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Abstract
Background  Type 2 diabetes mellitus (T2DM) increases the risk of coronary heart disease (CHD) by 2–4 fold, and is 
associated with endothelial dysfunction, dyslipidaemia, insulin resistance, and chronic hyperglycaemia. The aim of this 
investigation was to assess, by a multimarker mass spectrometry approach, the predictive role of circulating proteins 
as biomarkers of cardiovascular damage progression associated with diabetes mellitus.

Methods  The study considered 34 patients with both T2DM and CHD, 31 patients with T2DM and without CHD, 
and 30 patients without diabetes with a diagnosis of CHD. Plasma samples of subjects were analysed through a 
multiplexed targeted liquid chromatography mass spectrometry (LC-MS)-based assay, namely Multiple Reaction 
Monitoring (MRM), allowing the simultaneous detection of peptides derived from a protein of interest. Gene 
Ontology (GO) Analysis was employed to identify enriched GO terms in the biological process, molecular function, or 
cellular component categories. Non-parametric multivariate methods were used to classify samples from patients and 
evaluate the relevance of the analysed proteins’ panel.

Results  A total of 81 proteins were successfully quantified in the human plasma samples. Gene Ontology analysis 
assessed terms related to blood microparticles, extracellular exosomes and collagen-containing extracellular matrix. 
Preliminary evaluation using analysis of variance (ANOVA) of the differences in the proteomic profile among patient 
groups identified 13 out of the 81 proteins as significantly different. Multivariate analysis, including cluster analysis 
and principal component analysis, identified relevant grouping of the 13 proteins. The first main cluster comprises 
apolipoprotein C-III, apolipoprotein C-II, apolipoprotein A-IV, retinol-binding protein 4, lysozyme C and cystatin-C; 
the second one includes, albeit with sub-grouping, alpha 2 macroglobulin, afamin, kininogen 1, vitronectin, vitamin 
K-dependent protein S, complement factor B and mannan-binding lectin serine protease 2. Receiver operating 
characteristic (ROC) curves obtained with the 13 selected proteins using a nominal logistic regression indicated a 
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Introduction
Diabetes mellitus (DM), mainly type 2 diabetes mellitus 
(T2DM, which accounts for 90–95% of patients), is asso-
ciated with a 2–4-fold increase in the risk of coronary 
heart disease (CHD), that is the principal cause of mor-
bidity and mortality in developed countries [1]. DM is a 
predictor of poor prognosis following acute myocardial 
infarction (MI), congestive heart failure, and coronary 
revascularisation. The increased onset of atherosclero-
sis and atherothrombosis in patients affected by DM has 
been attributed to various factors, including endothe-
lial dysfunction, dyslipidaemia, chronic hyperglycaemia 
and insulin resistance. Additionally, free fatty acids and 
glycosylation end products [2] contribute to processes 
that lead to vascular damage, such as vasoconstriction, 
inflammation, and thrombosis.

Notably, Haffner et al. [3] showed that patients affected 
by diabetes without prior MI have a risk of CHD similar 
to non-diabetic patients with prior MI. As a result, the 
adult treatment panel of the National Cholesterol Educa-
tion Program recognized T2DM as a CHD risk equivalent 
[4]. However, whether DM constitutes a risk equivalent 
to prior MI for cardiovascular (CV) mortality remains 
controversial. Prolonged duration of DM (> 10–12 years) 
increases CHD mortality in male diabetic patients at a 
rate similar to CHD mortality in male patients without 
diabetes but with a history of prior MI [5].

Therefore, there is a need to find specific markers for 
detecting different levels of disease severity or progres-
sion of T2DM associated with CHD. To this purpose, 
shifting focus from conventional risk factors and single 
disease biomarkers to biomarker ‘signatures’, composed 
of multiple disease-relevant proteins, would consider-
ably enhance the management of complex diseases [6]. 
Indeed, employing a multimarker approach that assesses 
several biomarkers simultaneously, would enable the 
identification of multiple pathophysiological pathways, 
providing integrated information about the patient’s con-
dition. Moreover, a multimarker strategy has the poten-
tial to enhance personalized patient care by identifying 
individuals at high risk of disease progression, thus facili-
tating stratification and preventive measures.

Over the past decade, technological advancements 
have introduced novel tools for the discovery and clinical 

implementation of prognostic, predictive, and diagnostic 
biomarkers for both CHD and DM. In this context, mass 
spectrometry (MS) has offered new approaches for the 
simultaneous quantitation of multiple protein biomark-
ers. The selected reaction monitoring (SRM)/multiple 
reaction monitoring (MRM) approach used in tandem 
MS on a triple quadrupole mass spectrometer, enables 
the simultaneous evaluation of peptides, derived from 
a protein of interest, with a high level of specificity and 
sensitivity [7]. The aim of this research was to assess, 
based on the above indicated innovative proteomic 
approach coupled to multivariate statistical analysis, the 
potential predictive role of multiple circulating proteins 
as biomarkers for the progression of cardiovascular dam-
age associated with T2DM.

Methods
Patient recruitment
The study included 34 patients with both T2DM and 
CHD (group DC), 31 patients with T2DM without CHD 
(group DN) and 30 patients without diabetes but with a 
diagnosis of CHD (group NC), attending U.O.C. of Dia-
betology and Dietetics of Ulss 6 Euganea, Padova (Italy).

