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Abstract 

Cancer stem cells (CSCs) have been identified as a little population of cancer cells, which have features as the same as 
the cells normal stem cells. There is enough knowledge of the CSCs responsibility for metastasis, medicine resistance, 
and cancer outbreak. Therefore, CSCs control possibly provides an efficient treatment intervention inhibiting tumor 
growth and invasion. In spite of the significance of targeting CSCs in treating cancer, few study comprehensively 
explored the nature of oral CSCs. It has been showed that oral CSCs are able to contribute to oral cancer progression 
though activation/inhibition a sequences of cellular and molecular pathways (microRNA network, histone modifica-
tions and calcium regulation). Hence, more understanding about the properties of oral cancers and their behaviors 
will help us to develop new therapeutic platforms. Head and neck CSCs remain a viable and intriguing option for 
targeted therapy. Multiple investigations suggested the major contribution of the CSCs to the metastasis, tumorigen-
esis, and resistance to the new therapeutic regimes. Therefore, experts in the field are examining the encouraging 
targeted therapeutic choices. In spite of the advancements, there are not enough information in this area and thus a 
magic bullet for targeting and eliminating the CSCs deviated us. Hence, additional investigations on the combined 
therapies against the head and neck CSCs could offer considerable achievements. The present research is a review of 
the recent information on oral CSCs, and focused on current advancements in new signaling pathways contributed to 
their stemness regulation. Moreover, we highlighted various therapeutic approaches against oral CSCs.
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Introduction
It is widely accepted that the head and neck cancers 
involve above 650,000 people and 330,000 mortality each 
year throughout the world [1]. For example, the head and 
neck cancers involve 3% of the malignancy with ~ 53,000 
Americans, whose head and neck cancers developed 
every year and 10,800 who died due to this diseases in 
the United States [2]. Moreover, about 250,000 people 
(estimation showed 4% of the cancer occurrence) and 
63,500 deaths have been reported in Europe in 2012 [3]. 

In addition, the commonest malignancy has been consid-
ered to be the squamous cell carcinoma (SCC) and the 
respective variants.

According to a study in the field, diets, oral hygiene, 
carcinogen exposure, family history, infectious agents, 
as well as the pre-existing medical conditions contrib-
uted separately or jointly to the HNSCC progression. 
Among the mentioned cases, tobacco smoking has been 
completely shown as one of the predominant risk factors 
for HNSCC and such as risk had a correlation to dura-
tion and intensity of smoking. It has been also found 
that quitting the smoking reduced but did not overcome 
the risks of the cancer expansion [4]. In addition, envi-
ronmental exposure to the smoking of tobacco; that is, 
passive smoking apparently enhanced the risks of the 
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HNSCC progression even for people who had at all expe-
rienced active smoking [4].

Studies also showed the use of heavy alcohol as one 
of the independent risk factors for HN-SCC, especially 
for hypopharynx cancer [5]. Even though exposure to 
tobacco and use of alcohol involved in most HNSCCs 
occurring in larynx, hypopharynx, and oral cavity, their 
contribution to the oropharynx tumorigenesis was minor. 
On the other hand, authors approved the oncogenic HPV, 
specifically Type 16, as one of the causes in about 70% of 
the oropharyngeal cancers [6]. However, as the cigarette 
smoking declined in several regions worldwide, the HPV-
16 infection would be the greatest risk factor, shifted of 
HNSCC demographic towards younger patients with no 
experience of smoking or drinking. Actually, conven-
tional risk factors like exposure to alcohol and tobacco, 
had no contribution to the HPV-mediated carcinogenesis 
of oropharynx [6]. Put differently, HPV-related HNSCC 
showed a close correlation to the oral HPV infection and 
specific sexual positions, which facilitated iterative viral 
exposure, including the early age of the sexual debuts, 
the increased numbers of the life-time oral sexual and 
vaginal partners, recurrent oral-anal and oral-genital 
contacts, as well as rare application of the barrier in the 
course of sexual activities [7]. Even though researchers 
have enough data of the risk factors for the viral trans-
mission, they emphasize the ones related to the conse-
quent HPV-induced tumorigenesis. Moreover, authors 
suggested specific situations and behaviors, which 
altered the anti-tumor immunity, as the potent param-
eters affecting the viral persistence and tumor expansion. 
Long examined carefully as one of the potent sources of 
the DNA-damaging carcinogens. It has been shown that 
smoking marijuana could have higher relationship with 
progressing the HPV-positive HNSCCs for its immuno-
regulatroy impacts. Therefore, cannabinoids bound to 
CB2 receptor expressed on the B-cells, T-cells, NK-cells, 
dendritic cells, and macrophages in the humans’ tonsillar 
tissues. Hence, binding had been capable of suppressing 
the immune response, diminishing the host response to 
the viral pathogen, and attenuating antitumor activities 
[8–10]. Consequently, using the marijuana might influ-
ence each stage of the HPV-induced tumorigenesis from 
the time of infection initiation to the viral persistence, 
tumor induction, metastasis, and growth [11].

