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Abstract 

Background  The COVID-19 pandemic has escalated into a severe global public health crisis, with persistent sequelae 
observed in some patients post-discharge. However, metabolomic characterization of the reconvalescent remains 
unclear.

Methods  In this study, serum and urine samples from COVID-19 survivors (n = 16) and healthy subjects (n = 16) 
underwent testing via the non-targeted metabolomics approach using UPLC-MS/MS. Univariate and multivariate 
statistical analyses were conducted to delineate the separation between the two sample groups and identify differ-
entially expressed metabolites. By integrating random forest and cluster analysis, potential biomarkers were screened, 
and the differential metabolites were subsequently subjected to KEGG pathway enrichment analysis.

Results  Significant differences were observed in the serum and urine metabolic profiles between the two groups. 
In serum samples, 1187 metabolites were detected, with 874 identified as significant (457 up-regulated, 417 down-
regulated); in urine samples, 960 metabolites were detected, with 39 deemed significant (12 up-regulated, 27 down-
regulated). Eight potential biomarkers were identified, with KEGG analysis revealing significant enrichment in several 
metabolic pathways, including arginine biosynthesis.

Conclusions  This study offers an overview of the metabolic profiles in serum and urine of COVID-19 survivors, pro-
viding a reference for post-discharge monitoring and the prognosis of COVID-19 patients.
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Introduction
Coronavirus disease 2019 (COVID-19), characterized as 
a severe acute respiratory syndrome caused by SARS-
CoV-2, has rapidly spread, posing a significant global 
public health challenge [1]. In the first 3 months of 2020 
alone, over 2 million individuals were infected globally, 
resulting in 150,000 fatalities [2]. While the majority of 
research has concentrated on the epidemiology and clini-
cal diagnostics of COVID-19, there are reports of SARS-
CoV-2 PCR relapse in patients following two consecutive 
negative PCR tests [3]. Concurrently, concerns regarding 
the sequelae following acute COVID-19 recovery have 
intensified. A prospective follow-up study revealed that 
nearly half of the patients recovering from SARS-CoV-2 
infection continued to exhibit persistent symptoms and 
decreased lung function 2  months post-infection [4]. 
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Furthermore, a single-center longitudinal study indicated 
that clinical sequelae, encompassing cardiovascular, res-
piratory, and systemic symptoms, are prevalent among 
COVID-19 survivors [5]. Hence, research to determine 
the rehabilitation status of COVID-19 patients and to 
identify biomarkers is crucial.

This study utilized metabolomics to analyze patients 
recovering from COVID-19. Metabolomics is a power-
ful tool for qualitative and quantitative studies of small 
molecular metabolites in biological samples to under-
stand cell physiological and biochemical reactions after 
exogenous stimulation. Various research fields, including 
life science, disease diagnosis, drug research and devel-
opment, employ metabolomics [6].

Mass spectrometry detection enables the analysis of 
qualitative and quantitative information on thousands 
of molecules with high sensitivity, resolution, selectiv-
ity, specificity, and accuracy [7]. Recent studies applied 
metabolomics to identify COVID-19 biomarkers and 
search for therapeutic drug targets [8–10]. A cross-sec-
tional study of serum metabolomics using UPLC-MS/
MS showed differences in amino acids, carbohydrates, 
fatty acids, and glycerophospholipids among COVID-
19 patients with different severity levels [11]. Bruzzone 
et  al. observed abnormally elevated levels of ketone 
bodies (acetylacetate, 3-hydroxybutyrate, and acetone) 
and 2-hydroxybutyrate acid in response to SARS-CoV-2 
infection [12]. Previous studies have shown that, despite 
post-recovery from COVID-19, a considerable propor-
tionof survivors exhibit diffuse lung abnormalities and 
13% of patients displaydecreased eGFR during follow-
up after discharge [4, 13, 14]. Adittional studies have 
also suggested that survivors may be at risk of develop-
ing fibrosis [13, 15, 16]. Therefore, identifying differential 
metabolites between COVID-19 convalescent patients 
and healthy individuals is crucial for early intervention 
and accurate rehabilitation prognosis.

For the aim, this study applied non-targeted metabo-
lomics technology, specifically ultra-performance liquid 
chromatography–tandem mass spectrometry (UPLC-
MS/MS), to characterize the metabolic profiles of con-
valescent serum and urine in COVID-19 patients. 
Additionally, the study explored altered metabolic path-
ways to elucidate the underlying pathophysiology.