Patients affected by diabetes followed an isocaloric 
Mediterranean-style diet and received individualized 
hypoglycemic therapy. CHD was defined according to 
standard criteria and consulting anamnestic data from 
electronic medical and hospital records. Additionally, 
90% of CHD patients were taking antihypertensive drugs. 
Subjects’ characteristics are shown in Table S1.

Sample preparation
Blood samples were collected in citrate tubes (0.129 
mmol/L) and plasma was immediately separated by 
centrifugation at 1500×g for 15 min at 4  °C. The plasma 
was then divided into aliquots, and frozen at -80 °C until 
analysis. Plasma samples were digested using the Protein-
Works™ eXpress Digest kit (Waters Corporation, Milford, 
MA, USA) according to the manufacturer’s instructions 
and as previously described [8]. Briefly, 35 μL of plasma 
were mixed with 12 μL of 200 μg/mL Intact mAb Mass 
Check Standard (Waters Corporation), used as an inter-
nal LC-MS standard for MS optimization and perfor-
mance testing, and then diluted to a total volume of 120 

significant overall distinction (p < 0.001) among the three groups of subjects, with area under the ROC curve (AUC) 
ranging 0.91–0.97, and sensitivity and specificity ranging from 85 to 100%.

Conclusions  Targeted mass spectrometry approach indicated 13 multiple circulating proteins as possible biomarkers 
of cardiovascular damage progression associated with T2DM, with excellent classification results in terms of sensitivity 
and specificity.
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μL using the digestion buffer provided in the kit. The 
resulting sample was added to a dried denaturant, placed 
into the dry block heater at 80 °C for 10 min. It was sub-
sequently reduced and alkylated, digested with 30 μL of 
trypsin solution and placed into the dry block heater at 
45 °C for 2 h. The trypsin inactivation agent was added to 
the sample and the supernatant was recovered by centrif-
ugation and stored at − 80  °C for further clean-up using 
solid phase extraction (SPE). Protein digest clean-up was 
performed according to the ProteinWorks™ μElution SPE 
Clean-up protocol (Waters Corporation, Milford, MA, 
USA) using the Oasis μElution MCX plate. Before MS 
analysis, the purified plasma samples were combined 
with a mixture of stable isotope-labeled internal stan-
dards (SIS) for quantitation of a total of 125 proteins 
(peptides are reported in Table S2), provided with the 
Peptiquant Plus Human Plasma Proteomics Kit (Human 
BAK-125, Cambridge Isotope Laboratories, Inc., Tewks-
bury, MA, USA).

Liquid chromatography mass spectrometry (LC-MS) 
analysis
Two microliters of each sample, containing a SIS mix 1.6x 
the lowest point on the curve (LPOC) for each protein, 
were injected into a Xevo TQ-S micro triple quadrupole 
mass spectrometer coupled to a Waters ACQUITY ultra-
performance liquid chromatography (UPLC) M-Class 
system through an ionKey source (Waters Corpora-
tion, Milford, MA, USA). The instrument was operated 
in positive ion mode with unit resolution. The capillary 
voltage was set at 3.80  kV with the source temperature 
at 120 °C. After an isocratic trapping for 1 min at a flow 
rate of 30 μL/min with 99.5% solution A (99.9% LC-MS-
grade water with 0.1% formic acid) and 0.5% solution B 
(99.9% LC-MS-grade acetonitrile with 0.1% formic acid) 
using an ACQUITY UPLC M-Class Symmetry C18 Trap 
Column, 100 Å, 5  μm, 300  μm × 50  mm (Waters Cor-
poration, Milford, MA, USA), an iKey Peptide HSS T3 
column, 100 Å 1.8 μm, 150 μm × 100 mm (Waters Cor-
poration, Milford, MA, USA) was employed for peptide 
separation. The flow rate was set to 3 μL/min, and the 
column temperature was maintained at 60  °C. A gradi-
ent of solvent A and solvent B was applied with a total 
run time of 25  min as follows: 0–2.5  min at 2% B; 2.5–
17.5  min with linear increase from 2 to 90% B; 17.5–
19.5 min at 90% B; 20–25 min at 2% B. The analysis was 
conducted in duplicate. Transition and collision energy 
optimization were performed using Skyline software 
(version 4.2). The peptides and transitions of the multi-
marker 125-protein panel are reported in Table S2. A 
scheduled method based on peptide retention time was 
implemented to maintain the dwell time between 0.007 
and 0.066  s. A pool of plasma sample was analyzed for 
quality controls throughout the run, and a coefficient of 

variation below 20% was considered acceptable (Table 
S3). A standard curve 0.04x–16x was run to test the 
linearity of the response for all the peptides using an 
increasing concentration of light peptides with a fixed 
amount of SIS (1.6x) in a digested synthetic serum. The 
standard data were analyzed with Skyline software using 
weighted linear regression with a weighting factor of 1/x 
and the accuracy of each standard point was evaluated. 
Moreover, the quality was further assessed by manually 
inspecting each peak in the data set using Skyline soft-
ware and considering the relative dot product obtained 
by comparing transition distribution in light and heavy 
peptides. Peptide quantity is expressed as the ratio of the 
integrated area of the endogenous peptide to the area of 
the corresponding SIS calculated using Skyline. Missing 
values were handled as the default method in multivari-
ate analysis of chemometric data, which replaces missing 
and zero values with a small value (the half of the mini-
mum positive values in the original data) assuming to be 
the detection limit.

