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Abstract 

Background:  Autophagy is associated with cancer development. Autophagy-related genes play significant roles 
in endometrial cancer (EC), a major gynecological malignancy worldwide, but little was known about their value as 
prognostic markers. Here we evaluated the value of a prognostic signature based on autophagy-related genes for EC.

Methods:  First, various autophagy-related genes were obtained via the Human Autophagy Database and their 
expression profiles were downloaded from The Cancer Genome Atlas. Second, key prognostic autophagy-related 
genes were identified via univariate, LASSO and multivariate Cox regression analyses. Finally, a risk score to predict the 
prognosis of EC was calculated and validated by using the test and the entire data sets. Besides, the key genes mRNA 
expression were validated using quantitative real-time PCR in clinical tissue samples.

Results:  A total of 40 differentially expressed autophagy-related genes in EC were screened and five of them were 
prognosis-related (CDKN1B, DLC1, EIF4EBP1, ERBB2 and GRID1). A prognostic signature was constructed based on 
these five genes using the train set, which stratified EC patients into high-risk and low-risk groups (p < 0.05). In terms 
of overall survival, the analyses of the test set and the entire set yielded consistent results (test set: p < 0.05; entire set: 
p < 0.05). Time-dependent ROC analysis suggested that the risk score predicted EC prognosis accurately and indepen-
dently (0.674 at 1 year, 0.712 at 3 years and 0.659 at 5 years). A nomogram with clinical utility was built. Patients in the 
high-risk group displayed distinct mutation signatures compared with those in the low-risk group. For clinical sample 
validation, we found that EIF4EBP1and ERBB2 had higher level in EC than that in normal tissues while CDKN1B, DLC1 
and GRID1 had lower level, which was consistent with the results predicted.

Conclusions:  Based on five autophagy-related genes (CDKN1B, DLC1, EIF4EBP1, ERBB2 and GRID1), our model can 
independently predict the OS of EC patients by combining molecular signature and clinical characteristics.
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Background
As an evolutionarily ancient and highly conserved bio-
logical behavior, autophagy plays a cytoprotective role 
in eukaryotic cells through degrading unnecessary or 
dysfunctional organelles under the condition of hypoxia, 
starvation, nutrition deficiency or high PH [1]. However, 
excessive self-degradation can be poisonous [2]. Accord-
ingly, autophagic dysfunction involved in numerous 
human pathologies, such as liver and heart disease, neu-
rodegeneration, muscle disease, and cancer [3]. However, 
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the mechanisms of autophagy in cancer remain stag-
nantly understood. A clearer eyesight into these mecha-
nisms may facilitate the invention of autophagy-focused 
therapeutic interventions.

Endometrial cancer (EC) is one of the most common 
malignant diseases in women worldwide, with an esti-
mated 61,880 newly-diagnosed cases and 12,160 deaths 
in the United States in 2019 [4]. Primarily treated with 
surgical resection, the prognosis of women with early-
stage EC is excellent, with a 5-year survival rate of over 
70% [5]. However, 15–20% of cases still show post-oper-
ative vaginal or pelvic EC relapse, often metastasizing 
to distant sites [6]. Despite the advance in surgical tech-
niques, chemotherapy, or radiotherapy, data show that 
the EC mortality of EC has bypassed EC incidence [7]. To 
further improve the outcomes of EC treatments, physi-
cians need to identify high-risk patients and tailor precise 
treatment.

Recent studies revealed associations between 
autophagy and pathophysiological processes in EC. The 
so-called “stone-like” structure (SLS) has emerged as 
the hallmark of autophagic activity. SLSs are detected 
exclusively in EC and rarely in atypical hyperplasias, sug-
gesting that autophagy is more active in EC cells than in 
normal or hyperplastic endometrial cells [8]. Targeting 
autophagy enhances sorafenib cytotoxicity and inhib-
its tumor growth and pulmonary metastasis, which can 
help us gain insights into the unopposed resistance of 
advanced EC to sorafenib and provide a possibility to 
develop a new therapeutic intervention for recurrent EC 
[9]. However, little literature is available regarding the 
prediction of EC prognosis based on its molecular mech-
anisms or biological behavior.

