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Abstract 

Background:  Aberrant alternative splicing (AS) is implicated in biological processes of cancer. This study aims to 
reveal prognostic AS events and signatures that may serve as prognostic predictors for head and neck squamous cell 
carcinoma (HNSCC).

Methods:  Prognostic AS events in HNSCC were identified by univariate COX analysis. Prognostic signatures compris-
ing prognostic AS events were constructed for prognosis prediction in patients with HNSCC. The correlation between 
the percent spliced in (PSI) values of AS events and the expression of splicing factors (SFs) was analyzed by Pearson 
correlation analysis. Gene functional annotation analysis was performed to reveal pathways in which prognostic AS is 
enriched.

Results:  A total of 27,611 AS events in 15,873 genes were observed, and there were 3433 AS events in 2624 genes 
significantly associated with overall survival (OS) for HNSCC. Moreover, we found that AS prognostic signatures could 
accurately predict HNSCC prognosis. SF-AS regulatory networks were constructed according to the correlation 
between PSI values of AS events and the expression levels of SFs.

Conclusions:  Our study identified prognostic AS events and signatures. Furthermore, it established SF-AS networks 
in HNSCC that were valuable in predicting the prognosis of patients with HNSCC and elucidating the regulatory 
mechanisms underlying AS in HNSCC.

Keywords:  Head and neck squamous cell carcinoma, Alternative splicing, Splicing factors, Prognosis, The Cancer 
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Background
Recently, substantial progress in the area of high-
throughput sequencing technology has motivated cancer 
genome research. Alternative splicing (AS) is a crucial 
posttranscriptional biological process that facilitates 
transcript variants and reprogramming of protein diver-
sity in cells [1]. It is known that dysregulation of AS 
often causes aberrant cellular homeostasis and is asso-
ciated with malignancies [2, 3]. Accumulating evidence 

suggests that AS is implicated in the carcinogenesis and 
progression of cancers [4, 5]. Furthermore, research-
ers have found the clinical significance of AS, and it may 
serve as a prognostic predictor [6]. For instance, Liu et al. 
reported that that DOCK5 variant promoted prolifera-
tion, migration, and invasion of HPV-negative HNSCC 
cells, and patients with higher expression of DOCK5 var-
iant showed decreased overall survival [7]. A recent study 
revealed that a novel splice variant of LOXL2 promotes 
progression of human papillomavirus-negative head and 
neck squamous cell carcinoma [8]. These studies mainly 
focus on specific genes, however, studies providing a 
comprehensive evaluation of splicing events in HNSCC 
are scarce.
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HNSCC is the sixth most common malignancy 
globally, and remains one of the leading causes of 
cancer-related death [9]. HNSCC patients require a 
multimodal approach including surgical resection, 
radiotherapy, and systemic chemotherapy [10]. How-
ever, about half of the patients will develop locoregional 
recurrence or metastasis, and their five-year survival 
rates remains unsatisfactory [11]. These facts highlight 
the urgent need to identify underlying molecular mech-
anisms to develop effective therapy and improve the 
overall survival of patients.

RNA sequencing data generated by The Cancer 
Genome Atlas (TCGA) program enables researchers 
to illustrate the global profiling of AS events and iden-
tify the clinical significance and prognostic value of 
AS. TCGA SpliceSeq [12] provides valuable processed 
data for the analysis of AS events in 33 types of can-
cers, and it includes the following seven types of AS 
events: alternate acceptor site (AA), alternate donor 
site (AD), alternate promoter (AP), alternate terminator 
(AT), exon skip (ES), mutually exclusive exon (ME), and 
retained intron (RI).

In the present study, we attempted to elucidate the 
pattern of global aberrant AS events and its clinical and 
prognostic implications in patients with HNSCC using 
AS and clinical data obtained from TCGA database. 
Prognostic AS events that might function as prognostic 
indicators were identified and AS prognostic signatures 
were constructed. To assess the regulatory relationships 
between SFs and AS in HNSCC, a regulatory network 
was also established.