Methods
Study participants
A total of 32 participants were included in this prospec-
tive study. Specifically, serum samples from 16 COVID-
19 recovery patients were collected within 1  month 
post-discharge from the Changchun Infectious Dis-
ease Hospital, along with samples from 16 healthy con-
trols at the First Hospital of Jilin University’s physical 

examination center. After statistical analysis, there was no 
statistically significant difference between the two sample 
groups. Urine samples were simultaneously obtained for 
these subjects. Upon recruitment, all participants tested 
negative for SARS-CoV-2 nucleic acid via real-time poly-
merase chain reaction (RT-PCR). COVID-19 recovery 
patients (Case) were diagnosed and stratified at admis-
sion according to the New Coronavirus Pneumonia Pre-
vention and Control Program (7th edition) issued by the 
National Health Commission of China. Participants with 
underlying lung diseases were excluded. Serum and urine 
samples, along with laboratory findings from COVID-19 
recovery patients, were collected from the Changchun 
Infectious Disease Hospital. Patients met the manda-
tory discharge criteria: normal body temperature for over 
3  days, significantly improved respiratory symptoms, 
and negative results from two consecutive SARS-CoV-2 
RNA tests at least 24  h apart. Metabolomic profiling of 
all 64 samples (serum and urine) was conducted using 
ultra-performance liquid chromatography-tandem mass 
spectrometry (UPLC-MS/MS) to quantify identifiable 
metabolites. The study was reviewed and approved by the 
Ethics Committee of the First Hospital of Jilin University 
(AF-IRB-032-05). Written informed consent was wavied 
from the subject(s).

Non‑targeted UPLC–MS/MS analysis
Non-targeted metabolomic analysis was conducted by 
Calibra Lab at DIAN Diagnostics (Hangzhou, Zheji-
ang, China) on their CalOmics metabolomics platform. 
Samples were extracted using methanol in a ratio of 1:4. 
The mixtures were shaken for 3  min and precipitated 
by centrifugation at 4000 × g, 10  min at 20  °C. Four ali-
quots of 100 μL supernatant were transferred to sample 
plates and dried under blowing nitrogen, then re-dis-
solved in reconstitution solutions for sample injection 
into UPLC-MS/MS systems. The instruments for the 
four UPLC-MS/MS methods are ACQUITY 2D UPLC 
(Waters, Milford, MA, USA) plus Q Exactive (QE) hybrid 
Quadrupole-Orbitrap mass spectrometer (Thermo Fisher 
Scientific, San Jose, USA). QE mass spectrometer was 
operated at a mass resolution of 35,000, the scan range 
was 70–1000 m/z. In the first UPLC-MS/MS method, QE 
was operated in positive ESI mode and the UPLC column 
was C18 reverse-phase (UPLC BEH C18, 2.1 × 100  mm, 
1.7 um; Waters); the mobile solutions used in the gradi-
ent elution were water (A) and methanol (B) containing 
0.05% PFPA and 0.1% FA. In the second UPLC-MS/MS 
method, QE was operated in negative ESI mode, and the 
UPLC column was C18 reverse-phase (UPLC BEH C18, 
2.1 × 100 mm, 1.7 um; Waters), the mobile solutions used 
in the gradient elution were water (A) and methanol (B) 
containing 6.5 mM ammonium bicarbonate at pH 8. The 
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third UPLC-MS/MS method had the QE operated in ESI 
positive mode and the UPLC column was C18 reverse-
phase (UPLC BEH C18, 2.1 × 100  mm, 1.7 um; Waters), 
the mobile solutions were water (A) and methanol/ace-
tonitrile/water (B) contain 0.05% PFPA and 0.01% FA. 
In the fourth method, QE was operated in negative ESI 
mode, the UPLC column was HILIC (UPLC BEH Amide, 
2.1 × 150 mm, 1.7 um; Waters), and the mobile solutions 
were water (A) and acetonitrile (B) with 10 mM ammo-
nium formate.