In the present study, we examined the relevance 
between autophagy-related genes (ARGs) expression 
profiles and clinical outcomes in 552 EC patients from 
The Cancer Genome Atlas (TCGA). Then, using ARGs as 
an independent risk factor, a prognosis-prediction model 
was established for EC overall survival (OS). Results from 
this study could provide an autophagy-targeted strategy 
for predicting and monitoring the prognosis of patients 
with EC.

Methods
Collection of data
The Human Autophagy Database (http://www.autop​hagy.
lu/index​.html) is a public repository containing infor-
mation about the human genes involved in autophagy. 
Various ARGs were obtained via this database. RNA 
sequencing (RNA-seq) data of ARGs from each individ-
ual and their clinical information were downloaded from 
The Cancer Genome Atlas (TCGA) data portal (http://
cance​rgeno​me.nih.gov/).

Identification of differentially expressed ARGs
The limma package in R software was used to search 
for differentially expressed ARGs between EC and 
non-tumor samples. Genes exhibiting at least onefold 
change and an FDR < 0.05 were regarded as obviously 
differentially expressed. Then, their most involved bio-
logical functions and pathways were revealed by a series 
of gene functional enrichment analyses, including Gene 
ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) at Enrichr (http://amp.pharm​.mssm.
edu/Enric​hr/) [10].

Calculation of a risk score based on ARG model
ARGs expression profiles were downloaded from 
TCGA and normalized by [log2(data + 1)]. The entire 
set was randomly separated into the train set and the 
test set in a ratio of 6 to 4. Using the gene expression 
profile of the train set, ARGs were submitted to univar-
iate, LASSO Cox regression and multivariate analyses, 
to remove the genes which might not be an independ-
ent indicator in EC prognosis. Time-dependent receiver 
operating characteristic (ROC) analysis was used to 
investigate the prognosis-prediction accuracy and risk 
score of each ARG. The area under the curve (AUC) 
with different cutoffs was used to measure prognosis-
prediction accuracy. Finally, several prognostic ARGs 
were screened out, and the coefficient of each prog-
nostic gene in the risk model was assessed with corre-
sponding multivariate analysis. EC patients were then 
divided into high- and low-risk groups by the cutoff 
medians, which was calculated according to the expres-
sion level of ARGs and the estimated regression coef-
ficient. To investigate whether the risk score could be 
used as an independent predictor of OS in the TCGA 
cohort of EC patients, the univariate and multivariate 
Cox regression analyses were conducted. Clinicopatho-
logic characteristics of EC patients were downloaded 
from TCGA database (Table  1). The risk score, age, 
clinical stage, grade, peritoneal wash, radiation therapy, 
surgical approach, cancer status, and histological type 
were used as covariates. The test set and the entire set 
were used to validate this signature and a nomogram 
was constructed. This nomogram was corrected by cali-
bration curves.

Gene Set Enrichment Analysis
Gene Set Enrichment Analysis (GSEA) was set up in 
TCGA series using a molecular signature database 
(MSigDB) c2.cp.kegg.v6.2.symbols.gmt gene sets [11]. 
The GSEA, visualized in Enrichment Map software and 
Cytoscape [12], was applied to determine whether the 
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members of a given gene set were significantly correlated 
with our risk score.

Somatic mutation analysis
Package “maftools” was used to summarize, analyze, 
annotate and visualize mutation annotation format 
(MAF) files [13]. The T test was applied to identify the 
differentially mutated genes between high-risk and 
low-risk groups. The plotmaf Summary function was 
employed to plot the numbers and types of various MAF 
files. OncoPlot was used to plot the top ten most obvi-
ously mutated genes.

Preparation for human tissue samples
This research was approved by the Institutional Review 
Board of Nanjing Medical University and informed con-
sent was obtained from all subjects. Tissue samples were 

collected from patients after surgery at the First Affili-
ated Hospital of Nanjing Medical University from 2017 to 
2019 and then stored at − 80 °C, including 15 EC tissues 
and 15 normal endometrial tissues.