In terms of clinical examinations, organized lesions, 
including leukoplakia, which are histologically catego-
rized as the non-dysplastic or dysplastic leukoplakia, 
frequently come before head and neck cancer. Nonethe-
less, researchers characterized dysplastic leukoplakia as 
one of the oral pre-malignant lesions related to a possi-
bly development to cancers. Nonetheless, the researchers 
did not regard dysplastic leukoplakia as one of the precise 

predictors of the cancer risks [12, 13]. Several therapeutic 
approaches i.e., cell therapy, gene therapy, nanotechnol-
ogy-based therapies, utilization of natural compounds 
are used in the treatment of different cancers such as 
oral cancers [14–22]. In general, it is possible to man-
age initial-phase tumors via radiotherapy and surgery; 
however, successful therapy has an inverse proportionate 
to the extent of disease while treating. If chemotherapy 
and radiation treatment are combined, even though they 
affect the treatment of 97% of the initial-phase tumors, 
they just 33% affect the treatment of the advanced tumors 
[23].

Current research discovered and verified the patho-
physiologic contribution of CSCs that are also defined 
as tumor-initiating cells in the lengthy maintenance of 
cancers [24, 25]. It is widely accepted that CSCs are little 
sub-populations of tumor cells sharing several molecu-
lar similarities to the embryonic and normal adult stem 
cells. Some researchers separated CSCs from a variety of 
main tumors and created cancer cell lines such as OSCC 
[26–32]. These CSCs contribute crucially to the metasta-
sis, tumorigenicity, and recurrence. For this reason, they 
are regarded as the origin of the cancer. Hence, it is nec-
essary to increase knowledge of the molecular features 
and signaling paths specific to the oral CSCs in order to 
develop new targeted and efficient treatments for head 
and neck cancer.

Oral cancer stem cells isolation
The first reports of the presence of a CSC population has 
been related to the leukemic cells [33]. Positive and nega-
tive staining of the leukemic CSC population has been 
done with CD34 and CD38 (CD34+/CD38), respectively. 
They were able to develop leukemia while inoculating 
onto immunocom-promised mice. Afterwards, research-
ers have widely investigated the CSC populations, and 
substantially determined them in different solid tumors 
like the prostate, neck, pancreas, colon, head, brain, and 
breast [34–37]. The existence of sub-populations of oral 
CSCs has been primarily proposed by the study, which 
showed just a sub-population of OSCC cells is able to 
create a developing tumor mass [38]. Chiou et al. showed 
that a sub-population of OSCC cells extracted from the 
cultivated OSCC cell lines have features of the two stem 
cells and invasive malignant tumors such as self-reno-
vation, tumorigenic potentials, migratory abilities, and 
radio-resistance [26]. Multiple researchers published 
information of the successful separation of oral CSC 
populations via different markers [26–32, 39, 40]. Gener-
ally, cancer stem cells in OSCC are possibly separated via 
the cell-surface markers or the respective specific prac-
tical features [41–43]. Yet, any specific marker and CSC 
feature cannot particularly isolate oral CSCs populations 
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from OSCC cells, which demonstrate that CSC popu-
lations are heterogeneous [44, 45]. Hence, it would be 
crucial to identify further oral CSC markers and the 
respective cellular features.

Several research found differential expression of CD44 
on cancer stem cells against non-cancer stem cells in dif-
ferent solid tumors [46, 47]. These CD44+ CSC popula-
tions have been substantially isolated from the head and 
neck cancers via flow cytometry sorting through CD44 
antibody [34, 39, 40]. CD44 that is a multi-functional 
trans-membrane glycoprotein attaches to hyaluronan. 
It acts as an essential surface molecule, which is capa-
ble of interacting with different intrinsic and extrin-
sic signals for regulating several gene expressions. It is 
widely accepted that CD44+ cells may be fractionated 
from heterogeneous single-cell-prepared cancer cells 
via CD44 specific antibody labeling accompanied by the 
flow cytometry arrangement [48]. Such CD44+ cells have 
definite features of the stem cells such as self-renovation 
capacities, great tumorigenic potentials, metastasis, and 
resistance to medicine [46, 47]. If the CD44 is inhibited 
under experimental conditions, CD44+ CSCs decline 
their stemness features, which shows expressing CD44 is 
crucial to preserve the CSC phenotype [46].

Researchers applied ALDH1 activity as a cancer stem 
cell marker for a variety of cancers such as OSCC [49–
51]. It is a cytosolic iso-enzyme that has control over the 
oxidation of intra-cellular aldehydes. It involves in the 
retinol oxidation to retinoic acid in the initial stem cell 
differentiation [52]. One of the subpopulations of the 
cancer cells with improved CSC activities indicates great 
activities of ALDH1 (ALDH1HIGH or ALDH1+) in com-
parison with the non-CSC population, indicating that 
ALDH1+ cells are possibly an origin of CSCs [27, 53, 54]. 
In addition, ALDH1HIGH cancer cells have higher CSC 
traits than the ALDH1low cells [34, 51, 55]. Targeting 
ALDH1 largely inhibits several CSC features in human 
cancer cells [56]. Nonetheless, there is still controversy of 
the issue if CD44 or ALDH1 itself may be described as 
one of the unique molecules for identifying cancer stem 
cells or not. Therefore, researchers usually employed 
combining ALDH1 and CD44 as one of the markers to 
separate cancer stem cells in the head and neck cancer 
cells [34]. In fact, ALDH1HIGH/CD44+ cancer cells have 
higher CSC features than the ALDH1low/CD44− cancer 
cells [57, 58], illustrating that combining CSC markers 
can ameliorate CSC isolation specificity.

