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Abstract 

Background  Obstructive lung disease (OLD) is increasingly prevalent among persons living with HIV (PLWH). How-
ever, the role of proteases in HIV-associated OLD remains unclear.

Methods  We combined proteomics and peptidomics to comprehensively characterize protease activities. We 
combined mass spectrometry (MS) analysis on bronchoalveolar lavage fluid (BALF) peptides and proteins from PLWH 
with OLD (n = 25) and without OLD (n = 26) with a targeted Somascan aptamer-based proteomic approach to quan-
tify individual proteases and assess their correlation with lung function. Endogenous peptidomics mapped peptides 
to native proteins to identify substrates of protease activity. Using the MEROPS database, we identified candidate pro-
teases linked to peptide generation based on binding site affinities which were assessed via z-scores. We used t-tests 
to compare average forced expiratory volume in 1 s per predicted value (FEV1pp) between samples with and without 
detection of each cleaved protein and adjusted for multiple comparisons by controlling the false discovery rate (FDR).

Findings  We identified 101 proteases, of which 95 had functional network associations and 22 correlated 
with FEV1pp. These included cathepsins, metalloproteinases (MMP), caspases and neutrophil elastase. We discov-
ered 31 proteins subject to proteolytic cleavage that associate with FEV1pp, with the top pathways involved in small 
ubiquitin-like modifier mediated modification (SUMOylation). Proteases linked to protein cleavage included neutro-
phil elastase, granzyme, and cathepsin D.

Interpretations  In HIV-associated OLD, a significant number of proteases are up-regulated, many of which are 
involved in protein degradation. These proteases degrade proteins involved in cell cycle and protein stability, thereby 
disrupting critical biological functions.
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Introduction
The use of highly active antiretroviral therapy (ART) has 
significantly reduced morbidity and mortality among 
those living with HIV. However, as life expectancy has 
increased, there has been a rise in co-morbidities, includ-
ing obstructive lung disease (OLD) [1–8]. Persons living 
with HIV (PLWH) are at increased risk of accelerated 
lung function decline and developing OLD, even after 
adjusting for smoking [9, 10]. The Global Initiative for 
Obstructive Lung Disease (GOLD) 2024 report now rec-
ognizes HIV as a risk factor for COPD [11].

In non-HIV associated OLD, chronic inflammation and 
the activation of proteases play a crucial role in its patho-
genesis. The severity of airflow obstruction often cor-
responds to the degree of inflammation in the lung and 
airways. In PLWH, various factors have been implicated 
in the development of OLD, such as epigentic aging, 
chronic systemic inflammation, innate immune activa-
tion, and abnormal immune function related to HIV 
[12, 13]. Furthermore, in PLWH who smoke and have 
emphysema, there is an upregulation of matrix metal-
loprotineases (MMP−1, −7, −9 and −12) compared to 
HIV-negative individuals, underscoring the potentially 
significant role of proteases in OLD pathogenesis in 
PLWH [14].

Numerous proteases contribute to lung disease, fall-
ing into three general categories that include serine pro-
teases, cysteine proteases, and matrix metalloproteinases 
(MMP). The cellular sources of these proteases include 
inflammatory cells such as neutrophils and macrophages, 
as well as bronchial epithelial cells. While the impact of 
individual proteases on the lung extracellular matrix 
(ECM) has been well-documented in numerous studies, 
the extent to which other proteins are subject to pro-
teolytic degradation and the physiological effects of this 
destruction remain relatively unknown. Previous studies 
have predominantly focused on individual proteases or 
their families in OLD, mainly limited to ECM targets. To 
better understand the role of proteases in HIV-associated 
OLD, we used complementary proteomic techniques 
combined with peptidomics to identify active proteases 
associated with OLD, comparing their activity in disease 
versus health and elucidating their specific targets.