RNA isolation and quantitative real‑time PCR (qRT‑PCR)
Total RNA from human tissues were extracted separately 
using Trizol reagent (Invitrogen, USA). The integrity of 
isolated RNA was assessed by NanoDrop 2000 Spectro-
photometer (Thermo Scientific, Wilmington, DE, USA). 
RNA was reversely transcribed into cDNA using the high 
capacity reverse transcription kits (TaKaRa, Shiga, Japan) 
and qRT-PCR was performed in the LightCycler480II 
(Roche) using SYBR Green technology (Takara). The 
relative expression level was calculated by comparing 
the 2-ΔΔCt method. The primers for GAPDH, CDKN1B, 
DLC1, EIF4EBP1, ERBB2 and GRID1 were purchased 
from  Tsingke (NanJing, China). The forward primer of 
GAPDH is CGC​TCT​CTG​CTC​CTC​CTG​TT. The reverse 
primer of GAPDH is CAT​GGG​TGG​AAT​CAT​ATT​GG. 
The forward primer of CDKN1B is AAC​GTG​CGA​GTG​
TCT​AAC​GG. The reverse primer of CDKN1B is CCC​
TCT​AGG​GGT​TTG​TGA​TTCT. The forward primer of 
DLC1 is CCA​CGG​ACC​TCC​CAT​CTT​C. The reverse 
primer of DLC1 is GCT​GTG​CAT​ACT​GGG​GGA​A. The 
forward primer of EIF4EBP1 is CTA​TGA​CCG​GAA​ATT​
CCT​GATGG. The reverse primer of EIF4EBP is CCC​
GCT​TAT​CTT​CTG​GGC​TA. The forward primer of 
ERBB2 is TGC​AGG​GAA​ACC​TGG​AAC​TC. The reverse 
primer of ERBB2 is ACA​GGG​GTG​GTA​TTG​TTC​AGC. 
The forward primer of GRID1 is TGG​CTG​TGC​ATC​
TGC​CAA​T. The reverse primer of GRID1 is CGT​AGA​
ACA​TGA​CGA​ACT​TCTGC. All procedures for qRT-
PCR were performed according to the manufacturer’s 
protocol and all experiments were repeated three times.

Statistical analysis
Univariate and multivariate Cox regression analyses were 
used to select the survival-related ARGs and construct 
the risk score model. The survival curves were plotted 
by Kaplan–Meier (K–M) method and differences in the 
survival rates between high- and low-risk groups were 
evaluated by the log-rank test. ROC curve and AUC were 
plotted by SurvivalROC package in R. p-value less than 
0.05 was considered statistically significant.

Results
Identification of differently expressed ARGs
RNA-seq and clinical data of 552 EC tissue samples and 
23 non-tumor samples were downloaded from TCGA. 
With |log2(Fold Change)| > 1 and FDR < 0.05, we finally 
obtained 22 up-regulated and 18 down-regulated ARGs 
between EC and non-tumor tissues (Fig. 1a, b). Box plots 

Table 1  Clinicopathologic characteristics of  342 EC 
patients from TCGA database

Characteristics Entire set (n = 342)

N (%)

 Age, years

  ≤ 60 141 (41.2%)

  > 60 201 (58.8%)

 Stage

  I 221 (64.6%)

  II 31 (9.1%)

  III 77 (22.5%)

  IV 13 (3.8%)

 Grade

  G1 80 (23.4%)

  G2 74 (21.6%)

  G3 188 (55.0%)

 Peritoneal wash

  Negative 293 (85.7%)

  Positive 49 (14.3%)

 Person neoplasm cancer status

  Tumor free 291 (85.1%)

  With tumor 51 (14.9%)

 Radiation therapy

  Yes 140 (40.9%)

  No 202 (59.1%)

 Histological type

  Endometrioid endometrial adenocarcinoma 268 (78.4%)

  Serous endometrial adenocarcinoma 61 (17.8%)

  Mixed serous and endometrioid 13 (3.8%)

Surgical approach

  Minimally invasive 150 (43.9%)

  Open 192 (56.1%)
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were visualized to display the expression patterns of the 
40 differentially expressed ARGs, including 22 up-regu-
lated genes (APOL1, ATG4D, BAK1, BAX, BID, BIRC5, 
BNIP3, CASP3, CDKN2A, CTSB, DAPK2, EIF4EBP1, 
ERBB2, GAPDH, IFNG, IKBKE, P4HB, PARP1, PTK6, 
SERPINA1, TP63, WIPI1) and 18 down-regulated genes 
(BCL2, CALCOCO2, CDKN1B, DLC1, FOS, FOXO1, 
GABARAPL1, GRID1, HSPB8, ITPR1, MYC, NRG2, 
PPP1R15A, PRKAR1A, RAB33B, ST13, TUSC1, VAMP3) 
(Fig. 1c).