Gene ontology analysis
The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING 10.5) database [9] was employed to 
identify enriched Gene Ontology (GO) terms in the 
biological process, molecular function, or cellular com-
ponent categories, as previously described [10]. The 
enrichment function of STRING, which calculates an 
enrichment p value based on a hypergeometric test 
according to the method of Benjamini and Hochberg for 
multiple testing correction (p value cut-off < 0.05), was 
used.

Statistical analysis
The statistical analysis was performed using JMP® Ver-
sion Pro 17 software for Windows (SAS Institute Inc, 
Cary, NC, USA) and MetaboAnalyst 5.0 [11]. To assess 
the statistical differences among groups, a preliminary 
parametric one-way analysis of variance (ANOVA) fol-
lowed by post-hoc analysis with Fisher’s least signifi-
cant difference (LSD) method were used. Fishers’s LSD 
method was chosen in order to preserve the experiment-
wise type I error rate at the nominal level of significance 
and avoid exclusion of potentially interesting proteins 
from the initial protein panel. Differences were consid-
ered statistically significant when p < 0.05. Subsequently, 
several non-parametric multivariate methods were used, 
both unsupervised and supervised, each one providing 
additional integrated information, in order to classify 
samples from patients and evaluate the relevance of the 
analysed proteins’ panel, as hereafter indicated. The first 
classification algorithm was principal component analy-
sis (PCA) [12, 13], an unsupervised method useful to 
identify the directions that best explain the variance in a 
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complex data set, providing a summary based on fewer 
variables (scores) that represent the weighted average of 
the original variables, whose profiles are the loadings. 
The loading plot indicates the correlations between dif-
ferent variables; when the angle between eigenvectors is 
close to zero, the variables are positively correlated, while 
angles of 90° indicate no correlation and angles near 180° 
indicate negative correlations. As further approach, par-
tial least squares-discriminant analysis (PLS-DA) was 
used [14], which consists in a supervised method based 
on multivariate regression technique to extract, with lin-
ear combination of the original variables, the informa-
tion able to predict a class membership; PLS-DA also 
yields the variable importance in projection (VIP), that 
is a weighted sum of squares of the loadings, consider-
ing the amount of explained variation in each dimension, 
that indicates the feature importance. The sparse partial 
least squares-discriminant analysis (sPLS-DA) was uti-
lized to reduce the number of variables and obtain an 
interpretable model in a single procedure, with strong 
predictive performance [15]. Agglomerative hierarchi-
cal cluster analysis (AHC), a non-parametric statistical 
approach based on dissimilarities of objects, was used to 
obtain data grouping displayed as dendrograms or heat-
maps [16]; the computation considered Euclidean dis-
tance measure, with Ward’s linkage method clustering 
algorithm, which minimizes the sum of squares between 
clusters. Additional information for data classification 
was obtained with random forest method, a supervised 
learning algorithm for high dimensional data analysis 
which uses an ensemble of classification trees, originated 
by random feature selection from a bootstrap sample at 
each branch [17].

Receiver operating characteristic (ROC) curves were 
calculated to predict the ability of the selected proteins 
to classify subjects’ groups. ROC analysis was based on 
a nominal multivariable logistic regression considering 
the selected panel of proteins as potential predictors. The 
area under the ROC curve (AUC) indicated the model 
goodness of fit; a value of 1 indicates a perfect fit while 
a value near 0.5 suggests that the model cannot discrimi-
nate among groups. Predicted responses were calculated 
at optimal cut points for sensitivity (the proportion of 
true positives) and specificity (the proportion of true 
negatives) estimation.

Results
Clinical and metabolic parameters in the three groups 
of subjects are presented in Table S1. Full information 
regarding patients’ cohort has been previously published 
[2]. T2DM patients (Group DN) had significantly higher 
values of fasting plasma glucose (FPG) and glycosylated 
hemoglobin (HbA1c) compared to non-diabetic patients 
with CHD (Group NC). No significant differences were 

found regarding the LDL cholesterol between diabetic 
and non-diabetic patients with CHD (DC vs. NC groups).

Plasma samples from the subjects were analysed using 
a multiplexed targeted liquid chromatography mass spec-
trometry (LC-MS)-based assay, namely multiple reaction 
monitoring (MRM), to quantitatively determine a panel 
of proteins with potential roles in cardiovascular dis-
eases (Table S2). The development of the MRM method 
was performed by adding stable isotope-labeled internal 
standards (SIS) to a pool of plasma samples, enabling the 
creation of a scheduled method to measure a total of 118 
peptides corresponding to 118 proteins. Out of these, 81 
proteins (Table S4; since the UniProt short name is not 
always available nor shorter than the full name, the table 
presents the abbreviated names/acronyms used in the 
present study, in order to ensure adequate display in the 
graphs) were successfully quantified in the human plasma 
samples. Peptides that were undetectable or lacked a lin-
ear response in the standard curve were excluded. The 81 
considered proteins included members of lipoproteins, 
coagulation factors, complement system, as well as trans-
port and signalling proteins. The distribution profile of 
these proteins in all subjects is presented in Fig. 1.

A preliminary evaluation of the differences in the pro-
teomic profile among patient groups was obtained with 
ANOVA. Thirteen of the 81 proteins analysed were found 
to be significantly different; Table  1 reports the statisti-
cal details, together with the between-group differences 
detected with Fisher’s LSD test. Figure 2 shows the distri-
bution of significant data in the three groups of subjects.