Compound identification and quantification
After pre-processing of raw data and data quality control 
inspection, ion peaks were extracted using proprietary 
in-house IT hardware and software. Metabolites were 
identified by searching an in-house library generated 
from running reference standards commercially pur-
chased or obtained from other sources. Identification of 
metabolites in samples requires strict matching of three 
criteria between experimental data and library entry: 
narrow window retention index (RI), accurate mass with 
variation less than 10 ppm and MS/MS spectra with high 
forward and reverse searching scores. For the identified 
metabolite, we used a single asterisk symbol (*) to indi-
cate that the identification of this metabolite has not been 
validated by library data entries generated from running 
purified compound standards through our experimental 
platforms. But the identification was obtained through 
literature reports and searching other databases, which is 
also a very reliable identification. A double asterisk sym-
bol (**) indicates that the identification of this metabo-
lite has not been validated by corresponding standard 
samples, and the identification were obtained through 
literature reports and searching other databases, which 
is a relatively reliable identification. Peak area for each 
metabolite was calculated using area-under-the-curve.

Data normalization
Before statistical analysis, raw peak areas were normal-
ized to adjust for system fluctuation among different run 
days. The normalized peak areas were then log-trans-
formed (log2) to reduce data distribution skewness and 
be in approximate normal distribution (Gaussian distri-
bution). Missing values in peak area matrix were imputed 
by using the minimal detection value of a metabolite 
among all samples. All these analyses were conducted 
using MetaboAnalyst (version 5.0) [17].

Quality control of metabolome analysis
A blend of internal standards was added to each sam-
ple in order to assist with chromatographic peak align-
ment and monitor instrument stability. The variability of 
the instrument was assessed by calculating the median 

relative standard deviation (RSD) of all internal stand-
ards in each sample. The median RSD for this study 
is ≤ 5%, meeting our quality control criteria. Addition-
ally, extracted water samples were used as blanks, and 
extracted commercial plasma samples were employed to 
monitor instrument variation.

Pathway analysis
The pathway enrichment analysis was conducted using 
MetPA [18] based on KEGG database and Pathview [19]. 
Only significantly different metabolites with associated 
KEGG ID were included in this analysis. Significance 
analysis of pathway enrichment was completed by hyper-
geometric test.

Statistical analysis
All statistical analyses were performed with R soft-
ware (version 3.4.1). Significantly changed metabolites 
between case and control groups were found by paramet-
ric (student’s t-Test, ANOVA) or non-parametric (Wil-
cox’s rank test, Kruskal–Wallis, etc.) statistical methods. 
Multivariate analysis approach orthogonal partial least 
square discriminant analysis (OPLS-DA) and princi-
pal component analysis (PCA) were conducted using 
mixOmics (version 6.10.9) [20]. The random forest (RF) 
method was implemented in randomForest (version 4.6-
14) [21].

Results visualization were provided for the performed 
statistical analyses, including volcano plot in differen-
tial metabolite test, scatter plot with confidence ellipse 
in PCA, scatter plot with confidence ellipse and variable 
importance dot plot in OPLS-DA, and variable mean 
decrease accuracy dot plot in the model construction.

Results
Non‑targeted metabolomic analysis of serum and urine 
samples using UPLC‑MS/MS
Non-targeted analyses of metabolites in serum and urine 
samples from two patient groups (COVID-19 survivors 
and healthy controls) were conducted using a UPLC-
MS/MS system to identify metabolites that change in 
COVID-19 survivors.

Variables were selected based on the median RSD of 
internal standard signal fluctuations in QC samples, and 
metabolites with a median RSD < 5% underwent subse-
quent multivariate statistical analysis. In the UPLC-MS/
MS dataset, all identified metabolites, both in positive 
and negative ion modes, were combined and classified 
based on their chemical taxonomic features, as illustrated 
in Fig.  1a (serum) and Fig.  1b (urine). A total of 1187 
metabolites were detected in serum samples, and 960 
metabolites in urine samples, with the three most abun-
dant classes of metabolites in both types of samples being 
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lipids (43.3%, 19.27%), amino acids (21.15%, 29.58%), and 
xenobiotics (16.09%, 23.13%), respectively.

Prior to detailed analysis of specific metabolic 
changes, PCA and OPLS-DA models were employed 
to ascertain whether there were differences in meta-
bolic profiles between COVID-19 survivors (case) and 
the healthy individuals (control). In both PCA and 

OPLS-DA models, the two groups of serum samples 
did not exhibit a clear separation trend (Fig. 2a and b). 
However, compared to the PCA model (Fig.  2c), the 
OPLS-DA model demonstrated significant differences 
in the urinary metabolomic profiles between Case and 
Control, with good reproducibility within each group 
(Fig.  2d). Furthermore, the Q2 and R2 values from the 

Fig. 1  Proportion of identified metabolites in each chemical class. a Serum b Urine

Fig. 2  Plot of the PCA scores a Serum c Urine. Plot of the OPLS-DA scores b Serum d Urine
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OPLS-DA permutation test exceeded 0.5, indicating 
high explanatory and predictive power for categori-
cal variables. These results indicated differences in the 
urinary metabolomic profiles, although they didn’t pre-
clude differences in the serum metabolomic profiles 
between the two groups. However, differences in urine 
samples were more pronounced in PCA and OPLS-DA 
compared to serum samples.