Functional annotation of the differentially expressed ARGs
According to the results of Enrichr database, in the 
aspect of biological processes, the genes were mostly 

enriched in apoptotic process, intrinsic apoptotic signal-
ing pathway and intrinsic apoptotic signaling pathway in 
response to endoplasmic reticulum stress. In the aspect 
of cellular components, the genes were mostly enriched 
in mitochondrial outer membrane, mitochondrion, and 
autophagosome. In the aspect of molecular function, 
the genes were mostly enriched in protein heterodimeri-
zation activity, protein serine/threonine kinase inhibi-
tor activity, and protein phosphatase binding. Besides, 
we also found the differentially expressed ARGs were 
notably associated with apoptosis, pathways in cancer, 
autophagy, Kaposi sarcoma-associated herpesvirus infec-
tion and measles in the KEGG pathway enrichment anal-
ysis (Additional file 1).

Fig. 1  Differentially expressed autophagy-related genes (ARGs). Volcano plot (a) and heatmap (b) demonstrating differentially expressed genes 
between endometrial cancer and normal endometrial tissues. Red shows high expression and green low expression. c The expression patterns of 40 
ARGs in EC types and paired non-tumor samples. Each red dot represents a distinct tumor sample and green a non-tumor sample
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Construction of a risk score formula in the train set
The relationships between the expression level of the 40 
differentially expressed ARGs and overall survival (OS) 
were evaluated based on the data obtained from TCGA. 
Firstly, we integrated autophagy-related gene expres-
sion profiles and clinical follow-up information to screen 
out 516 EC samples. Then the entire set (516 samples) 
were randomly separated into the train set and the test 
set in a ratio of 6 to 4. Hence, the train set contained 312 
samples and the test set contained 204 samples. Using 
the expression files of the train set, the univariate Cox 
regression, LASSO Cox regression and multivariate Cox 
regression analyses were performed (Additional file  2). 
A prognostic model using the expression of CDKN1B, 
DLC1, EIF4EBP1, ERBB2 and GRID1 was constructed 
(Table 2). The risk score of EC prognosis was quantified 
by the following formula: risk score =​ CDKN1B ​*​ (0​.01​69​
41) + ​DLC1 * (− 0.3​3079) + EI​F​4EB​P1 ​* ​(0.0035​7​7) ​+ E​RB​
B2 * (0​.​001​271​) + GRID1 * (0.733501). It was noticed that 
among these five​ ARGs, just DLC1 had a negative coef-
ficient. Totally, the expressions of CDKN1B, EIF4EBP1, 
ERBB2 and GRID1 were negatively related to the OS of 
EC patients, while that of DLC1 was positively related to 
OS.

Relationships between the risk score and OS in the train set
Based on these five ARGs, we could calculate the risk 
score for each patient. Survival analysis was performed 
and a dichotomous score was adopted. Patients in the 
train set were then stratified into high-risk (n = 156) and 
low-risk groups (n = 156) based on the median risk score. 
The risk score and survival status predicted by the prog-
nostic model were displayed in Fig.  2a–c. The survival 
rate of the patients in the low-risk group was significantly 
higher than that in the high-risk group (p = 4.351e−04) 
(Fig.  2d). Time-dependent ROC analysis demonstrated 
that the prognostic accuracy of the risk score was 0.706 
at 1  year, 0.742 at 3  years, and 0.655 at 5  years, indica-
tive of its good performance in predicting EC prognosis 
(Fig. 2e). Principal component analysis displayed a differ-
ent distribution pattern of high and low risk according to 
5 autophagy-related gene expression based on the train 

set (Fig. 2f ). Univariate and multivariate Cox regression 
analyses showed that the model can efficiently predict EC 
prognosis with ARG risk score as an independent indica-
tor (Fig. 5a, b).