Methods
Study population
PLWH who had undergone bronchoscopy were selected 
from the Pittsburgh and Vancouver Lung HIV Cohorts 
[15, 16]. This consisted of individuals (n = 25) with OLD 
as defined as the ratio of forced expiratory volume in 1-s/
forced vital capacity (FEV1/FVC) < lower limit of normal. 
Those without OLD consisted of 26 individuals with HIV 
and normal lung function (defined as FEV1/FVC > lower 

limit of normal and FEV1 > 80% of predicted normal) 
matched on age (± 5 years), antiretroviral treatment use, 
and smoking status (current vs. non-smoker). Partici-
pants in the parent cohort studies provided informed 
consent for BALF collection and storage with approval by 
their respective Institutional Review Boards at Pittsburgh 
and Vancouver. At study enrollment, BALF was col-
lected on fasting participants as previously described [15, 
16]. Pulmonary function tests were performed within 
3 months of collecting the samples. All data and samples 
were sent to the University of Minnesota were de-iden-
tified. The current study was reviewed in adherence to 
the Declaration of Helsinki and accepted by the Univer-
sity of Minnesota Institutional Review Board (Number 
00003486).

Protein processing and protease identification
BALF samples underwent centrifugation at the local col-
lection sites to remove cells, and cell-free BALF samples 
were stored at -80 degrees Celsius prior to processing. 
The BALF was processed as previously described [17]. 
Briefly, the cell-free BALF samples were centrifuged 
twice to separate out the insoluble component of BALF 
from the soluble fraction. Endogenously produced pep-
tides were collected from the soluble component of the 
supernatant via a 3  kDa  MW cutoff filter. The soluble 
component of the supernatant was sent for SomaScan, 
analysis as previously reported, and MS analysis [18]. 
BALF samples from 21/25 with OLD and 24/26 with nor-
mal lung function had adequate protein amounts for tan-
dem mass tagging (TMT, Thermo Fisher Scientific) and 
MS analysis. The insoluble BALF component was also 
processed for TMT labelling and liquid chromatography 
(LC) tandem mass spectrometry (MS/MS) analysis. Pro-
teins were matched to UniProt IDs using Fragpipe. The 
combined proteins from SomaScan and MS were filtered 
to identify proteases and peptidases with known sub-
strates based on the MEROPS database [19]. We utilized 
the STRING database to visualize protein networks [20].

Peptide analysis and protease assignment
The endogenous peptides isolated from the BALF under-
went label-free identification and quantification by LC–
MS that included delayed normalization and maximal 
peptide ratio extraction (MaxLFQ). A FASTA database 
was downloaded containing protein sequences of the 
entire human proteome (UniProt proteome sequence 
2021-12-10, 101,014 protein sequences). The peptide 
tandem mass spectra (MS/MS) files were matched to 
the FASTA files using the Fragpipe software and were 
assigned to their native protein substrates [21–28]. Pep-
tides matched with the Fragpipe software were quanti-
fied using the MaxLFQ method, and assigned cleavage 
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sites. The cleavage sites were categorized by type of 
cleave based on cleave location and whether other simi-
lar peptides were detected, indicative of multiple cleavage 
events. The cleaves assigned were a result of exopepti-
dase or endopeptidase activity and mapped back to the 
original FASTA protein sequence with 4 residues before 
and after each cut, depending on location of the cut, 
based on starting residue and peptide length (Fig.  1S). 
The MEROPS catalog of preferred substrate patterns of 
cleavage was compared to our assigned cleavages from 
detected peptides. For each protease, a z-score was cal-
culated for each cleave using z = (x-μ)/σ where x was the 
number of substrates in the MEROPS database with a 
given amino acid at a specific position, μ was the average 
number of substrates with any data for that cleave posi-
tion, and σ for the standard deviation of the substrates for 
that cleave position. We treated the z-scores as a quanti-
tative indicator for whether the peptide matches the pro-
tease’s target cleavage sequence. A higher z-score implied 
a higher likelihood that the protease cleaved a protein 
and yielded the corresponding peptide. We assigned 
cleaved proteins to proteases if the associated z-score 
was deemed an “outlier.” To define an outlier, we com-
puted the z-score quartiles and interquartile range (IQR) 
within each protease. We defined an outlier as a peptide’s 
z-score exceeding the third quartile plus 1.5 times the 
interquartile range for that protease.

Statistical analysis
All data underwent cleaning prior to performing statis-
tical analysis (see Supplement). We sought to describe 
associations between the detected proteases along with 
the degraded proteins mapped from the endogenous 
peptides with measures of lung disease, defined as per-
cent predicted forced expiratory volume in 1 s (FEV1pp).