Following initial observations of differences, both 
univariate and multivariate statistical methods were 
employed to identify distinct metabolites in the sam-
ples of the two groups. Metabolites were deemed sig-
nificantly different in this study if they had an adjusted 
P-value < 0.05, with log2FC > 1 (red) or log2FC < 1 (blue), 
resulting in 874 serum metabolites (457 upregulated, 417 
downregulated) and 39 urine metabolites (12 upregu-
lated, 27 downregulated), as shown in the volcano plots 
(Fig.  3a and b). Varian importance inprojection (VIP) 
scores were calculated for serum and urine metabo-
lites using the OPLS-DA model, ranking the top 30 
metabolites. The top five metabolites in blood (Fig.  3c) 
were identified as phenylacetylglycine, cis-4-decenoate 
(10:1n6), methylsuccinate, branched-chain, straight-
chain, or cyclopropyl 12:1 fatty acid**, and allantoic acid; 
in urine (Fig.  3d), they were cis-urocanate, carnitine 

of C10H1402(4)**, acetylhydroquinone sulfate, pseu-
doephedrine, and resveratrol sulfate(1).

The Random Forest model analyzed the top 50 metabo-
lites by importance in blood (Out-of-Bag, OOB error rate 
of 3.12%) and urine (OOB error rate of 6.25%) samples, 
identifying it as the strongest driver of overall meta-
bolic differences between the healthy individuals and 
COVID-19 survivors. Based on the literature and KEGG/
HMDB databases, metabolites were annotated to one of 
super pathways corresponding to their general metabolic 
processes. The most distinctive metabolites primarily 
originated from pathways. Including: Amino acids, Car-
bohydrates, Energy, Lipids, Nucleotides, Partially charac-
terized molecules, Peptides, Secondary metabolism, and 
Xenobiotics (Fig. 4a and b). Based on VIP scores greater 
than 2 and adjusted P-values less than 0.05, serum and 
urine metabolites were analyzed together, further identi-
fying 16 metabolites with significant differences (Table 1). 
A heatmap was used to display these significantly differ-
ent metabolites, showing that in the Case compared to 
the Control, 11 metabolites were upregulated and 5 were 
downregulated in urine samples (Fig.  4c). Combining 
Random Forest and cluster analysis results, eight metab-
olites, including 1-ribosyl-imidazoleacetate*, carboxy-
ethyl-GABA, cis-urocanate, glucuronide of C10H18O2 

Fig. 3  Fold-change plot showing of metabolism data between Case and Control a Serum b Urine; OPLS-DA VIP score charts. c Serum d Urine
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(2)**, N,N-dimethyl-5-aminovalerate, N1-methyladeno-
sine, pseudoephedrine, and resveratrol sulfate (1)*, were 
found to perfectly distinguish between the healthy indi-
viduals and COVID-19 survivors, considered potential 
biomarkers.

Metabolic pathway analysis
To explore metabolic pathways potentially implicated in 
COVID-19 survivors, metabolites with significant differ-
ences between the two groups were enriched, showcas-
ing the top 25 metabolic pathways in blood (Fig. 5a) and 
urine (Fig. 5b). Results indicated (Table 2) that 11 meta-
bolic pathways exhibited significant changes (FDR < 0.05) 
between the two groups, namely Alanine, aspartate and 
glutamate metabolism; Arginine and proline metabolism; 
Arginine biosynthesis; beta-Alanine metabolism; Biosyn-
thesis of unsaturated fatty acids; Butanoate metabolism; 
Glycine, serine and threonine metabolism; Histidine 
metabolism; Nicotinate and nicotinamide metabolism; 

Phenylalanine, tyrosine and tryptophan biosynthesis; 
Valine, leucine and isoleucine biosynthesis.