Validation of the risk score in the test set
The test set was applied to validate the predictive power 
of the five ARGs. Based on the cut-offs in the train set, 
204 samples in the test set were divided into low-risk 
(n = 107) and high-risk groups (n = 97) by using the 
same risk score formula. Figure  3a–c also showed the 
risk score and survival status. In consistent with the 
findings described above, low-risk patients had sig-
nificantly longer overall survival than high-risk patients 
(p = 4.398e−02) (Fig.  3d). ROC curve analysis showed 
that the specificity and sensitivity were highest when 
the risk score was 0.627 at 1  year, 0.66 at 3  years, 0.67 
at 5  years, according to the value of the area under the 
receiver operating characteristic curve (AUC) (Fig.  3e). 
Principal component analysis displayed a different dis-
tribution pattern of high and low risk according to 5 
autophagy-related gene expression based on the test set 
(Fig.  3f ). Likewise, the independency of the prognostic 
model was also confirmed by univariate and multivariate 
Cox regression analyses (Fig. 5c, d).

Validation of the risk score in the entire set
We further validated our risk score in the entire set (516 
samples). Based on the cut-offs in the train set, the sam-
ples were stratified into low-risk group (n = 263) and 
high-risk group (n = 253). Figure  4a–c also showed the 
risk score and survival status. KM plot indicated that 
patients in high-risk group and low-risk group showed 
significantly different outcomes (p = 3.335e−05) (Fig. 4d). 
The 1‐year, 3‐year and 5‐year prognostic accuracy of the 
prognostic model was 0.674, 0.712 and 0.659, respec-
tively (Fig. 4e). Principal component analysis displayed a 
different distribution pattern of high and low risk accord-
ing to 5 autophagy-related gene expression based on the 
entire set (Fig. 4f ). The risk score and clinical factors were 
incorporated into univariate and multivariate Cox regres-
sion analyses. The results demonstrated that the ARG 
risk score in the model can serve as an independent prog-
nostic indicator (Fig. 5e, f ). These conclusions supported 
our speculation that autophagy affects the prognosis of 
EC.

Relationships between the risk score and clinicopathologic 
factors
We finally built a complete prognostic model based 
on the entire set. This model showed a good perfor-
mance in stratification in clinical stage I–II & III–IV, 
grade G3&G4, peritoneal wash, cancer status, radiation 

Table 2  The most prognosis-related five autophagy-
related genes

Gene Coef HR HR.95L HR.95H p-value

CDKN1B 0.016941 1.017085 0.994197 1.040501 0.144618

DLC1 − 0.33079 0.718355 0.542355 0.951468 0.02106

EIF4EBP1 0.003577 1.003584 1.000417 1.00676 0.026523

ERBB2 0.001271 1.001272 1.000166 1.002379 0.024188

GRID1 0.733501 2.082357 1.20684 3.59303 0.008402



Page 6 of 17Wang et al. Cancer Cell Int          (2020) 20:306 

therapy, minimally invasive surgical approach and 
endometrioid histological type (Fig.  6). In parallel to 
the results above, high‐risk group in both subgroups 
was inclined to have worse OS. Meanwhile, relation-
ships were analyzed between the ARGs-based risk 
score and clinicopathologic factors, including age, 
grade, clinical stage, peritoneal wash, radiation therapy, 
surgical approach, cancer status and histological type. 
Risk score was significantly higher in seniors, poorly 
differentiated cases, and mix or serous histological type 
cases (Additional file  3). We also explored the clinical 
significance of included genes (Table 3).