Materials and methods
TCGA data process
TCGA SpliceSeq is a database that provides AS profiles 
for seven types of splice events across 33 tumors based 
on TCGA RNA-seq data. To quantify AS events, the 
percent spliced in (PSI) value was processed for further 
data analysis. The PSI value indicates the inclusion of a 
transcript element divided by the total number of reads 
for that AS event. Alterations in PSI values range from 
0 to 100%, which suggests a shift percentage in splicing 
events. AS events with a PSI value of more than 75% in 
a HNSCC cohort were obtained from TCGA SpliceSeq 
website. AS events with a standard diversion < 1 were 
excluded. An UpSet plot generated by the package 
“UpSetR” [13] in R software was used for analyzing 
and displaying the distribution and intersection among 
seven types of AS. Clinical information of patients with 
HNSCC was also downloaded and extracted from TCGA 
database. The overall survival (OS) was used as the end-
point for survival.

Survival analysis of AS events
In the survival analysis, the follow-up periods ranged 
from 91 to 6417 days after excluding patients with an OS 
of less than 90  days. Univariate Cox analysis was con-
ducted to assess the correlation between the survival 
status of patients with HNSCC and PSI value (from 0 to 
100) of each AS event (P < 0.05). A total of 486 patients 
with HNSCC were ranked from low to high according to 
risk score, and the median were used as cut-off to sepa-
rate patients into low- or high- risk groups. Therefore, 
there are 243 patients in each group.

Prognostic signature construction
The top 20 most significant events of seven types of AS 
from the univariate Cox analysis were submitted to a 
least absolute shrinkage and selection operator (LASSO) 
analysis to develop prognostic signatures. The coeffi-
cients and partial likelihood deviance were calculated 
with the “glmnet” [14] package in R. The prognostic sig-
natures for OS prediction were calculated by multiplying 
the PSI values of prognostic indicators with the coef-
ficients assigned by LASSO Cox analysis. Evaluation of 
the splicing-based prognostic signature as an independ-
ent predictor was conducted by integrating the following 
clinical parameters into the multivariable Cox regres-
sion analysis: age, gender, tumor stage, lymph node sta-
tus, distant metastasis, tumor-node-metastasis (TNM) 
stage and histological grade. The prognostic prediction 
efficacy of the AS signatures was examined by a time-
dependent receiver-operator characteristic (ROC) curve 
and analyzed using the package “survivalROC” [15] in R 
software. The risk score calculated by the package “pheat-
map” [16] was to evaluate the performance of the prog-
nostic signatures. The Kaplan–Meier survival analysis 
was conducted to assess the survival difference between 
high- and low-risk groups.

SF‑AS regulatory network
A list of 404 splicing factors was obtained from the data-
base of SpliceAid 2 [17]. The expression profiles of SF 
genes were selected from TCGA dataset. Correlation 
between the PSI values of prognostic AS events and the 
expression of SFs was examined by Pearson’s correlation 
analysis. SF-AS relationships with P value less than 0.05 
and a Pearson correlation coefficient more than 0.65 were 
selected to construct the SF-AS a regulatory network via 
Cytoscape version 3.6.1.

Functional annotation
Functional annotation of genes with prognostic AS 
events was performed by the package “clusterPro-
filer” [43] in R to investigate the functional relevance 



Page 3 of 10Ding et al. Cancer Cell Int          (2020) 20:168 	

of the genes involved in AS events. Kyoto Encyclopedia 
of Genes and Genomes (KEGG) and the Gene ontol-
ogy (GO) were used to assess the functional categories. 
KEGG and GO terms with a P-value and q-value both 
smaller than 0.05 were considered significant categories.

Results
Profiles of alternative splicing events in HNSCC
We processed TCGA splice-seq data and clinical infor-
mation of a HNSCC cohort in TCGA, and a total of 347 
patients were included in the analysis. In total, 27,611 
AS events in 15,873 mRNAs were observed in HNSCC, 
indicating that AS events are common in the develop-
ment of HNSCC. The specific numbers and percentages 
of events and corresponding genes in seven types of AS 
were showed in Fig.  1a. An UpSet graph was generated 
to analyze the intersection among seven types of AS and 
to display the distribution of spliced genes in different 
splicing types (Fig. 1b). We found that one gene may have 

multiple types of splicing events, and that ES was the 
most predominant type.