Discussion
Metabolomics research methodologies are straightfor-
ward, with UPLC-MS being the most commonly uti-
lized technique in metabolomics, widely applied in the 
screening for diagnostic biomarkers of various diseases. 
This study combines UPLC-MS detection methods with 
multivariate statistical analysis to investigate the metabo-
lomics of serum and urine in COVID-19 survivors and 
healthy individuals. The findings demonstrate differences 
in the serum and urine metabolomic profiles between 
the two groups, with 874 differential metabolites iden-
tified in serum and 39 in urine. Subsequently, a combi-
nation analysis of the top-ranked important serum and 
urine metabolites was conducted using a random forest 
model and cluster analysis to control confounding fac-
tors and enhance the reliability of the results. This results 

Fig. 4  Random forest model a Serum b Urine. Clustering heatmap of significant metabolism c 
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indicates that, despite recovery and discharge, COVID-
19 survivors still exhibit differences in endogenous sub-
stances compared to healthy individuals, aligning with 
the majority of research findings [22, 23].

Among the metabolites that can clearly distinguish 
COVID-19 survivors from healthy indivivuals in this 
study, 1-ribosyl-imidazoleacetate* is an intermedi-
ate in the synthesis of zoledronic acid, a drug for treat-
ing malignant hypercalcemia. In one study, the results 
confirmed that 1-ribosyl-imidazoleacetate* is posi-
tively correlated with ischemic stroke [24]. However, 
studies specifically targeting 1-ribosyl-imidazoleace-
tate* in relation to COVID-19 are limited. Similarly, 
research on the glucuronide of C10H18O2 (2)** is also 

limited. Carboxyethyl-GABA, although lacking genetic 
or cytotoxic effects, was found in one study to induce 
time-dependent proliferation and migration of mouse 
fibroblasts [25]. Fibroblasts can maintain the structural 
integrity of connective tissue and secrete a large amount 
of collagen fibers, thereby playing a role in wound heal-
ing. With the passage of time, the increase in carboxye-
thyl-GABA concentration leads us to hypothesize that 
carboxyethyl-GABA may be a potential marker for inter-
stitial lung fibrosis, which is related to lung injury. One 
of the complications following COVID-19 infection is the 
development of fibrosis. It has been reported that lung 
fibrosis can be detected early in the infection, regardless 
of pre-existing lung conditions and disease severity [26]. 

Table 1  The differential metabolites among Case and Control

Differences were considered statistically significant at p (adjusted) < 0.05 and VIP > 2. Case:COVID-19 survivors; Control:Healthy individuals

Name Case Control p (adjusted) < 0.05 VIP

Cysteine-glutathione disulfide 345,686 209,462 0.040476277 2.017095615

5-methylthioadenosine (MTA) 7,355,775 16,706,627 0.014929178 2.082195603

Mannitol/sorbitol 86,251,103 267,772,714 0.024231984 2.108868739

N1-methyladenosine 36,156,360 77,859,547 0.017427998 2.131435068

1-methyl-4-imidazoleacetate 15,800,951 57,023,752 0.017427998 2.158871982

N,N-dimethyl-5-aminovalerate 2,869,240 7,713,153 0.014463537 2.192458239

1-ribosyl-imidazoleacetate* 13,291,227 35,726,159 0.008257586 2.228461812

N6-carbamoylthreonyladenosine 3,906,783 6,482,062 0.017427998 2.23271862

Allo-threonine 877,853 2,225,573 0.028716338 2.259045228

Allantoin 10,748,845 22,428,794 0.014929178 2.27642181

Umbelliferone sulfate 19,644,798 1,085,485 0.031785244 2.295593395

Carboxyethyl-GABA 494,850 1,344,856 0.017427998 2.364157769

Glucuronide of C10H18O2 (2)** 1,352,217 308,990 0.00280968 2.443971607

Resveratrol sulfate (1)* 211,419 88,105 0.008895312 2.507556229

Pseudoephedrine 253,817,785 5,932,328 0.00280968 2.574332372

Cis-urocanate 723,855 3,961,659 4.52485E-07 2.96630827

Fig. 5  Enriched KEGG iterms a Serum b Urine
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The decline in lung function of COVID-19 survivors can 
last up to 12 months and may even become permanent, 
especially in the case of fibrosis [27, 28].