The GO analysis, specifically related to the cellu-
lar component term revealed the enrichment of sev-
eral GO terms (Fig.  3 and Table S5). Notably, there 
was enrichment in terms associated with blood mic-
roparticles (n = 6, p = 1.38e-07, i.e., VTN, AFM, KNG1, 
A2M, APOA4, PROS1), extracellular exosomes (n = 11, 
p = 1.20e-06, i.e., VTN, AFM, APOC3, LYZ, KNG1, A2M, 
APOA4, RBP4, PROS1, CST3, MASP2), and the colla-
gen-containing extracellular matrix (n = 6, p = 3.73e-05, 
i.e. VTN, APOC3, KNG1, A2M, APOA4, CST3). Fur-
thermore, the GO analysis related to the biological pro-
cess term revealed the enrichment of GO terms related 
to chylomicron remodeling and assembly (i.e. APOC3, 
APOA4) (Fig. 3 and Table S6).

To assess the combined discriminatory ability of the 
selected proteins across all the three groups of patients, 
several multivariate approaches were undertaken. An 
unsupervised analysis using PCA did not show a net dis-
tinction of the groups (Fig. 4, panel A). The scores plot 
displayed overlapping clusters, with the DC group exhib-
iting the greatest dispersion. The supervised approaches 
provided by PLS-DA (Fig.  4, panel B) and sPLS-DA 
(Fig.  4, panel C), which can predict the class member-
ship, provided results consistent with PCA. Although 
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Fig. 1  Box plot of the distribution of the 81 proteins analysed. The edges of the boxes indicate the 25th and 75th quantiles, including the middle 50% of 
the data; whiskers indicate the furthest points within 1.5 x IQR from the box. IQR is the interquartile range, defined as the difference between the 75th and 
25th percentiles. For graphical purpose, the full names of the proteins have been abbreviated, as reported in Table S4. Protein level in y-axis is expressed 
as a normalized value (N.V.) on the basis of internal standard
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Table 1  Significant features at ANOVA presenting the 13 proteins potentially of interest as discriminant among groups. ANOVA was 
followed by post-hoc analysis with Fisher’s least significant difference method (Fisher’s LSD) in order to detect the paired significant 
comparisons. See also Fig. 2 for graphical display. UniProt Accession Number is the protein stable identifier according to https://www.
uniprot.org/
Protein UniProt Acces-

sion Number
ANOVA
F value

-log 10(p) ANOVA
p

Fisher’s LSD
paired comparisons

Apolipoprotein A-IV P06727 11.86 4.58 < 0.0001 DC-DN; DC-NC; DN-NC

Apolipoprotein C-III P02656 11.70 4.53 < 0.0001 DC-DN; DC-NC

Afamin P43652 11.25 4.37 < 0.0001 DN-DC; DC-NC; DN-NC

Vitamin K-dependent protein S P07225 8.79 3.49 0.0003 DC-NC; DN-NC

Lysozyme C P61626 8.06 3.23 0.0006 DC-DN; DC-NC

Kininogen-1 P01042 8.01 3.21 0.0006 DN-DC; DN-NC

Vitronectin P04004 7.77 3.12 0.0008 DC-NC; DN-NC

Retinol-binding protein 4 P02753 7.50 3.02 0.001 DC-DN; DC-NC

Cystatin C P01034 7.45 3.00 0.001 DC-DN; DC-NC

Alpha-2-macroglobulin P01023 6.95 2.81 0.0016 DC-DN; DC-NC

Apolipoprotein C-II P02655 5.44 2.23 0.0059 DC-DN; DC-NC

Complement factor B P00751 5.30 2.18 0.0066 DC-NC

Mannan-binding lectin serine protease 2 P01034 5.22 2.15 0.0071 DC-NC; DN-NC

Fig. 2  Box plot of the concentrations of the 13 significant proteins detected with ANOVA in the 3 groups of subjects (each group characteristics are 
indicated in Methods section). Refer to Table 1 for complete post-hoc comparisons between groups. The edges of the boxes indicate the 25th and 75th 
quantiles, including the middle 50% of the data; whiskers indicate the furthest points within 1.5 x IQR from the box. The continuous horizontal line in each 
graph represents the overall arithmetic mean of the data set. For graphical purpose, the full names of the proteins have been abbreviated, as reported 
in Table S4. Protein concentration in y-axis is expressed as a normalized value (N.V.) on the basis of internal standard. Asterisks indicate paired significant 
differences with Fisher’s Least Significant Difference (LSD) test at the 0.05 level or less. * comparison DC vs. DN; † comparison DN vs. NC; ‡ comparison 
DC vs. NC
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sPLS-DA suggested a slightly improved separation of the 
DC group, the distribution remained mixed and over-
lapped with the other two groups. In addition, both PLS-
DA and sPLS-DA confirmed the proteins that were most 
effective at distinguishing among the groups (Figure S1 
panels A, B), a finding corroborated by the random for-
est supervised learning algorithm (Figure S1 panel C). 
Notably, a good agreement emerged between the features 
identified using ANOVA (parametric) and those identi-
fied through non-parametric procedures (Table S7).