Prognostic AS events
To reveal the prognostic significance of AS events in 
patients with HNSCC, a univariate Cox analysis on AS 
events was performed. The specific numbers and per-
centages of prognosis-associated AS events and cor-
responding genes were showed in Fig.  1c. Additionally, 
one gene could present two or more AS events that were 
markedly related to the OS of patients with HNSCC. 
The UpSet plot demonstrated that ES was still the lead-
ing prognostic AS type, and that a gene could have up to 
three prognostic events (Fig. 1d).

Prognostic signatures for patients with HNSCC
The 20 most significant prognostic events of each of 
the seven AS types are shown in Fig.  2a–g. By using 
the LASSO Cox analysis, we developed seven types of 

a b

c d

Fig. 1  Overview of alternative splicing (AS) events and prognostic AS events in HNSCC. a Numbers and percentages of events and 
corresponding genes in seven types of AS; b UpSet plots showing the intersection of seven types of AS events; c numbers and percentages of 
prognosis- associated AS events and corresponding genes; d UpSet plots showing the intersection of prognostic AS events
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prognostic signatures based on prognostic AA, AD, 
AP, AT, ES, ME, and RI events (Fig.  3a–g). Addition-
ally, we conducted an integrated analysis of all the 
seven types of AS events to establish a comprehensive 

prognostic signature (abbreviated as “ALL”), which 
consist of RHOT1-40176-ES, SH3KBP1-88642-AP, 
AGTRAP-670-AA, SH3KBP1-88643-AP, PACS2-
29633-AP, RBPMS-83289-AT, B3GNTL1-44424-AP, 

a b c

e f g

d

Fig. 2  The top 20 most significant AS events in HNSCC. a alternate acceptor, b alternate donor sites, c alternate promoters, d alternate terminators, 
e exon skips, f mutually exclusive exons, and g retained introns

a b c d

e f g h

Fig. 3  Construction of prognostic signatures based on LASSO COX analysis. a alternate acceptor, b alternate donor sites, c alternate promoters, d 
alternate terminators, e exon skips, f mutually exclusive exons, g retained introns, and h comprehensive signature
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MOBP-64191-AT, NPHP3-66813-ES, ABCC5-
67820-RI, FKTN-87134-ES and FKBP8-48446-AA 
(Fig. 3h). The detailed information of these eight prog-
nostic signatures is listed in Table  1. As expected, 
Kaplan–Meier analysis suggested that the seven prog-
nostic signatures could effectively separate the survival 
curves of high-risk groups from those of the low-risk 
groups (Fig.  4a–g), and the comprehensive prognostic 
signature could accurately predict prognosis (Fig.  4h). 
ROC curves further validated the efficacy of these eight 
prognostic signatures in prognosis prediction, and 
the area under the cure (AUC) of eight signatures was 
larger than 0.7, and the AUC of comprehensive signa-
tures is 0.743 (Fig.  5a). We next performed univariate 
Cox regression analysis and found that the eight signa-
tures had a high predictive value regarding the OS of 
patients with HNSCC (Fig.  5b). Furthermore, all eight 
signatures remained independent prognostic indicators 
for patients with HNSCC in multivariate analyses after 
other clinicopathological characteristics were adjusted 
(Fig.  5c–j). The risk scores of eight signatures in 
patients with HNSCC were ranked from low to high, as 
shown in Fig. 6a–h, and the median was used as a cut-
off to divide high- and low-risk groups (upper panel). 

Patients with a high-risk score tended to have lower 
survival rate and shorter survival time (lower panel).

Prognostic SF‑AS network
It is known that AS events are influenced by SFs [18]. 
Hence, exploration of the SF-AS regulatory network is 
important to reveal the mechanism underlying AS in 
HNSCC. The Pearson correlation analysis indicated that 
there were 23 splicing factors positively correlated with 
84 AS events, whereas 22 splicing factors were negatively 
correlated with 37 AS events. An interaction network 
was constructed according to the correlation between SF 
and AS, which comprises 28 SFs, 33 risk AS events (asso-
ciated with poor prognosis), and 78 protective AS events 
(associated with good prognosis) (Fig.  7a). Among the 
network, splicing factors DDX39B, PRPF39, LUC7L3 and 
CLASRP were significantly correlated with more than 
30 AS events. Notably, DDX39B directly regulates 86 AS 
events, therefore it was considered as a core SF.