N,N-dimethyl-5-aminovalerate is related to the catabo-
lism of microbial corpse alkaloids [29]. A study showed 
that the plasma metabolic profile of N,N-dimethyl-5-ami-
novalerate differs significantly before and after long-term 
antiretroviral therapy, and its metabolite levels can clearly 
distinguish HIV-infected patients from healthy controls 
[30]. Therefore, this study speculates that N,N-dimethyl-
5-aminovalerate may also be a potential marker for dis-
tinguishing between COVID-19 and healthy controls, but 
further confirmation is needed in future research. Many 
studies have proven that N1-methyladenosine is closely 
related to tumor response [31–33]. However, research 
on N1-methyladenosine in the context of COVID-19 
is limited. Pseudoephedrine can be used to treat symp-
toms of the common cold and flu, sinusitis, asthma, and 
bronchitis, and is a long-standing drug. Since this study 
did not completely exclude drug variables, the signifi-
cant metabolic profile differences in COVID-19 survivors 
might be due to drug residues. Resveratrol sulfate (1)* is 
a polyphenolic chemical, and it has been proven that res-
veratrol can improve inflammatory diseases involving the 
intestinal mucosa [34, 35]. About half of acute COVID-
19 patients experience gastrointestinal symptoms, con-
tinuing inapproximately 10%–25% of COVID-19 patients 
continuing for up to 6 months [36, 37]. Due to the poten-
tial interaction between the immune response associated 
with SARS-CoV-2 infection and the immune dysregula-
tion associated with inflammatory bowel diseases (IBD), 
resveratrol might offer a new therapeutic approach 
for COVID-19 survivors. Although research on these 
substances in the context of the COVID-19 pandemic 
remains limited, the results of this study can provide new 
research directions.

Enrichment analysis revealed significant enrichment 
of the arginine biosynthesis metabolic pathway in the 
serum of COVID-19 survivors. Arginine not only serves 
as a crucial substrate for protein synthesis but also as a 
precursor for the synthesis of substances like creatine, 
polyamines, and nitric oxide (NO) in the body, play-
ing a significant role in human nutritional metabolism 
and regulation [38]. The physiologically active form of 
arginine in the body is L-arginine. Recent research on 
COVID-19 has found that serum levels of L-arginine in 
adults and children affected by COVID-19 are signifi-
cantly lower compared to control groups [39]. Another 
study demonstrated that serum levels of L-arginine 
are inversely correlated with the severity of COVID-19 
[40]. In vitro assays have shown that T cell proliferative 
capacity is significantly reduced in COVID-19 patients, 
which can be restored by supplementing with arginine 

[41]. Recent metabolomics data indicate changes in the 
L-arginine pathway in COVID-19 patients [42], and an 
increase in arginase mRNA expression was also found in 
peripheral blood mononuclear cells (PBMCs) of COVID-
19 patients [43]. Reports suggest a close relationship 
between the expression of arginase or nitric oxide syn-
thase (enzymes essential for arginine catabolism) and 
airway remodeling in chronic obstructive pulmonary 
disease (COPD) patients [44]. Data indicates that levels 
of arginine are reduced in the serum of COVID-19 survi-
vors with pulmonary function abnormalities. The results 
of this study show that L-arginine levels in the serum of 
COVID-19 survivors are lower than in healthy individu-
als, thus suggesting that pulmonary function changes 
may still persist in COVID-19 survivors, necessitating 
timely re-examination and monitoring. Furthermore, we 
speculate that monitoring changes in L-arginine could 
also be beneficial in managing long COVID-19, as the 
persistence of chronic inflammation and endothelial dys-
function has been demonstrated to underlie COVID-19 
sequelae [45, 46].

Despite these findings, the study has limitations: the 
sample size is small, and due to the unbiased nature of 
non-targeted metabolomics, the identified metabolites 
may have certain biases. Future research should aim 
to increase the sample size for targeted metabolomics 
validation.

Conclusions
In this study, UPLC-MS/MS metabolomics was applied 
to select for differential metabolites in COVID-19 survi-
vors. Co-analysis of the top-ranked importance metabo-
lites in serum and urine identified 16 metabolites with 
significant differences. Among themwere 1-ribosyl-
imidazoleacetate *, carboxyethyl-GABA, cis-urocanate, 
glucuronide of C10H18O2 (2) * *, N, N-dimethyl-5-ami-
novalerate, N1-methyladenosine, pseudoephedrine, and 
resveratrol sulfate (1). * These 8 metabolites are consid-
ered as potential biomarkers in COVID-19 survivors. 
Our research provides new insights into the metabo-
lomics of the COVID-19 recovery phase and may offer 
potential new therapeutic targets for preventing COVID-
19 relapse. Future research is needed to confirm our pre-
liminary data and identify effective diagnostic biomarkers 
for the COVID-19 recovery phase.
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