Nomogram and its clinical utility
To provide clinicians with a quantitative method to pre-
dict the overall survival of EC patients, a nomogram was 
constructed incorporating the risk score and clinical 
factors (Fig.  7a). The calibration curve of 1-year, 3-year 
and 5-year survival indicated that the nomogram was 
almost an ideal model (Fig. 7b). ROC curve analysis also 
showed that in this model, the risk score AUC was 0.794, 
and the clinical factors AUC was 0.851, both much sig-
nificantly higher than that of patient age (AUC = 0.621), 
clinical stage (AUC = 0.701), grade (AUC = 0.691), peri-
toneal wash (AUC = 0.726), cancer status (AUC = 0.760) 

Fig. 2  Prognostic analysis of the train set. a Rank of risk score and distribution of groups. b The overall survival of patients in different groups. c 
Expression heatmap. d Kaplan–Meier survival analysis. e Time-dependent ROC curve analysis for survival prediction by the risk score. f Principal 
component analysis
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and histological type (AUC = 0.746). Interestingly, the 
ROC curve of risk score combined with clinical factors 
was much higher than that of each alone (AUC = 0.859) 
(Fig. 7c). These further validated the reliability of our pre-
vious prognostic model.

External validation of the risk score
The representative protein expression of CDKN1B, 
DLC1, EIF4EBP1 and ERBB2 was explored in the Human 
Protein Profiles (Fig.  8a). However, we failed to find 
GRID1 on the website. ERBB2 possessed the most genetic 
alterations (11%), amplification being the commonest 
(Fig.  8b). Moreover, ROC curve analysis found that the 
key genes had strong capacity to distinguish tumor from 

normal tissues, and the combined use of these ARGs was 
more effective (AUC = 0.997) (Fig. 8c).

Gene set enrichment analysis
We performed GSEA to identify ARGs related pathways. 
The most enriched pathways in high-risk groups included 
“Cell cycle”, “Citrate cycle tca cycle”, “DNA replication”, 
“Homologous recombination”, “Mismatch repair” and 
“Oxidative phosphorylation”, which implied that the five 
ARGs are related to EC progress (Additional file 4).

Somatic mutation analysis
The top ten mutated genes in different risk groups were 
displayed in the Fig. 9. The order of somatic mutations in 
the high-risk group was as follows: TP53 > PTEN > PIK3C

Fig. 3  Prognostic analysis of the test set. a Rank of risk score and distribution of groups. b The overall survival of patients in different groups. c 
Expression heatmap. d Kaplan–Meier survival analysis. e Time-dependent ROC curve analysis for survival prediction by the risk score. f Principal 
component analysis
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A > TTN > ARID1A > KMT2D > PIK3R1 > MUC16 > ZFH
X3 > FAT4 (Fig. 9a). In the low-risk group, the order was: 
PTEN > ARID1A > PIK3CA > TTN > PIK3R1 > CTNNB1 
> CTCF > KMT2D > MUC16 > CSMD3 (Fig.  9b). Besides, 
we found that the patients in the high-risk group showed 
significant mutation signatures, compared with those in 
the low-risk group (Fig. 9c, d). It was noticed that TP53, 
PTEN, CTNNB1, DOCK3, ARID1A, ARHGAP35, FAT4, 
CTCF and FBXW7 were mutated differentially between 
the high- and low-risk groups (p < 0.05) (Fig. 9e).

Expression levels of ARGs in clinical tissue samples
Finally, the qRT-PCR results from our own specimens 
verified that the expression of EIF4EBP1 and ERBB2 
mRNA were significantly higher in EC tissues than that 
in normal endometrial tissues, while the expression of 
CDKN1B, DLC1 and GRID1 mRNA were lower. The p 

values were 0.002, 0.037, 0.021, 0.012 and 0.003 respec-
tively (Fig. 10).

Discussion
Endometrial cancer is a major gynecological malignancy 
worldwide. Prognosis-related high risk factors include 
disease stage, tumor size, grade, histological type, myo-
metrial invasion and lymph node metastasis [14]. Nev-
ertheless,  these risk factors could only be determined 
after extensive surgery. Consequently, preoperative prog-
nostic factors are needed, especially for those who are 
not suitable for surgery or wish to preserve their fertil-
ity function. Similar to other tumors, the occurrence, 
development and metastasis of EC also involve complex 
molecular mechanism [15]. Thus, reliable molecular bio-
markers predicting the prognosis of EC are significant for 
selecting patients who might be sensitive to additional 