Functional enrichment analysis
Functional enrichment analysis including the KEGG 
pathways enrichment and GO analysis were performed 
for survival‐related AS genes. The results of GO analysis 

Table 1  Alternative splicing signatures associated with overall survival in patients with HNSC

AS, alternative splicing; HR, hazard ratio; AUC, area under curve; AA, alternate acceptor; AD, alternate donor sites; AP, alternate promoters; AT, alternate terminators; ES, 
exon skips, ME, mutually exclusive exons; RI, retained introns; ALL, all types

AS type Formula HR (95% CI) AUC​

AA (AGTRAP|670|AA × − 2.12)+(RNMT|44751|AA × − 3.18)+(PTGR1|87219|AA × − 4.27)+(DSN1|59309|AA × − 10.5
9)+(C19orf60|48492|AA × − 2.08)+(MDM1|22932|AA × 1.56)+(RAD23A|47892|AA × − 2.79)+(SYNE2|27845|A
A × 2.23)+(TMEM134|17234|AA × − 2.65)+(TJAP1|76276|AA × − 1.27)+(STX1A|80019|AA × − 5.92)+(NRBP1|5
3010|AA × − 4.98)+(HSD17B7|8758|AA × 1.98)+(BUB3|13390|AA × 1.63)

3.716 (2.740–5.039) 0.758

AD (ALG3|67856|AD × − 1.51)+(TCIRG1|17286|AD × − 4.93)+(SMIM4|65231|AD × − 5.2)+(GPS1|44273|AD × − 14.8
3)+(ABCB8|82291|AD × − 3.26)+(TMEM205|47659|AD × − 2.3)+(FCF1|28425|AD × 2.31)+(FDPS|8075|AD × 2
.5)+(TMEM134|17238|AD × − 4.29)+(KRIT1|80429|AD × − 0.78)+(DCTN3|86188|AD × − 0.48)+(MRM1|40499|
AD × 9.4)+(DDX11|20979|AD × 3.86)+(ATG16L1|58040|AD × 4.86)

3.544 (2.625–4.784) 0.743

AP (SH3KBP1|88642|AP × − 1.08)+(PACS2|29633|AP × − 3.7)+(B3GNTL1|44424|AP × 0.74)+(SLC25A45|16820|AP × 
− 1.41)+(PKN1|47976|AP × − 0.75)+(C5orf30|72920|AP × − 2.54)+(APIP|14963|AP × − 2.68)+(TSC2|33190|AP 
× − 8.59)+(LEF1|70286|AP × 1.73)+(CNTRL|87406|AP × − 1.32)

3.384 (2.509–4.564) 0.716

AT (RBPMS|83289|AT × 2.65)+(MOBP|64191|AT × − 0.87)+(C15orf57|29992|AT × − 3.25)+(RAPH1|57074|AT × 2.73)
+(SMAD2|45450|AT × − 2.81)+(TMEM194B|56572|AT × − 10.03)+(PDE4DIP|4410|AT × 1.73)+(CTCFL|59908|A
T × − 1.3)+(LYRM2|77010|AT × 11.22)+(C14orf159|28842|AT × 2.38)

2.691 (2.019–3.588) 0.727

ES (RHOT1|40176|ES × − 3.19)+(NPHP3|66813|ES × 0.96)+(FKTN|87134|ES × − 1.61)+(DEF8|38194|ES × − 2.08)+ 
(CORO1B|387277|ES × − 0.65)+(ACAD10|24535|ES × − 11.34)+(SLC19A2|8922|ES × − 5.85)+(SSR2|8154|ES × 
− 4.18)+(RANBP3|46967|ES × − 2.17)+(GALNT14|53131|ES × − 11.11)+(POLDIP3|62524|ES × 19.11)+(PAM|72
890|ES × 3.45)

3.308 (2.457–4.455) 0.727

ME (FYN|77273|ME × 1.19)+(NPIPA8|121053|ME × 2.9)+(CTSB|82667|ME × 10.62)+(COX14|101733|ME × 1.2)+(IL1R
N|95654|ME × 0.82)+(CNOT10|63822|ME × − 2.44)+(UBR2|127390|ME × − 3.37)

