, by manipulating RAID 2.0, TRRUST 
v2 database and pivotal point analysis, we obtained 38 
ncRNA-pivotal nodes (with 4 unexpressed miRNAs 

excluded) and 7 TF-pivotal nodes that interacted with 
the 93 prognosis-related DEGs. Then, the succeed-
ing multi-factor regulatory network construction was 
achieved based on the screened pivotal nodes. By utiliz-
ing the TIMER 2.0 database, we validated the significant 
correlation of RFWD2 expression and immune infiltra-
tion including CD8+ T cell, CD4+ T cell, B cell, mac-
rophage and natural killer cell. Ultimately, by screening 
in the DrugBank, we obtained 17 pivotal drugs that were 
potentially benefit for pancreatic cancer patients.

As illustrated in Fig. 4 and Table 1, of the 14 genes iden-
tified, 12 genes (e.g., ANXA1, LPAR3, SSTR1, CXCL5, 
KISS1R) have been reported to be involved in pancreatic 
cancer pathogenesis or significant in predicting overall 
survival, indicating that the big data-based analyses in 
the current work using TCGA training cohort and ICGC 
validation cohort have prognostic values. While the 
remaining two genes, HCAR3 (Hydroxy-Carboxylic Acid 
Receptor 3) and PPY (Pancreatic Polypeptide), have not 
previously been linked with pancreatic cancer prognosis 
yet, this study provides a theoretical basis for investigat-
ing their potential role in pancreatic cancer.

Recently, the explosion of studies into  ncRNA have 
provided evidence of their key regulatory roles in shap-
ing oncogenic activity in pancreatic cancer [46–48]. Sub-
sequently, many cancer-focused clinical trials involving 
ncRNAs as novel biomarkers have begun [49–51]. In our 
present work, the top 10 ncRNAs with significant asso-
ciation with pancreatic cancer prognosis were listed in 
Additional file  1: Figure S2, including WSPAR (lncRNA 
T-Cell Factor-7, LncTCF7), miR-410, miR-608 and so 
on. For instance, WSPAR had been reported to promote 
hepatocellular carcinoma aggressiveness through epithe-
lial-mesenchymal transition [52]. It is worth mentioning 
that the IL-6 produced by non-neoplastic components 
within pancreatic tumors could activate proinflammatory 
STAT3 signaling in hepatocytes [53]. In turn, by enhanc-
ing hepatic stellate cell activation, those hepatocytes 
release myeloid cell chemoattractant proteins to recruit 
myeloid cells and increase fibrosis deposition [54]. In 
other words, by means of the secreted IL-6, pancreatic 
cancer promoted the formation of a pro-metastatic niche 
in the liver [55]. Thus, it would be meaningful to inves-
tigate whether WSPAR was playing essential part in the 
evolution of pancreatic cancer.

Currently, several clinical trials of adjuvant and neoad-
juvant therapies were conducted [56], which are essential 
for the treatment of pancreatic cancer. As the DrugBank 
indicated, pivots such as Fibrinolysin and Pasireotide had 
already been explored in the study of pancreatic cancer 
[57, 58], Amcinonide came to the horizon. Amcinonide 
as a corticosteroid has been reported to effectively reverse 
the expression of the oncogene DAPK1 (death-associated 

Table 2  Top 10 pivotal drugs that  had potential 
therapeutic effects on pancreatic cancer

Drug-pivot p value

Fibrinolysin 0.000526165

Urokinase 0.00126686

Pasireotide 0.003062761

Octreotide 0.003062761

Lutetium Lu 177 dotatate [PMID:22388631, 
PMID:28076709]

0.005028043

Tenecteplase 0.025271353

Amcinonide 0.045593349

Botulinum Toxin Type A 0.045593349

HspE7 [PMID:19225922, PMID:11189443] 0.045593349

Lanreotide [PMID:26614375, PMID:25060168] 0.045593349
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protein kinase 1) in liver carcinoma [59]. While the effect 
of Amcinonide on pancreatic cancer have not been inves-
tigated yet, the present study offered a good insight into 
the further study of pancreatic cancer.

Pancreatic cancer evolution is essentially affected by 
the interaction of the intact cancer cells and the micro-
environment around them, which then modifies tumor 
recurrence, drug resistance and prognosis of pancreatic 

Fig. 5  Multi-factor regulatory network on the strength of the pivot nodes. Construction of multi-regulatory network after refining the 
results of degree and betweenness analysis with prognosis-related DEGs. A pivotal node was defined as having interactions with at least two 
prognosis-related genes (hypergeometric p < 0.05). There were 119 nodes in total that interacted with other pivotal nodes
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cancer [60]. Preceding researches have done active 
investigation of how the tumor microenvironment was 
molded by the activated tumor-intrinsic genes [61]. In 
the present study, we provided a useful further dimen-
sion in deciphering the complicated crosstalk between 
tumor and its microenvironment in pancreatic cancer. 
Although our study sheds new light on the characteris-
tics of the genes in microenvironment of pancreatic can-
cer, which in return affected tumor evolution, it still has 
limitations. The prognosis significance, biological func-
tions and molecular mechanisms of the factors, including 
HCAR3, PPY, RFWD2, WSPAR and Amcinonide, should 
be investigated alone and in combination to facilitate the 
translational research of pancreatic cancer.

Conclusions
In summary, by means of ESTIMATE algorithm-based 
immune scoring and functional enrichment analysis 
of TCGA pancreatic cancer training cohort applied by 
KOBAS and GSEA, we extracted a list of genes that cor-
related with tumor microenvironment. These genes were 
subsequently tested to outline the prognosis of pancreatic 
cancer in an independent ICGC pancreatic cancer vali-
dation cohort. Further investigation of the new targets 
including DEGs, ncRNAs and TFs lead to novel insights 
into the potential association of tumor microenviron-
ment with pancreatic cancer prognosis in a comprehen-
sive manner. Drugs with potential therapeutic effects are 
also worth investigating. Factors such as HCAR3, PPY, 
RFWD2, WSPAR and Amcinonide appeared above the 
horizon. Last but not least, despite the grim status quo of 
pancreatic cancer, we still believe that light is coming [3].
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