CSCs are able to improve themselves in the nonadher-
ent tumor spheres cultivated in ultra-low binding plates 
for supporting un-differentiated development of self-ren-
ovating stem cells [59]. Researchers found that the sphere 
medium would be in a serum-free situation comple-
mented with sufficient mitogens, including fundamental 

fibroblast development agent and epidermal growth fac-
tor (EGF) [60–62]. Plentifulness and growth kinetics of 
the tumor spheres represent self-renovation capacities in 
a certain cultivation of heterogeneous cancer cells, which 
indicates the contents of cancer stem cells. Therefore, 
researchers proposed that the tumor sphere-forming 
assay would be one of the popular techniques employed 
for isolating cancer stem cells from heterogeneous cancer 
cell populations via certain practical property of cancer 
stem cells. It should be noted that the tumor sphere-
forming cells detected in several major tumors and cul-
tured cancer cell lines showed higher features of cancer 
stem cells in comparison with the features of the relative 
adherent mono-layer cells, which have been regarded 
as non-CSCs [63]. It has been known that the tumor 
sphere-forming cells enjoy the increased tumorigenic-
ity, metastatic potentials, and medicine resistance as 
well as influential expression of stemness agents, which 
indicates their crucial contribution to pathogenezing and 
progressing cancers [64–69]. As such, tumor spheres 
extracted from OSCC cells show higher stem-like fea-
tures. They show greater volume of expression of pluri-
potent transcription agents such as Lin28, Nanog, KLF4, 
Oct4, and Sox2 in comparison to the respective adher-
ent mono-layer cells [26, 60, 70, 71]. Moreover, influen-
tial expression of CSC specific markers, including CD44 
and ALDH1 is expressed by oral tumor sphere-forming 
cells [60, 61, 72]. These would be largely tumorigenic as 
inoculated into nude mice and retain the respective self-
renovation capacities for several generations [72]. Table 1 
listed oral cancer stem cell markers.

Oral cancer stem cells and their signaling pathways
CSCs have the shared features with normal stem cells 
and several certain traits maintaining tumor growth 
and invasion. One of the primary features of CSCs is 
their self-renewal capacities, so that it apparently is one 
of the motives to begin and maintain tumorigenicity 
[24]. CSCs Self-renewal may be retained through mul-
tiple endogenous signaling paths, including Wnt, Bmp, 

Table 1  Oral cancer stem cell markers

Type of head and neck cancer Marker Refs

HNSCC cell lines ALDH [73]

HNSCC cell lines ZsGreen-cODC [74]

HNSCC cell lines CD10 [75]

Nasopharyngeal SCC cell lines Side population [76]

Laryngeal SCC cell lines CD133+ [77]

Glottic carcinoma biopsy CD29 [78]

Laryngeal SCC cell lines CD44+ [79]
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Pten, Notch, B cell–specific Moloney murine leukemia 
virus integration site 1 (Bmi1), TGF-β, and Hedgehog 
[80–86] that would be often actuated in human cancers 
[85, 87, 88]. A variety of signalling pathways and mol-
ecules could be involved in oral CSCs (Fig.  1). In the 
below, we have summarized some of them.

EMT
The CSCs unique feature is their metastatic potentials 
[24]. It has been found that EMT confers migratory 
potentials in cancer cells, and this procedure involves 
essentially in cancer metastasis. EMT is a procedure, 
through which epithelial cells would lose the respec-
tive properties for gaining mesenchymal phenotype, and 
therefore result in migrating and invading cells [89, 90]. 
During EMT, expressing the epithelium-specific protein; 

Fig. 1  The scheme representing the contribution of NF-κB and miRNA to OCSCs and regulation in the presence or absence of HPV16 infection and 
their interactions with additional gene products resulting in acceptable or the worst prognosis when given treatment
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for example, cytokeratins and E-cadherin would decline, 
while expressing mesenchymal-specific proteins such as 
vimentin, fibronectin, and N-Cad increase. Researchers 
determined the major transcription parameters for EMT 
such as TWIST, LEF-1, SNAIL, and overexpressing these 
factors enhanced EMT [91, 92]. Fractionated CSCs would 
over-express EMT transcription factors, and consider-
ably illustrate in  vivo metastatic potentials in compari-
son with the ones in un-fractionated cancer cells, which 
suggests that cancer stem cells would be a key origin of 
the metastatic cancer cell population [93]. Additionally, 
some studies indicated vital contributions of the zinc-
finger E-box–binding homeobox (Zeb) to maintain the 
features of the EMT and cancer stem cells [94]. Zeb1 and 
Zeb2 remarkably enhanced cancer stem cells in the head 
and neck in comparison with the ones in non-CSCs [95]. 
Zeb1 and Zeb2 knock-down in the head and neck cancer 
cells diminished CSC features, including emigration, self-
renovation capacities, and stemness markers expressions. 
Furthermore, their inhibition suppressed growing in vivo 
tumor and level of metastasis to remote locations [95]. 
Contrarily, co-overexpressing Zeb1 and Zeb2 elevated 
the emigration capability of the head and neck cancer 
cells [95].