Proteases associated with lung function
We examined the overall association between protease 
abundance and FEV1pp using the combined SomaScan 
and two untargeted MS datasets from the soluble and 
insoluble components of BALF. For each identified pro-
tease, we calculated the correlation between the meas-
ured abundance and FEV1pp to the SomaScan and the 
two untargeted datasets. For the SomaScan dataset, we 
averaged the correlations across aptamers and proteins 
detected across datasets if multiple aptamers were pre-
sent. We used the p-values from a Pearson correlation 
test to assess the strength of association between pro-
tease abundance and FEV1pp. We obtained an overall 
p-value for each protease by aggregating the individual 
p-values using Fisher’s combination method [29]. We 
controlled the false discovery rate (FDR) using the 

Benjamini–Hochberg correction [30]. We report on 
associations that were significant at the FDR < 0.05 level.

Association between protein degradation and disease
For each protein assigned to an endogenous peptide, we 
dichotomized patients into two groups: one in which 
the degraded protein was detected and one in which it 
was not. A protein was “detected” if its corresponding 
MaxLFQ intensity was non-zero. Due to heavy missing-
ness, we only considered proteins detected in at least 
five samples. We compared the average forced expira-
tory volume in 1-s (FEV1pp) between these two groups 
for each protein using a two-sample t-test. We controlled 
the Benjamini–Hochberg FDR [31]. For pathway analysis 
we used a less stringent FDR of below the 0.1 level using 
IMPaLa software to examine pathways reflected among 
the degraded proteins. [32]

Results
Study Participant Demographics
Table  1 summarizes the demographics of participants 
whose samples were used in the endogenous pep-
tides analysis. The soluble and insoluble components of 
BALF TMT datasets differed by two samples from indi-
viduals with OLD and the SomaScan dataset differed by 
one sample from an individual with OLD, but overall 
showed similar demographic distributions across those 
with and without OLD. Most of the participants were 
male (72.5%) with a mean age of 56.8 and 54.9% identi-
fied as black, non-Hispanic, 43.1% as white or Hispanic/
Latino, and 2.0% identified as Asian or Pacific Islander. 
Most participants were receiving antiretroviral treat-
ment (ART) (92.2%) at the time of study. Smoking status 
was similar between those with and without OLD, with 
52.9% actively smoking at the time of enrollment, how-
ever, average pack years were greater in those with OLD 
(31.1) vs those without OLD (15.2). Lung function ranged 
from 21 to 128% of predicted normal. Among those with 
OLD, the average FEV1pp was 67.5% and for those with-
out OLD the average was 104%.

Proteases associated with lung function
To enhance our proteomic coverage to identify proteases 
in BALF, we leveraged the previously-reported SomaS-
can proteomic data from the BALF soluble component, 
along with proteins measured by TMT with MS of both 
the soluble and insoluble BALF components. [18] A total 
of 101 proteases were identified, many of which over-
lapped between the three different methods of meas-
uring proteins (Fig.  1, Table  1S). Of these proteases, 40 
were unique to Somascan, 9 unique to the insoluble 
component of BALF and 3 in the soluble BALF compo-
nent measured by TMT. Most of these proteases make 
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up a network that is functionally associated or linked 
(Fig. 2S). We identified 22 proteases that were associated 
with FEV1pp, four positively correlated and 18 negatively 
correlated (Table  2). The four proteases that correlated 
with higher lung function included carboxypeptidase 
M, prothrombin, urokinase-type plasminogen activator 
and gastricsin. Many of the 22 proteases associated with 
lower lung function are proteases previously described in 
OLD, including cathepsins, metalloproteinases (MMP), 
caspases and neutrophil elastase. All but six of these 

proteases have functional associations with each other 
(Fig. 2a).

Protein substrates subject to proteolytic cleavage
We identified 31 proteins, mapped from endogenous 
peptides, that were the substrates for proteolytic cleav-
age and associated with FEV1pp (Table  3). Table  3 
depicts the top 15 proteins and the mean FEV1pp among 
participants for whom their samples contained these 
substrate proteins. Among the top five proteins were 

Table 1  Demographics of study participant cohort.