Fig. 4  Prognostic analysis of the entire set. a Rank of risk score and distribution of groups. b The overall survival of patients in different groups. c 
Expression heatmap. d Kaplan–Meier survival analysis. e Time-dependent ROC curve analysis for survival prediction by the risk score. f Principal 
component analysis
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targeted therapy [16]. Autophagy is a highly conserved 
catabolic and energy-generating process that maintains 
cell homeostasis through degrading damaged organelles 
or intracellular components [17]. It was reported that 
autophagy plays complicated and momentous roles in 

EC genesis and progression. In type I endometrial can-
cer, as autophagy is repressed by activated PI3K/AKT/
mTOR signaling pathway, the proliferation of tumor cells 
becomes facilitated, indicating that autophagy inhib-
its the development of tumors. Liu et  al. showed that 

Fig. 5  Univariate (a, c, e) and multivariate (b, d, f) regression analyses of the prognostic value for the train set (a, b), the test set (c, d) and the entire 
set (e, f) with clinicopathologic factors
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activation of the PI3K/AKT pathway could result in acti-
vation of mTOR and the proliferation of endometrial 
cells by inhibiting autophagy [18]. Currently, autophagy 
is considered as a “double-edged sword”, since it not only 
inhibits tumor progression by depriving cells of nutri-
ents and energy, but also promotes tumor progression 

by conferring cells with nutrients and energy [19, 20]. 
Therefore, autophagy-related research may open a new 
window into EC pathogenesis and prognosis. Several 
autophagy-related prognostic indicators had already 
been proposed. For example, An et  al. developed an 
eight-gene autophagy-related signature, which could 

Fig. 6  Stratified analyses of clinicopathological factors in EC: stage I, II & III, IV (a, b), grade G3&G4 (c), peritoneal wash (d, e), cancer status (f, g), 
radiation therapy (h, i), surgical approach (j), and histological type (k)
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serve as an independent prognostic indicator for serous 
ovarian cancer [21]. Wang et al. identified three prognos-
tic ARGs (JUN, MYC, and ITGA3) and validated a clini-
cal autophagy-based index in predicting overall survival 
of bladder cancer [22]. However, the prognostic signifi-
cance of autophagy genes in endometrial cancer has not 
been reported.

In the present study, we first screened differentially 
expressed ARGs in EC. Subsequently, several gene 
functional enrichment analyses were performed to 

define their biological process, molecular function and 
signaling pathways. Via univariate and multivariate sur-
vival analysis, we identified that CDKN1B, DLC1, EIF-
4EBP1, ERBB2 and GRID1 were significantly related to 
EC patients’ overall survival. A prognostic model was 
constructed based on them, all of which showed poten-
tial of being therapeutic targets. CDKN1B encodes 
p27Kip1 protein, a cyclin-dependent kinase inhibitor 
that binds to and prevents the activation of a broad 
range of cyclin CDK complexes, thereby controlling the 

Fig. 7  a The nomogram to predict 1-, 3- or 5-year OS in the entire set. b The calibration plots for predicting patient 1-, 3- or 5-year OS. c ROC curve 
analysis
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cell cycle progression at G1 [23]. Recent studies have 
demonstrated that CDKN1B can be genetically inac-
tivated, particularly in luminal breast cancer, prostate 
cancer, and small intestine neuroendocrine neoplasms 
[24]. DLC1 gene encodes GTPase-activating protein 
(GAP), a member of the Rho-GAP family of proteins, 
and plays a role in the regulation of small GTP-binding 
proteins [25]. GAP proteins are involved in signaling 
pathways that regulate cellular processes in cytoskeletal 
changes, functioning as a tumor suppressor in a variety 
of common cancers, such as lung cancer, liver cancer, 
colorectal cancer, breast cancer and prostate cancer 
[26]. This role is consistent with our findings. EIF4EBP1 
encodes one translation repressor protein, which 
directly interacts with eukaryotic translation initia-
tion factor 4E (eIF4E), to inhibit complex assembly and 
repress translation. This protein is phosphorylated in 
response to various signals, resulting in its dissociation 
from eIF4E and activation of mRNA translation [27, 
28]. High level of EIF4EBP1 phosphorylation is associ-
ated with malignant progression and adverse prognosis 
in several malignancies, such as breast, ovary and pros-
tate cancers [29]. ERBB2 encodes an epidermal growth 
factor (EGF) receptor and binds tightly to other ligand-
bound EGF receptors to form a heterodimer, stabilizing 
ligand binding and enhancing kinase-mediated activa-
tion of downstream signaling pathways, such as phos-
phatidylinositol-3 kinase and mitogen-activated protein 
kinase. Amplification and/or overexpression of this 
gene have been reported in lots of cancers, including 