ABC transporters
It is possible to enrich CSC population following chemo-
radiotherapy, which suggests that treatment leads to 
chemo-radioresistance, and or selectively improves the 
resistant cell population. Moreover, researchers docu-
mented different molecular determining factors for CSC 
chemo-radioresistance. However, they completely agreed 
that contribution of adenosine triphosphate (ATP)-
binding cassette (ABC) transporters would be the major 
actors in resisting treatment [96]. ABC transporters are 
the membrane transporters, which are capable of pump-
ing different little molecules (e.g., anti-cancer medicines) 
out of the cells at the expense of ATP hydrolysis, and 
thus led to the decreased intra-cellular medicine con-
centrations. Overexpressing ABC transporters is one of 
the popular occurrences found in multi-drug resistance 
in cancers [97]. The increased levels of ABC transport-
ers are expressed by normal cells. Overexpressing ABC 
transporters in cancer cells enhanced their chemo-radi-
oresistance [98]. Suppressing ABC transporters elevates 
anti-cancer medicine sensitiveness in cancer [99]. The 
research usually indicated that ABC transporters are 
actually major molecular determining factors of CSC 
chemo-radioresistance. Little populations of CSCs that 
have higher efflux capacities because of the higher ABC 
transporters are possibly isolated by treating the cells 
with Hoechst 33342 dye. Afterwards, they would be 
determined as a side population (SP). Several research 

revealed substantial separation of CSCs through the 
above method, and SP cells have higher capacitues for the 
CSC phenotype compared to the non-SP cells [100, 101]. 
Researchers also found the existence of SP cells in oral SP 
cells and oral cancer cells in comparison to the non-SP 
cells. They enhanced anti-cancer medicine resistance and 
the stem cell phenotype [100, 102, 103]. Hence, it is gen-
erally agreed that CSCs originally resist to chemo-radio-
therapy and involve in tumor relapse [25].

Inflammatory molecules
As the abnormal actuation and over-expression of the 
pro-inflammatory transcription agent, NF-κB contrib-
utes importantly to the regulation of different cellular 
procedures such as apoptosis, cell differentiation, sig-
nal transduction paths, and transformation, particularly 
over the development and metastasis process of multiple 
cancers such as oral cancer, unpaving the contribution 
of NF-κB proteins is of high importance [104]. Studies 
revealed that the NF-κB path would be actuated com-
monly in the cancer and cancer stem cells of various 
malignances such as leukemia, ovary, breast, glioblas-
toma, pancreatic, prostate, and colon cancers. Notably, 
its actuation induces radiotherapy and chemotherapy 
resistance [105–107]. Additionally, miRNAs are still the 
other significant modulatory molecule engaged during 
carcinogenesis. They also may function as oncogenes or 
tumor inhibitor genes so that they practically interplay 
with NF-κB and additional molecules. However, there 
is not enough knowledge of the NF-kB and miRNA in 
strong relationship with crucial risks, alcohol, tobacco, 
and the increased risks of HPV infections during oral 
carcinogenesis and its prognoses. Bano et  al. separated 
cancer stem-like SP cells from HPV ± ve OSCC cell lines, 
and the main tumors, forming orospheres, which experi-
enced expression of the stemness markers of Sox-2, Oct4, 
CD117, and CD133 [108]. The above cells exhibited dif-
ferentially up-regulated expressing NF-kB proteins and 
selective over-expression of viral oncogenes E6/E7 just 
in HPV16 +ve cells that established greater numbers of 
orospheres, over-expressed c-Rel, and selectively actu-
ated p65, which hetero-dimerized with p50 for showing 
greater DNA binding activities. Moreover, selective over-
expressed miR-21 and miR-155 and down-regulation of 
miR-34a have been revealed via HPV +ve cancer stem 
cells overexpressing HPV16 oncogene E6, which have 
control over maintaining stemness. Although HPV-ve 
CSCs exhibit only p50 homo-dimeriztion, weak differ-
entiations, and the worst prognoses, HPV infections 
involved participating p65 with de-regulated expression 
of certain miRNAs resulted in the detailed differentiation 
of tumors and more acceptable prognosis [108].
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Epigenetic regulators and oral cancer stem cells
Histone demethylases
Growing trend of documents show that various cancers 
such as oral cancers might be modulated in under epi-
genetic condition via histone demethylases or micro-
RNAs [15, 61, 109–118]. One of the groups of histone 
demethylases epigenetically regulated transcribing 
gene via removal of the histone methylation marks 
[119]. Accordingly, histone demethylases contrib-
ute crucially to the dominating gene transcription via 
modifying chromatin availability and transcriptional 
machinery. Convincing documents demonstrated that 
histone demethylases involve in different cellular pro-
cedures such as carcinogenesis, cell fate selection, and 
cell differentiation [120–122]. Currently, the increas-
ing trend of documents showed the essential contribu-
tion of histone demethylases such as JARID1, KDM4, 
LSD1, KDM6B, KDM6A, KMD3, KDM5, and Jumonji 
domain–consisting of protein 6 (JMJD6) to the cancer 
stem cell phenotype in several kinds of cancers [61, 
123–130].