Cluster analysis was also conducted using the 13 
selected proteins, as depicted in the comprehensive heat-
map shown in Fig.  5. Despite a not optimal separation 
of the three groups of subjects, confirming the results 
obtained from the other multivariate methods, an inter-
esting pattern of proteins emerged. A first main cluster 
comprises apolipoprotein C-III, apolipoprotein C-II, 
apolipoprotein A-IV, retinol-binding protein 4, lyso-
zyme C and cystatin-C; the second one includes, albeit 
with sub-grouping, the remaining proteins, i.e. alpha 2 
macroglobulin, afamin, kininogen 1, vitronectin, vitamin 
K-dependent protein S, complement factor B and man-
nan-binding lectin serine protease 2 (Fig. 5). For a general 
view, the heatmap showing the pattern of the 13 selected 

proteins without group cluster ordination is shown in 
Figure S2, while the overall grouping of the entire panel 
of 81 proteins as determined by cluster analysis is pre-
sented in Figure S3. Figure S2B illustrates the clustering 
results also including additional factors, such as age, gen-
der, lipid profile and glucose parameters, confirming the 
clustering of the selected panel of proteins. Additional 
information on the relative correlation among proteins 
derives from the angles between the vectors in the PCA 
loading plot of Fig. 6panel A, considering that when two 
vectors form a small angle, then the two corresponding 
variables are positively correlated, while when the vectors 
are placed at 90°, they are not likely correlated. For exam-
ple, the cluster comprising apolipoprotein A-IV, retinol-
binding protein 4, lysozyme C and cystatin C, previously 
identified through cluster analysis, also exhibits a close 
relationship here (Fig. 6panel B).

To evaluate the diagnostic performance of the 13 
selected proteins in distinguishing among the three 
groups of subjects, ROC curves were obtained follow-
ing a nominal logistic regression. Figure 7(upper panel) 
indicates a significant overall distinction (whole model 
test p < 0.001) among the three groups of subjects, with 
AUC values ranging from 0.91 to 0.97, confirming the 

Fig. 3  GO analysis of proteins. Enriched GO terms in the cellular component category are highlighted in different colors: yellow, extracellular exosome; 
violet, collagen-containing extracellular matrix; green, blood microparticle, and in the biological process: red and blue, chylomicron remodeling and as-
sembly. See Table S5 and S6 for details
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excellent goodness of fit for the model. The features 
that most contributed to the model are presented in 
Fig. 7(lower panel). ROC analysis was further extended 
to evaluate paired group comparison, as shown in Fig. 8. 
Notably, the performance of the model, which incorpo-
rates the 13 selected proteins to discriminate between 
different pathological conditions, was remarkably strong, 
as documented by the excellent estimated discriminating 
parameters of sensitivity and specificity (Table  2). Table 
S8 provides a comprehensive summary of the effects 

observed in the paired comparisons. A further evalu-
ation of the logistic nominal fitting procedure, exclud-
ing the features that did not result as significant in the 
regression with the 13-protein panel, did not improve the 
performance of the model, but conversely led to inferior 
specificity and sensitivity results (data not shown). This 
underscores the value of the comprehensive 13-protein 
model in optimizing the discriminating process.

Fig. 4  Scores plot between PCs, obtained on the 13 selected proteins with PCA (panel A), PLS-DA (panel B) and sPLS-DA (panel C). The explained vari-
ances for each component are shown in brackets
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Discussion
The present study allowed us to measure, by means of 
a targeted mass spectrometry approach based on mul-
tiple reaction monitoring (MRM), multiple circulating 

proteins as possible biomarkers of cardiovascular damage 
progression associated with T2DM. Multivariate statis-
tical evaluation of a panel of 81 simultaneously quanti-
fied plasma proteins permitted to identify 13 proteins 

Fig. 6  A) Loading plot from PCA on correlations obtained with the 13 selected proteins significant at ANOVA. B) Heatmap showing the mutual correla-
tion between the proteins

 

Fig. 5  Clustering result shown as heatmap (distance measure using Euclidean, and clustering algorithm using Ward method), obtained on the 13 se-
lected proteins significant at ANOVA. Heatmap color intensity is proportional to the parameter’s value (blue to red), as in the reported scale on the right 
of the figure
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Fig. 8  ROC analysis obtained with nominal logistic plot of the 13 selected proteins, according to paired comparisons, considering DN group or NC group 
as reference; the AUC for each respective curve is indicated in Table 2

 

Fig. 7  Upper panel: ROC analysis obtained with nominal logistic plot of the 13 selected proteins; the AUC for each respective curve is indicated. Lower 
panel: the table presents the effect summary with logworth and p value for each item. Whole model test was successfully accomplished with overall 
significance of p < 0.0001
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of interest that were able to differentiate among sub-
jects with diabetes mellitus, with or without CHD, and 
subjects with CHD but without diabetes. Gene Ontol-
ogy analysis permitted to assess, as potential source of 
the identified circulating markers, both cellular compo-
nent terms related to blood microparticles, extracellular 
exosomes and collagen-containing extracellular matrix, 
while under the biological process aspect, an enrich-
ment of chylomicron remodelling and assembly term was 
detected, all suggesting complex interesting links among 
the identified protein pattern expression. The various 
statistical approaches conducted on the analytical data 
permitted to demonstrate the discriminating ability of 
the identified proteins, which were able to provide excel-
lent classification results when taken as a whole panel, 
providing excellent ROC curve performances with a high 
degree of sensitivity and specificity.