ovarian and breast cancers [30]. ERBB2 overexpression 
shows association with EC prognosis [31, 32]. GRID1 is 
a member of glutamate receptors, which were thought 
to exclusively play a role in the central nervous system 
(CNS). However, it was recently suggested that gluta-
mate receptor subunits are also involved outside the 
CNS in malignant processes, such as pancreatic cancer, 
breast cancer and ovarian cancer [33, 34]. From a clini-
cal perspective elevated expression in high-risk endo-
metrial cancers makes the gene, which is reported in 
the present study for the first time attractive as a poten-
tial tumor marker.

Our gene enrichment analysis also confirmed their 
involvement in cancer-related biological processes. 
Besides, higher rates of TP53, ZFHX3 and FAT4 muta-
tion were found in high-risk patients than low-risk 
patients. TP53 is a critical tumor suppressor that regu-
lates cell cycle progression, apoptosis, cell senescence 
and many others. Its mutation evokes diverse physio-
logical effects, including numerous cancers [35]. There-
fore, TP53 mutation can be used to guide the design of 
new EC treatments. Our GSEA analysis suggested that 
high risk score tended to be accompanied by a number 
of up-regulated networks, including tumorigenesis and 
tumor progression associated pathways. For example, 
instability is a hallmark of cancer, most likely caused by 
abnormal DNA replication [36]. Homologous recom-
bination enables the cell to obtain and replicate intact 
DNA sequence information, especially to repair DNA 
damage. Patients with homologous recombination 

Fig. 8  Expression and genetic alterations of the five predictive genes. a The representative protein expression of the five genes in EC and normal 
endometrium tissue. Data were from the Human Protein Atlas (http://www.prote​inatl​as.org) database. Data of GRID1 were not found in the 
database. b Genetic alterations of the five genes in TCG​AUC​EC. Data were from the cBioportal for Cancer Genomics (http://www.cbiop​ortal​.org/). c 
multi-AUC​

http://www.proteinatlas.org
http://www.cbioportal.org/
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Fig. 9  Somatic mutation analysis. a The top ten mutated genes in high-risk group. b The top ten mutated genes in low-risk group. c, d Cohort 
summary plot displaying distribution of variants according to variant classification, type, and SNV class. Bottompart (from left to right) indicates 
mutation load for each sample, variant classification type A stacked barplot shows top ten mutated genes in high-risk and low-risk group. e 
mutated genes differentially between the high- and low-risk groups
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deficiencies were more responsive to treatments, such 
as platinum-based chemotherapy and poly (ADP-
ribose) polymerase (PARP) inhibitors [37, 38].

Using TCGA, we screened out autophagy-related genes 
and used them to build up a prognostic risk score model. 
The model displayed powerful ability to predict the sur-
vival in patients stratified according to ages, grades, clini-
cal stages and histological types. Besides, the model was 
validated using the test set and the entire set. Thus, it 
might be converted into clinical application.

However, there are some limitations in this study. First, 
the underlying molecular mechanism of the key ARGs 
in the EC pathogenesis were undefined. Second, other 
potential prognostic variables associated with EC, such as 
tumor size, myometrial invasion and lymph node metas-
tasis, should be investigated. Third, prospective studies 
are required to further confirm the clinical utility and the 
biological function of this signature.

Conclusions
In conclusion, based on five autophagy-related genes 
(CDKN1B, DLC1, EIF4EBP1, ERBB2 and GRID1), 
our model can independently predict the OS of EC 
patients by combining molecular signature and clinical 
characteristics.
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