JMJD6 has been represented as a new molecular 
modulator of OCSCs [61]. JMJD6 is one of the his-
tone arginine demethylases, which favorably eliminates 
methyl groups from dimethylated arginine 2 of histone 
3 (H3R2me2) and arginine 3 of histone 4 (H4R3me2) 
[131]. Thus, it leads to the dynamic modulation of tran-
scription. Moreover, JMJD6 modulates expressing gene 
via modulation of RNA splicing [132], which indicates 
that JMJD6 is a multi-faceted modulator of the gene 
expressions. A study showed that JMJD6 improves 
OSCC cancer stem cell populations; that is, tumor 
spheres and ALDH1HIGH cell population in compari-
son with the oral stem cancer cells non-cancer stem cell 
populations, including adherent mono-layer cells and 
ALDH1low cell population [61]. It has been shown that 
silencing JMJD6 caused losing self-renovation poten-
tial, migration capability, and chemoresistance in OSCC 
cells. Moreover, reports indicated that JMJD6 knock-
down in aggressive breast cancer cell lines declined cell 
emigration; however, its over-expression augmented 
cellular motility [133]. There is an interaction between 
JMJD6 and the splicing factor U2AF65. JMJD6 regu-
lates alternate splicing of vascular EGF (VEGF) recep-
tor [132]. Moreover, results demonstrated that alternate 
splicing of the VEGF receptor via U2AF65 enhanced 
endothelial cell emigration, and JMJD6 silencing in the 
endothelial cells caused lower emigration [134]. Hence, 
it is necessary to determine the impacts of JMJD6 on 
EMT. Contrarily, overexpressing JMJD6 increases both 
the CSC traits and the numbers of CSCs, which sug-
gests that JMJD6 is a prominent modulator of the can-
cer stem cell phenotype and genesis in OSCC.

MicroRNAs
The increased trend of investigations reflected the utili-
zation of the noncoding RNAs as the upstream regulator 
of the CSCs using diverse systems like EMT regulation 
[135, 136].

In fact, the non-coding RNAs represent the RNA, 
which would not encode a protein and thus may be cat-
egorized into multiple groups like the long non-coding 
RNAs (lncRNAs = above 200 nucleotides in length) and 
small non-coding RNAs (like microRNAs = approxi-
mately 19 to 22 nucleotides in length) [137–141]. Finally, 
it has been found that that microRNAs (miRNAs) regu-
lated translational effectiveness or stability of the targeted 
mRNAs via interactions with 3′-un-translated region 
(3′-UTR) of the respective targets [142–147]. These mol-
ecules exert their effects via targeting a variety of molec-
ular and cellular mechanisms [148–152]. Hence, miRNAs 
could be used as diagnostic, prognostic and therapeutic 
biomarkers in the treatment of different diseases such 
as stroke, cancer, cardiovascular diseases, infection dis-
eases, diabetes, and viral infections [153–163].

There is evidence of the significant down-regulation of 
miR-200c expression in the ALDH1+/CD44+ HNSCC 
with greater BMI1 expression level [164]. In addition, 
researchers demonstrated possible significant inhibi-
tion of malignant CSC features or BMI1 knock-down by 
upregulating the miR-200c could so that ZEB1 or ZEB2 
knockdown may enhance the miR-200c and suppress 
the BMI1 expressions in the ALDH1+/CD44+ HNSCC 
cells, which revealed that interactions between ZEB1/
ZEB2, BMI1, and miR-200c detected the fate of the can-
cer stemness in OSCC. Put differently, one of the popular 
tumor repressors called p53 could attach to the promoter 
area of the miR-200c at several locations [164]. Moreover, 
researchers approved that as a most repeatedly in-acti-
vated tumor inhibitor gene in HNSCC, losing the level of 
p53 expression correlated to metastatic ability of HNSCC 
[165, 166]. Finally, p53 mutation could contribute to 
down-stream transcriptional actuation of the miR-200c, 
which enhanced the CSC features.