2.355 (1.763–3.145) 0.643

RI (ABCC5|67820|RI × − 0.71)+(KAT8|36242|RI × − 2.81)+(RBMX|90220|RI × − 1.03)+(CYHR1|85619|RI × − 0.87)+ 
(SALL2|26605|RI × − 3.1)+(DHRS12|25952|RI × − 2.38)+(LAMTOR5|4114|RI × − 0.93)+(NAP1L1|23474|RI × − 
1.73)

2.274 (1.711–3.021) 0.729

ALL (RHOT1|40176|ES × − 2.85)+(SH3KBP1|88642|AP × − 1.07)+(AGTRAP|670|AA × − 1.28)+(SH3KBP1|88643|AP × 
0.59)+(PACS2|29633|AP × − 2.14)+(RBPMS|83289|AT × 2.17)+(B3GNTL1|44424|AP × 0.68)+(MOBP|64191|AT 
× − 1.18)+(NPHP3|66813|ES × 0.67)+(ABCC5|67820|RI × − 1.01)+(FKTN|87134|ES × − 2.54)+(FKBP8|48446|A
A × − 6.71)

3.473 (2.572–4.689) 0.743
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indicated that AS genes were involved in biological pro-
cesses such as autophagy and RNA splicing (Fig. 7b). In 
the KEGG analysis, genes corresponding to the progno-
sis-associated AS events were mainly enriched in cancer-
related pathways, for instance, “autophagy”, “response to 
oxidative stress”, and “RNA splicing” (Fig. 7c).

Discussion
AS is responsible for the modification of mRNA iso-
forms, and it plays an indispensable role in produc-
ing various mRNA and protein isoforms with multiple 
functions [19]. Accumulating evidence has revealed that 
aberrant AS is implicated in the oncogenic processes of 
multiple malignancies [20, 21]. Therefore, investigation of 
AS mechanisms deepens our understanding of posttran-
scriptional regulatory patterns.

In recent years, next-generation sequencing technology 
has extensively promoted research at a whole-genome 
scale. RNA sequencing data from TCGA database have 
enabled the studies of AS patterns in various cancer types 
[22–24]. By using the SpliceSeq database, several stud-
ies explored alternative splicing profiles and constructed 
prognostic signatures for many types of cancers, includ-
ing colorectal cancer [22], prostate adenocarcinoma [25], 
esophageal carcinoma [26], hepatocellular carcinoma 
[27, 28], kidney renal clear cell carcinoma [29], and soft 
tissue sarcoma [30]. However, a comprehensive study 
regarding aberrant AS events in HNSCC is deficient. Li 

et  al. carried out a systemic bioinformatic analysis on 
the genome-wide AS events of clinical HNSCC sam-
ples from the TCGA database [31]. However, this study 
failed to identify AS events as independent prognostic 
predictors, and the authors did not explore the interac-
tion between SFs and AS events. Another genome-wide 
analysis of the AS landscape in HNSC revealed novel AS 
events related to carcinogenesis and immune microenvi-
ronment, with implications for prognosis and therapeutic 
responses [32]. This study revealed role of each individ-
ual AS events and genes in HNSCC immune microenvi-
ronment, instead of constructing of comprehensive AS 
prognostic signature or regulatory network. In the pre-
sent study, a total of 27,611 AS events in 15,873 mRNAs 
were observed in HNSCC, indicating that AS events 
are common in the development of HNSCC. Results 
of the survival analysis suggest that 3433 AS events in 
2624 genes are associated with the OS of patients with 
HNSCC. We constructed seven splicing prognostic sig-
natures based on seven types of prognostic AS events. 
Additionally, a comprehensive prognostic signature was 
developed by integrating all seven types of AS. Genes 
and AS events enrolled in the comprehensive prognos-
tic signature included RHOT1 (ES) [33], SH3KBP1 (AP) 
[34], AGTRAP (AA) [35], PACS2 (AP) [36], RBPMS 
(AT) [37], B3GNTL1 (AP) [38], MOBP (AT), NPHP3 
(ES), ABCC5 (RI) [39], FKTN (ES) and FKBP8 (AA) 
[40], many of which are known to play important roles 