Regarding the interrelationships suggested by the iden-
tified panel of proteins, it is possible to focus on their evi-
denced clustering behaviour, which helps to outline some 
specific patho-physiological aspects of the cardiovascu-
lar damage occurring with the progression of diabetic 
disease.

Lysozyme C, cystatin-C and retinol binding protein, 
which are the proteins grouped in one of the major clus-
ters derived from cluster analysis (Fig. 5), and confirmed 
by loading plot results in PCA analysis (Fig.  6), have 
previously been proposed as markers of autoimmune-
rheumatologic disorders [18]. These proteins probably 
may reflect a general reactivity of the organism, which 
in the subject affected by diabetes may drive to multior-
gan damage. Recent observations suggest that T2DM is 
characterized by the presence of chronic inflammatory 
reaction in response to elevated blood glucose levels, also 
boosted by mediators of inflammation released by adipo-
cytes and macrophages from adipose tissue [19]. It is not 
surprising that a sustained inflammatory state is a com-
mon pathogenetic factor for arterial diseases [20]; despite 

the traditionally well-documented alteration in lipopro-
tein metabolism, which causes retention of lipids in the 
intimal space of vessels, a low-grade chronic inflamma-
tion leads to attraction of cells of the immune system into 
the atherosclerotic plaque, accelerating atherosclerosis. 
The observation that in the present study the mean val-
ues of the above-mentioned proteins in DC subjects is 
higher than in DN patients (Fig. 2) supports the pathoge-
netic role in cardiovascular pathology development. Con-
versely, NC subjects already affected by cardiovascular 
disease, have a reduced level of the mentioned proteins; 
this reduction could be either related to a natural stabili-
zation of the disease or to the effects of pharmacological 
therapy.

In particular, cystatin C, a member of the cystatin 
superfamily of cysteine protease inhibitors, has been 
linked to immune responses to exogenous and endog-
enous antigens since its encoding gene is modulated 
by various cytokines during infection and inflamma-
tion conditions [21]. In addition, cystatin C has various 
immunomodulatory functions through the control of the 
activity of cysteine proteases. Serum cystatin C has been 
shown to be a risk factor for CAD after the observation 
that cystatin C independently predicted major cardiovas-
cular events, chronic kidney disease, and cardiovascular 
and all-cause mortality [22]. Animal studies have shown 
that cystatin C could interact with the inflammatory pro-
cess, leading to activation of cathepsins which induce 
degradation of collagen in the atheromatous plaque, with 
an increased risk of rupture [23]. Moreover, cystatin C 
has been associated with the severity of CAD and has 
been suggested to independently predict the presence 
of vascular disease in subjects affected by DM with pre-
served renal function [24].

The role of apolipoprotein A-IV, which in the analysis 
also localizes close to the above-described protein clus-
ter, deserves further attention. Apolipoprotein A-IV is 
considered a multifunctional protein with a protective 
role against atherosclerotic damage, as well as a modula-
tor of glucose and lipid homeostasis [25]. However, there 
are observations that correlate high levels of apolipopro-
tein A-IV with kidney dysfunction [26, 27], although with 
no still definite role in this disease [25]. Moreover, apoli-
poprotein A-IV has been proposed as an early diagnostic 
biomarker in diabetes conditions [28], since the protein 
has been found inversely associated with prediabetes, 
suggesting a protective role in the disease. Therefore, 
the meaning of this protein is enhanced by the fact that 
a glycated form of apolipoprotein A-IV has been dem-
onstrated to induce atherogenesis in patients affected by 
T2DM and with CHD [29]. The inclusion of the protein 
in a panel of potential markers of diabetes complications 
finds therefore a rational support.

Table 2  Performance of the model including the 13 selected 
proteins in discriminating the different pathological conditions in 
terms of sensitivity and specificity

NC vs. DN DC vs. DN DC vs. NC
AUC 0.95 1.00 0.94

Sensitivity, % 90 100 85

Specificity, % 97 100 90

PPV, % 96 100 91

NPV, % 91 100 84

FDR, % 4 0 9

Probability threshold 0.577 0.994 0.561
AUC: Area under the curve; Sensitivity: [True positives/(True positives + False 
negatives)]; Specificity: [True negatives/(True negatives + False Positives)]; 
PPV: positive predictive value or precision, calculated as [True positives/
(True positives + False positives)], or (1-FDR); NPV: negative predictive value, 
calculated as [True negatives/(True negatives + False negatives)]; FDR: False 
discovery rate, equivalent to [False positives/(False positives + True positives)]
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Apolipoprotein C-II and apolipoprotein C-III, found 
close to each other in our analysis (Figs. 5 and 6), high-
light the connection between lipid dysfunction and 
diabetes-related complications. These apolipoproteins, 
known for maintaining lipid balance and regulate triglyc-
eride hydrolysis through lipoprotein lipase, have been 
recently implicated in controlling the transfer between 
VLDL and HDL subfractions, possibly affecting cardio-
vascular risk [30]. A possible link with the behaviour 
of the complement factor B, located close to the above 
two proteins in the PCA loading plot, is provided by 
the observations that despite complement factor C3 is 
linked to increased hyperlipidemia, conditioning a more 
atherogenic profile, on the contrary, complement factor 
B is not [31]; therefore, a less atherogenic profile may 
be activated, influencing the progress of cardiovascular 
damage. A few decades ago, it has been found [32] that 
chromosome 19 contains both the gene APOC2 for apo-
lipoprotein C-II and the gene C3 for complement fac-
tor C3, delineating a possible common feature between 
the complement system and lipoprotein turnover. As a 
matter of fact, an increased level of complement factor 
C3 is correlated with serum cholesterol and triglycer-
ides levels [33], and the C3 system is activated by Factor 
B [34]. Moreover, among the pathogenetic roles of the 
substance, a study by Varghese et al. [35] demonstrated 
that complement factor B, together with retinol bind-
ing protein, could be urinary markers for the prediction 
of glomerular disease, as found in diabetic nephropathy. 
Regarding apolipoprotein C-III, the possible pathoge-
netic role in diabetes-related complications is highlighted 
by the finding that the total apolipoprotein C-III level is 
enhanced in a condition of insulin resistance as in T2DM 
[36, 37]. Apolipoprotein A-III is upregulated by glucose, 
and therefore it has been suggested as a new target for 
the treatment of insulin resistance, besides the control of 
dyslipidemia [38].