In addition, some studies showed that ALDH1+CD44+ 
HNSCC cells expressed lower level of miR145 and thus 
inhibiting miR-145 has been adequate for driving the 
tumor-inducing characteristics in the ALDH1−CD44− 
HNSCC cells [167]. Therefore, the miR-145 could experi-
ence a direct binding to the ADAM17 and SOX9 through 
their 3′-UTR areas. Consequently, analysis showed that 
SOX9 directly modulated the ADAM17 promoter and 
this SOX9/ADAM17 axis determined miR-145-mediated 
CSC and EMT and features. As a result, that mediation 
of IL-6 and soluble IL-6 receptor secretion by the miR-
145-ADAM17 pathway has been revealed that could 
played a role in maintaining the CSC characteristics in 



Page 7 of 15Baniebrahimi et al. Cancer Cell Int          (2020) 20:113 	

a paracrine way. Curcumin is a natural compounds that 
could be used in the treatment of different diseases such 
as cancer [168–175]. The curcumin delivery attenuated 
the tumor expansion in  vivo by enhancing the miR-145 
promoter activities [167].

Calcium channels
Recently, authors proposed the significance of calcium 
signaling in modulating oral cancer stemness traits [60, 
176–178]. Ca2+ is one of the global second messengers 
regulating several physiological procedures, and disrup-
tion of its homeostasis would be observed during car-
cinogenesis, which results in the deregulation of the rapid 
growth of the cells, emigration, and apoptosis inhibition 
[179–182]. In a majority of the nonexcitable cells, it has 
been found that Ca2+ influx is strongly modulated via the 
store-operated Ca2+ entry (SOCE) path, and mediated 
by store-operated Ca2+ release-actuated Ca2+ (CRAC) 
channels [183]. Research revealed that Orai1 is one of 
the crucial pore subunits of CRAC channels [184–186]. 
When the cells stimulated, they experience releasing 
Ca2+ from the endoplasmic reticulum (ER), accompa-
nied by extra-cellular Ca2+ influx via SOCE. However, 
it should be stated that SOCE both re-fills the depleted 
ER Ca2+ stores and presents a direct Ca2+ signal for acti-
vating down-stream responses such the nuclear factor 
of the actuated T-cells (NFAT) signaling path [187, 188]. 
Researchers have widely examined Orai1 in immunology, 
because NFAT is a transcription agent with a vital role 
to activate, differentiate, and effector functions of T-cells 
[189]. Results indicated essential contribution of Orai1 to 
carcinogenesis [60, 177, 181, 190–197].

Higher expression of Orai1 is observed in cancer stem 
cells-improved cell population, including tumor spheres 
and ALDH1HIGH population of OSCC [60]. Moreover, 
Orai1 is capable of endowing non-tumorigenic immor-
talized oral epithelial cells with self-renovation, and con-
currently enhances transcribing pluripotent and cancer 
stem cells-associated agents such as Nanog, Sox2, KLF4, 
Oct4, Zeb1, Bmi1, and Zeb2. Studies also illustrated 
that ALDH1+ cancer stem cells population in non-tum-
origenic oral epithelial cells is increased by expressing 
ectopic Orai1, which enhances OSCC metastatic poten-
tials. This result agrees with the other publications rep-
resenting the significance of Orai1 in the emigration 
capability of invasive breast cancer cells [133]. Suppress-
ing Orai1 in numerous OSCC cell lines resulted in sup-
pressing CSC traits. Therefore, our hypothesis is that 
Orai1 would promote malignant development of OSCC 
via enrichment of the CSC phenotype. Yet, there is not 
enough knowledge of the basic mechanism, through 
which Orai1 modulates oral cancer stemness.

NFAT is a major down-stream objective of Orai1-
mediated Ca2+. It is de-phosphorylated via a protein 
phosphatase complex containing calcineurin and calmo-
dulin [198, 199]. researchers found important contribu-
tion of NFAT for maintaining CSCs in human cancers 
like melanoma pancreatic, colonic, and lung [200–203]. 
In addition, researchers showed that silencing NFATc3 in 
the cells having an overexpressed ectopic Orai1 in OSCC 
cells caused inhibiting CSC phenotype. Moreover, an 
NFAT chemical suppressor substantially suppressed can-
cer stemness in cells. Thus, NFATc3 would be necessary 
for the Orai1-induced CSC phenotype, indicating prac-
tical contribution of the Orai1/NFATc3 axis to the oral 
CSC modulation.

Ca2+ oscillation (spatio-temporal modulation calcium 
signaling) is more crucial compared to the overall modi-
fications in cytosolic Ca2+ concentrations in the area of 
tumor invading nature, progression, and cancer stemness 
[176–178]. Ca2+ oscillation is the final outcome of Orai1-
mediated SOCE so that Orai1 would be improved in 
OCSCs. As suppressing Orai1 channel performance led 
to the complete shut-down of Ca2+ oscillation in OSCC 
cells, Orai1-mediated Ca2+ oscillation might be a potent 
selective target to treat oral CSCs.