a b c d

e f g h

Fig. 4  Kaplan-Meier curves of high risk (red) and low risk (blue) HNSCC patients according to eight prognostic signatures. a alternate acceptor, 
b alternate donor sites, c alternate promoters, d alternate terminators, e exon skips, f mutually exclusive exons, g retained introns, and h 
comprehensive signature
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in cancer biology. For instance, RHOT1 can regulate cell 
migration and proliferation by suppressing the expres-
sion of SMAD4 in pancreatic cancer [33]. PACS-2 as a 
phosphorylation-state dependent molecular switch that 

mediates either antiapoptotic or pro-apoptotic signaling 
[36]. Mourskaia et al. suggest that ABCC5 functions as a 
mediator of breast cancer skeletal metastasis [39]. FKBP8 

a b c

e f g

h i j

d

Fig. 5  a ROC curves of prognostic signatures for HNSCC. b Univariate Cox regression analysis of clinical features and prognostic signatures. c–j 
Multivariate analysis of clinicopathological features and eight prognostic signatures. c alternate acceptor, d alternate donor sites, e alternate 
promoters, f alternate terminators, g exon skips, h mutually exclusive exons, i retained introns, and j comprehensive signature

a b c d

e f g h

Fig. 6  The risk scores and distribution of survival time of eight signatures in patients with HNSCC. a alternate acceptor, b alternate donor sites, c 
alternate promoters, d alternate terminators, e exon skips, f mutually exclusive exons, g retained introns, and h comprehensive signature. Upper 
plot: risk score; Lower plot: survival time distribution
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is an endogenous inhibitor of mTOR, its degradation 
promotes tumor progression [40].

The AUC value of the comprehensive signature has 
reached 0.743, indicating that the prognostic biomarkers 
can be a useful tool to predict the prognosis of patients 

with HNSCC. These signatures could accurately distin-
guish between patients with HNSCC with distinct clini-
cal outcomes, which confirmed that these prognostic 
signatures could serve as ideal predictors. Moreover, 
an SF-AS network was constructed to provide further 

a

b

c

Fig. 7  a Prognostic SF-AS network in HNSCC. Red/blue line represents positively/negative correlation; red/blue ellipse represents risk/protective AS 
events; yellow ellipse represents splicing factors. b–c Bubble plot displayed the GO (b) and KEGG (c) analysis of genes with prognostic alternative 
splicing events
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insights into the regulatory mechanisms underlying AS 
in HNSCC. We found that DDX39B might act as core 
SFs because of their extensive correlation with AS events. 
Awasthi et al. found that increase in DDX39B enhances 
global translation and cell proliferation through upreg-
ulation of pre-ribosomal RNA, and dysregulation of 
DDX39B expression could lead to oncogenesis [41]. 
Nakata identified DDX39 as a potential drug target for 
the treatment of AR splice variant-positive prostate can-
cer. The authors reported that DDX39B and its paralog 
DDX39A regulated androgen receptor splice variant 
AR-V7 generation [42].

HPV infection status is a critical factor in the carcino-
genesis and progression of HNSCC. Therefore, we check 
the HPV status in the clinical data of TCGA-HNSC 
dataset as the reviewer suggested, and found that only 
89 out of 528 patients were tested for HPV status (nega-
tive = 67, positive = 22). Subsequently, HPV positive and 
negative samples were integrated to identify differentially 
expressed alternative splicing. However, we failed to find 
significantly different AS events between HPV positive 
and negative samples with the threshold of |log2FC| > 1 
and adj P Value < 0.05 (t-test). We think this is because 
the data of HPV status in most patients is absent, the dif-
ferential analysis cannot provide accurate results.

Conclusion
We identified prognostic AS events based on the data 
from TCGA database. The constructed prognostic AS 
signatures could effectively predict survival outcomes 
of patients with HNSCC. The constructed prognostic 
SF-AS regulatory network may reveal the mechanisms 
underlying AS in the carcinogenesis of HNSCC. This in-
depth analysis of AS in HNSCC may provide useful tools 
for prognosis prediction and clues for possible therapeu-
tic targets for future clinical applications.
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