Among the panel of the 13 proteins detected, the sec-
ond major cluster identified in the present study by clus-
ter analysis and confirmed by PCA, comprises afamin, 
kininogen-1, mannan-binding lectin serine protease 2, 
vitamin K-dependent protein S and vitronectin (Figs.  5 
and 6). Afamin, first described as the fourth member of 
the human albumin gene family, is a glycoprotein similar 
to human albumin (55% amino acid sequence similarity) 
[39] mainly synthesised by the liver. The (patho-)physi-
ological functions of afamin are still largely unknown, but 
the results of a study performed in mice overexpressing 
the human afamin gene indicate a possible causal role of 
the protein in the development of T2DM [40]. Further, 
epidemiological studies on more than 5,000 subjects 
demonstrated that plasma afamin is a predictor for the 
prevalence and the incidence of metabolic syndrome [40]. 
This finding was substantiated in a pooled meta-analysis 

of more than 20,000 individuals from eight prospective 
cohort studies that demonstrated an association of afa-
min plasma levels with the prevalence and incidence of 
T2DM [41]. Afamin is also a specific binding protein for 
vitamin E which has been associated with various dis-
eases, among them obesity and T2DM [42]. Lastly, the 
urinary afamin to creatinine ratio has been proposed as 
a useful marker to predict patients with T2DM at high 
risk of nephropathy before the development of macroal-
buminuria or reduced kidney function [43]. However, the 
causality of afamin’s association with diabetes mellitus 
and possible underlying mechanisms have still to be elu-
cidated. Our data confirm the possible role of afamin in 
evaluating diabetes complications, being elevated in DN 
subjects, but reduced in both DC and NC subjects, indi-
cating that elevated levels could predict the future pro-
gression of diabetes-related cardiovascular disease.

We also found that mannan-binding lectin serine pro-
tease 2 (MASP-2) is increased in the DN and DC groups. 
It is involved in the complement system activation. Upon 
recognition of a specific ligand the mannose-binding 
lectin (MBL)-associated serine protease 1 (MASP-1) 
undergoes structural rearrangement, which initiates the 
pathway by activating a second MBL-associated serine 
protease (MASP-2). The active MASP-2 is able to cleave 
the complement proteins C4 and C4-bound C2, thereby 
generating a C3-convertase and initiating the comple-
ment cascade [44]. Beyond its beneficial antimicrobial 
role, however, the MBL system has been associated with 
increased autoreactivity during several diseases [44], 
including diabetes.

The cleavage of kininogen, a precursor of bradykinin, 
occurring by mannose binding lectin-associated serine 
proteases (MASP 1 and 2) activity, contributes to the 
pro-inflammatory effect [45], and MASP-2 can initiate 
the complement cascade. Again, a link of the inflamma-
tory system with a pathogenetic role in cardiovascular 
disease emerges also with these proteins here detected in 
the investigated groups, and confirmed by the findings by 
Hansen et al. [46] who suggested a role of mannose-bind-
ing lectins (MBL, which form multimolecular complexes 
with serine proteases [47]) as prognostic information on 
the diabetes-induced risk of mortality.

Vitamin K-dependent proteins (VKDPs), besides their 
role as clotting factors involved in the coagulation cas-
cade, can also participate in the process of vascular cal-
cification. Deposition of calcium phosphate in vessels is 
a common feature of diabetes complications [48], and 
the process of vascular smooth muscle transformation 
into osteocyte-like cells can be influenced through acti-
vation by several factors, among them inflammation, 
hypertension, and oxidized LDL [49, 50]. Matrix Gla pro-
tein (MGP) is an extracellular VKDP which inhibits vas-
cular calcification, and a deficiency in vitamin K might 



Page 13 of 15Piarulli et al. Cardiovascular Diabetology           (2024) 23:36 

deregulate its expression, conditioning vascular calcifica-
tion [50]. MGP, through binding to vitronectin, the latter 
being a protein able to inhibit apoptosis, can affect cel-
lular differentiation [51], therefore influencing vascular 
integrity. Protein S specifically, has been recognized to 
have anticoagulant activity, as well as a regulatory role in 
immune and vascular systems [52], supporting the pos-
sible role in modulating vascular health, and suggesting 
attention for the status of vitamin K in the subject, as a 
mechanism to ensure vascular functionality and integrity.