Other mechanisms
From among the above pathways, researchers largely 
confirmed contribution Bmi1 and Notch signaling in 
oral cancer stemness. Activating the Notch1 signaling 
pathway is necessary to maintain cancer stem cells, and 
demands attachment of its ligands Jagged 1 (JAG1), JAG 
2, and δ-like, accompanied by the proteolytic releases 
of the Notch intra-cellular domain (NICD), and activat-
ing NICD down-stream target genes [204]. We formerly 
stated that if the OSCC cells are exposed to the pro-
inflammatory cytokine TNFα in the long term, they aug-
ment self-renovation capacities and tumorigenicity that 
is related to the actuation of the Notch path [62]. It has 
been also found that Hes1 in TNFα-induced oral can-
cer stemness is the objective of the actuated Notch1 so 
that its knock-down inhibits self-renewing potential of 
TNFα-treated OSCC cells. Expression of Hes1 is usu-
ally performed in multiple un-differentiated cell kinds 
in the growing mouse embryo. It also contributes criti-
cally to maintain progenitor cell fate. Data obtained from 
the studies showed that Hes1-deficient mice exhibited 
pre-mature differentiation, subsequent lethality, and pro-
genitor cell depletion [205]. In total, the above results 
suggested that Notch1–Hes1 axis is one of the newly 
designed axes to regulate oral CSCs self-renewal.

Bmi1 that is one of members of the polycomb group 
transcription repressors involves in oral cancer [206, 
207]. Recently, researchers revealed the essential 
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contribution of Bmi1 to maintenance of the self-renewal 
capacities of oral CSCs [208, 209]. In addition, in a case 
of the use of the genetic lineage tracing, in vivo contribu-
tion of Bmi1 to regulate the stemness of oral cancer stem 
cells such as its self-renewal and tumorigenic potentials 
has been obviously illustrated [209].

Oral cancer stem cell therapy
Cancer therapy is very important aspect in the pub-
lic health field [210–212]. Many researchers developed 
a variety of therapeutic approaches such as immune 
cell therapy, stem cell therapy, gene therapy, nanotech-
nology-based therapy, and utilization of natural com-
pounds in the treatment of various cancers [213–219]. 
In this regards, several fields emphasize the identifica-
tion and specific targeting of the neck and neck CSCs 
(Table  2) [220]. However, the new therapeutic regimes 
carried considerable morbidities like defacement and 
functional modifications from surgical operations to the 
systemic toxicity caused by chemo-therapy as well as 
radiation-induced consequences due to radio-therapy. In 
addition, as a result of diverse innate systems, the CSCs 
frequently resisted to the conventional radiation and 
chemo-therapy. Such cells have been capable of surviving 
through treatment and repopulating the tumors with the 

chemo-radioresistant cells. thus, the specifically target-
ing head and neck CSCs provided a potent device of the 
ameliorated cancer outputs by demonstrating the organ 
conservation and declining the off-target toxicity [220].

As seen in the literature, CD44 is one of the well-
known exploration targets for the targeted therapies 
against CSCs. In fact, researchers utilized hyaluronic acid 
(with its selective binding to CD44) as one of the agents 
to deliver the directed treatments as opposed to the 
CD44 positive cells like the hyaluronic acid conjugated 
chemo-therapeutics as well as the hyaluronic acid guided 
NPS. Moreover, hyaluronic acid induced the interactions 
between CD44 and the stem cell transcription factors 
Nanog, Sox2, and Oct-4 [58]. Thus, additional investi-
gations should be performed for showing advantages of 
the hyaluronic acid targeting with any induction of more 
activation of the CSCs. Consequently, experts in the field 
explored the anti-CD133 treatments as the targeted head 
and neck anti-CSC therapies. One of the studies on the 
bacterial toxin (cyto-lethal distending toxin) to an anti-
human CD133 monoclonal antibody revealed inhibiting 
the cells proliferation while other investigation, which 
utilized a single-chain variable fragment targeting CD133 
demonstrated remarkable diminishment in the rapid 
growth of the tumors in the cells and rat models [221, 

Table 2  Cancer stem cell targeting in head and neck cancer

Therapeutic target Compound Mechanism Model References

Nanog Silencing Suppresses tumorigenic and CSCs-like abilities In vitro [226]

Grp78 Silencing Inhibits tumor growth and stem cell regulatory 
proteins i.e., slug and Oct-4

In vitro [225]

CD44 Silencing Decreases migration, EMT, and reduces the expres-
sion of snail, vimentin, N-cadherin and slug

In vitro [232]

Inhibiting translation elongation SVC112 Increases the progression of cell-cycle slows and 
delay DNA repair following radiation. Improves 
colony and sphere formation

In vitro [233]

Let-7d/CDC34 axis Niclosamide Induces cell cycle arrest in G1 phase In vitro, in vivo [234]

5T4 MEDI0641 Decreases the CSC fraction, and tumor regression In vivo [235]

cMET/FZD8 PF-2341066 Decreases tumor initiation, sphere formation, and 
metastatic spread

In vivo [236]

CD44v6 Anti-CD44v6 antibody 
BIWA-IRDye800CW and 
-Indium-111

Detection of tumor regions and invasive zones In vivo [237]