FEV forced expiratory volume in 1-s, FVC forced vital capacity, DLCO diffusing capacity of lung for carbon monoxide

OLD (N = 25) Without OLD (N = 26) Total (N = 51)

Sex

 Male 19 (76.0%) 18 (69.2%) 37 (72.5%)

 Female 6 (24.0%) 8 (30.8%) 14 (27.5%)

Age

 Mean (SD) 60.0 (8.47) 53.8 (7.30) 56.8 (8.42)

 Median [min, max] 58.0 [44.0, 80.0] 54.0 [42.0, 76.0] 56.0 [42.0, 80.0]

Ethnicity

 Black, Non-Hispanic 16 (64.0%) 12 (46.2%) 28 (54.9%)

 White, Hispanic/Latino 9 (36.0%) 13 (50.0%) 22 (43.1%)

 Asian/pacific islander 0 (0%) 1 (3.8%) 1 (2.0%)

Smoking status

 Former 9 (36.0%) 7 (26.9%) 16 (31.4%)

 Never 3 (12.0%) 5 (19.2%) 8 (15.7%)

 Yes 13 (52.0%) 14 (53.8%) 27 (52.9%)

Pack years

 Mean (SD) 31.1 (28.9) 15.2 (13.7) 23.0 (23.7)

 Median [min, max] 29.2 [0, 120] 13.6 [0, 38.0] 17.0 [0, 120]

Receiving antiretroviral treatment

 Yes 23 (92.0%) 24 (92.3%) 47 (92.2%)

 No 2 (8.0%) 2 (7.7%) 4 (7.8%)

FEV1-percent-predicted

 Mean (SD) 67.5 (16.1) 104 (11.2) 85.9 (22.8)

 Median [min, max] 68.2 [21.0, 90.4] 102 [81.3, 128] 87.1 [21.0, 128]

FEV1

 Mean (SD) 2.05 (0.600) 3.25 (0.746) 2.66 (0.905)

 Median [min, max] 2.00 [0.650, 3.29] 3.08 [1.95, 4.77] 2.59 [0.650, 4.77]

FEV1/FVC

 Mean (SD) 0.553 (0.115) 0.795 (0.0567) 0.676 (0.151)

 Median [min, max] 0.588 [0.293, 0.679] 0.789 [0.689, 0.905] 0.689 [0.293, 0.905]

DLCO-percent-predicted

 Mean (SD) 70.5 (26.5) 76.6 (23.1) 73.7 (24.7)

 Median [min, max] 57.1 [36.3, 139] 74.5 [14.4, 117] 73.3 [14.4, 139]

M issing 6 (24.0%) 5 (19.2%) 11 (21.6%)

Viral load

 < 50 copies 12 (48.0%) 18 (69.2%) 30 (58.8%)

 > 50 copies 1 (4.0%) 3 (11.5%) 4 (7.8%)

Missing 12 (48.0%) 5 (19.2%) 17 (33.3%)
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alpha-enolase, an enzyme involved in glycolysis, his-
tones, and tubulin. Among these 31 proteins, 28 proteins 
showed inverse relationships with FEV1pp, i.e. increased 
degradation was associated with lower average FEV1pp, 
indicating these proteins were more likely to be subject 

to proteolysis in the presence of OLD. Figure 3a depicts 
the protein–protein interaction of these 31 proteins and 
all but three have functional associations. The top ten 
pathways reflected among these 31 proteins are shown 
in Table  4. There were 39 pathways with FDR below 
0.05, including pathways involving small ubiquitin-like 
modifier mediated modification (SUMOylation), a post-
translational process to control protein quality [33] and 
histone methylation.

Proteases participating in substrate cleavage
To identify the proteases linked to the generation of the 
endogenous peptides, we analyzed 101 proteases identi-
fied across the SomaScan and TMT datasets with the 
top 31 identified substrate proteins that associated with 
FEV1pp. After linking candidate endogenous peptides to 
their corresponding proteases responsible for their cleav-
age by examining the z-scores, we studied how many 
proteins each protease cleaved. The number of proteins 
assigned to each protease ranged from one to 23 (Fig. 3; 
Table 2S) with the top 10 proteases included neutrophil 
elastase, granzyme, and cathepsin D (Table 5).

Fig. 1  Venn diagram of proteases that correlate with FEV1pp 
from the various BALF proteomic analyses

Table 2  Proteases significantly correlated with FEV1pp across the Somascan and two tandem mass tagging datasets.