The strength of the present targeted mass spectrometry 
approach is the identification of circulating proteins as 
possible biomarkers of cardiovascular damage progres-
sion associated with T2DM, with excellent classification 
results in terms of sensitivity and specificity. The pres-
ent study has some limitations. The first is the relatively 
small number of participants; this derives from the fact 
that plasma of the patients came from a previous sam-
pling protocol related to our previous investigation [2] 
which had the character of a preliminary study, with no 
a priori power analysis. Another limitation comes from 
the fact that the included subjects are patients attend-
ing the local outpatient diabetes clinic, and therefore the 
sample is representative of a restricted geographical area. 
Moreover, we could not evaluate every possible lifestyle 
factor or comorbidity, and the observational structure 
of the study leaves the possibility of residual confound-
ing factors. Another limitation regards the selection of 
the significant proteins at the univariate analysis, condi-
tioning the fact that the model may not be robust, and 
more prone for overfitting. The selection was dictated by 
the preliminary evaluation of the entire 81-protein panel 
which did not provide a substantial distinction of the 
three groups of patients, as indicated for instance by clus-
ter analysis of Figure S3. Also, a complete evaluation on 
81-protein panels by PCA, PLS-DA and sPLS-DA (data 
not shown) again, did not provide useful patterns accord-
ing to the three groups of patients. This suggested that 
possibly most of the initial panel proteins were unable 
to differentiate among patients, and for this reason, the 
analysis was focused on the ANOVA significant data 
only. However, the following parametric analysis with 
multivariable logistic regression and ROC curve evalua-
tion suggested a promising data mining strategy for iden-
tifying possible disease markers, since the high specificity 
and sensitivity obtained. The significance obtained with 
the present data appears clear, although it deserves a con-
firmation with a larger sample size; an external validation 
was not possible at this stage, due to the limited number 
of observations, with the risk of over-extrapolating the 
performance of the model. All these aspects will be eval-
uated in a future more extensive experimental protocol.

Lastly, we recognise that our approach is not fully 
comprehensive as specific protein candidates have 

been measured. Considerable efforts are being lever-
aged year over year to discover and validate protein bio-
markers using MS-based quantitative approaches for 
enhanced disease monitoring, companion diagnostics, 
and improved patient outcomes. However, although hun-
dreds of MRM-based assays have been published, the 
information is dispersed throughout the literature, and 
protocols for the characterization of assay performances 
have not been standardized, making it difficult to evalu-
ate the quality of published assays and, by extension, the 
results of those assays. As a result, despite the widespread 
capability to perform MRM assays, the benefits of MRM 
have not yet been fully realized by the biological and clin-
ical research communities. For all these reasons, in this 
exploratory research, we used the optimized PeptiQuant 
Plus, with the biomarker assessment line designed for the 
precise and rapid quantitation of candidate disease mark-
ers (e.g., cardiovascular, cancer, etc.) that are suitable for 
biomarker discovery and verification studies, and that 
has been rigorously characterized according to the com-
plete set of CPTAC (Clinical Proteomic Tumor Analysis 
Consortium) guidelines.

As a concluding remark, the present investigation, 
thanks to the availability of a cutting-edge proteomic 
tool, followed by multivariate data analysis, permitted 
the identification of a detailed panel of plasma proteins, 
which can give useful links in order to outline the patho-
physiological history of cardiovascular complications in 
diabetes mellitus. The fact that DN patients, affected by 
diabetes but without CHD, have a short history of dia-
betes, here represented the optimal comparison term for 
catching the proteomic pattern before the onset of car-
diovascular complications, which occur within several 
years, as documented by the DC group. Further inves-
tigations will provide validation on the prognostic role 
of the single proteins suggested by the present study. At 
present, the identified proteins taken as a reference panel, 
thanks to their evidenced high specificity and sensitivity, 
may represent a starting point to offer a new biomarker 
tool for the diagnosis and follow-up of diabetes-related 
complications.
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on the right indicate the relative concentrations of the corresponding 
metabolite in each group under study. Variable Importance in Projection 
(VIP) is a weighted sum of squares of the PLS loadings taking into account 
the amount of explained variation in each dimension. Panel B: Plot show-
ing the variables selected by the sPLS-DA model for a given component. 
The variables are ranked by the absolute values of their loadings. Panel C: 
Significant features identified by Random Forest. The features are ranked 
by the mean decrease in classification accuracy when they are permuted. 
Table S7. Summary of the features of the 13 proteins identified by ANOVA, 
according to the different non-parametric employed statistical procedures. 
The relevance of the proteins is indicated with semi-quantitative approxi-
mate scoring. Figure S2. A) Clustering result shown as heatmap (distance 
measure using Euclidean, and clustering algorithm using Ward method), 
obtained on the 13 selected proteins significant at ANOVA; differently 
from Figure 5, no ordering of groups was here applied, to show the overall 
pattern of protein distribution among groups. Heatmap color intensity is 
proportional to the parameter’s value (blue to red), as in the reported scale 
on the right of the figure. B) Clustering result including also factors such 
as age, gender, lipid profile, and glucose parameters. Figure S3. Cluster-
ing result shown as heatmap (distance measure using Euclidean, and 
clustering algorithm using Ward method), obtained on the overall panel 
of 81 proteins. Table S8. Effect summary of nominal logistic plot for three 
paired comparisons between groups of subjects by using the 13 selected 
proteins. Logworth and p value for each item are presented. Whole model 
test was successfully accomplished in any cases with overall significance 
of p<0.0001.
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