CD44 Radionuclide186Re-cmAb (U36) Dose-limiting myelotoxicity, reduction in tumor 
size

Human [238]

ALDH1 Alda-89, Aldi-6 In combination with cisplatin improves apoptosis 
and decreases tumor growth

In vitro, in vivo [239]

Porcupine (PORCN) (Wnt signaling) LGK974 High response in HNSCC with Notch loss of func-
tion mutation

In vitro [240]

FGF BGJ398 Reduces ALDHhighCD44high, sensitization to 
cisplatin

In vitro [241]

Bmi1/AP-1 PTC-209 Cisplatin plus PTC-209 potently eradicates 
Bmi1 + CSCs and suppresses progression of 
tumor

In vitro [209]
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222]. As a result, CD271 inhibited in the cell models for 
decreasing the formation of the tumors [223]. Finally, one 
of the encouraging options to treat this condition would 
be targeting the CSC surface markers and the best per-
formance in relation to the remaining treatments would 
be as a delivery mechanism.

Notably, one of the main today’s investigation fields is 
the addition of the novel agents or targeted treatment 
related to the standard cisplatin chemo-therapy. Moreo-
ver, salino-mycin with paclitaxel and cisplatin functioned 
for increasing apoptosis in the neck and neck CSCs [224]. 
Additionally, GRP78 has been considered to be one of 
the multi-functional protein contributed to the cell sur-
vival as well as resistance to chemo-therapy. Inhibiting 
the GRP78 would sensitize the head and neck CSCs for 
radiation and chemotherapy [225]. In this regard, Huang 
et al. revealed the greater sensitivity to cisplatin by small 
hairpin RNA knock-down of Nanog [226]. Furthermore, 
researchers indicated that CSCs had lower levels of ROS, 
assisting in the maintenance of the stem-like features and 
chemo-resistance. Finally, inhibiting the ROS scaveng-
ing proteins (SOD2 & Catalase) enhanced the ROS and 
the following enhancement in the sensitivity to cisplatin 
[227].

Experts in the field are growingly applying the epi-
dermal growth factor receptor (EGFR) inhibition (with 
cetuximab) in the advanced and recurring HNSCC 
therapeutic guidelines. The former investigations also 
suggested the potent contribution to the EGFR targeted 
treatment especially as opposed to the head and neck 
CSCs. However, in the naso-pharyngeal carcinomas, 
EGFR acted using CTNNB1 and AKT pathways for driv-
ing the CSC phenotypes [228]. Moreover, activating 
EGFR in the head and neck CSCs enhanced expressing 
the genes engaged in the CSC rapid growth or prolifera-
tion (OCT4, BMI1, CD44, NANOG) and CSCs treatment 
through inhibiting EGFR declined the tumor growth and 
augmented the sensitivity to cisplatin [228].

Greater abilities for the efflux cytotoxic agents have 
been considered as one of the main devices of CSC resist-
ance to chemo-therapy. Therefore, researchers examined 
the cellular efflux proteins as the potent targets to sen-
sitize the CSCs to the current chemo-therapy agents. 
Earlier research on the laryngeal cancer cell-lines dimin-
ished the CSC proportion by verapamil that is one of the 
inhibitors to the ABCG2 membrane transporter [229]. 
It is notable that suppressors to other members of ABC 
transporter family in case of application to the head and 
neck and CSC populations, enhanced sensitivity to the 
chemo-therapy [230]. Moreover, authors largely explored 
the enhanced CSC sensitivity to the radiation. However, 
today’s examinations target ATRA (a retinoid involved in 
cell terminal differentiation) and CHEK1/2 DNA damage 

repair genes in the head and neck CSCs. Such explora-
tions demonstrate greater responses to the radiation in 
the CSCs following the CHEK1/2 suppression and ATRA 
utilization [79]. Finally, inhibiting the SHH/MTOR/
RPS6KB1 pathways augmented radio-sensitivity to CSCs, 
reflecting the contribution of the above pathways and 
potent targetable choices to enhance the CSC radio-sen-
sitivity [231].

Conclusion
One of very important players in the initiation, and pro-
gression of cancer are CSCs. A variety of reports docu-
mented that these sub-populations of cancer cells are 
associated to different properties of cancer such as 
metastasis, tumorigenicity, and recurrence. Hence, CSCs 
are known as the root of the cancer. Moreover, targeting 
the CSCs would be one of the encouraging as well as eva-
sive treatment options, which aimed to enhance efficacy 
and specificity for eradicating the tumors and declining 
the systemic or off-target toxicity. Consequently, investi-
gations of the additional description and targeted treat-
ments towards the head and neck CSCs would be one of 
the active and fast growing fields. Given that CSCs exert 
their tumorigenesis roles via affecting on a sequencing of 
cellular and molecular targets and pathways (i.e., micro-
RNAs, histone modifications and calcium regulations). 
Therefore, more and better understanding of CSCs 
actions can provide unique opportunities to develop new 
therapeutic platforms for targeting CSCs in the treatment 
of various cancers.
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