Proteases are ordered by FDR. Note that degree of correlation with FEV1pp and FDR magnitude do not necessarily align

UniProt ID Protease Name Mean correlation with 
FEV1pp

Combined p-value FDR

Proteases with positive associations with FEV1pp

 P14384 Carboxypeptidase M 0.4441 0.0000 0.0000

 P00734 Prothrombin 0.3752 0.0000 0.0007

 P00749 Urokinase-type plasminogen activator 0.3836 0.0004 0.0054

 P20142 Gastricsin 0.3898 0.0007 0.0061

Proteases with negative associations with FEV1pp

 P24158 Myeloblastin −0.4621 0.0000 0.0002

 Q9UKR3 Kallikrein-13 −0.3275 0.0000 0.0002

 P07858 Cathepsin B −0.3481 0.0001 0.0017

 P53634 Dipeptidyl peptidase 1 −0.3155 0.0002 0.0028

 Q9UNI1 Chymotrypsin-like elastase −0.4757 0.0004 0.0053

 Q9UBR2 Cathepsin Z −0.2607 0.0006 0.0059

 P14780 MMP9 −0.3391 0.0005 0.0059

 P22894 MMP8 −0.3268 0.0011 0.0091

 P08311 Cathepsin G −0.3155 0.0014 0.0103

 P42574 Caspase-3 −0.3534 0.0014 0.0103

 P16519 Neuroendocrine convertase 2 −0.3044 0.0020 0.0136

 P17655 Calpain-2 catalytic subunit −0.1639 0.0036 0.0177

 P25774 Cathepsin S −0.2411 0.0033 0.0177

 P08246 Neutrophile Elastase −0.2988 0.0030 0.0177

 P45974 Ubiquitin carboxyl-terminal hydrolase 5 −0.0465 0.0034 0.0177

 P39900 Macrophage metalloelastase −0.4033 0.0030 0.0177

 P09958 Furin endoprotease −0.3957 0.0037 0.0177

 Q92851 Caspase-10 –0.0646 0.0061 0.0280
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Discussion
Proteases are a diverse group of proteins comprising over 
500 members which makes up almost 2% of the human 
genome. There are five major classes of proteases in 
mammals with serine, cysteine and metallo- proteases 
being the most prevalent in human lung disease. Tradi-
tionally these proteases have been viewed as substrate 
specific protein degrading enzymes and originally not to 

be participants in signaling or regulatory pathways. In 
the last decade, advances in degradomics and the study 
of protease substrate have revealed that protease targets 
and their substrates are complex [34, 35]. It is now evi-
dent that proteases are key components of regulatory 
mechanisms via cleavage of specific substrates with con-
comitant activation, silencing or modulation of regula-
tory functions through a mechanism called proteolytic 

Fig. 2  a) STRING diagram demonstrating protein–protein associations of the 26 proteases identified in BALF by LC–MS/MS and SomaScan 
that associate with FEV1pp. b) STRING diagram demonstrating protein–protein associations of the 31 substrate proteins mapped to endogenous 
peptides that associate with FEV1pp

Table 3  Top 15 proteins identified from endogenous peptides whose degradation was associated with FEV1pp

Protein UniProt ID Mean FEV1pp 
(Present)

Mean FEV1pp 
(Absent)

P-Value FDR

Alpha-enolase P06733 53.9625 91.8787 0.0004 0.0247

Gelsolin P06396 45.4126 90.3352 0.0008 0.0247

Histone H4 P62805 61.1725 91.9697 0.0009 0.0247

Tubulin beta-4B chain P68371 55.6507 90.7484 0.0022 0.0414

Histone H2B type 2-F Q5QNW6 56.8110 91.3487 0.0036 0.0414

Tubulin alpha-1A chain Q71U36 64.6865 91.1127 0.0045 0.0414

Glyceraldehyde-3-phosphate dehydrogenase P04406 65.3887 91.5802 0.0046 0.0414

Myosin-9 P35579 61.5678 88.5792 0.0046 0.0414

Aldehyde dehydrogenase, dimeric NADP-preferring P30838 61.6220 91.1401 0.0046 0.0414

Glutathione S-transferase P P09211 61.7737 91.1076 0.0054 0.0414

Vimentin P08670 78.8246 96.0831 0.0054 0.0414

Isoform A2 of Heterogeneous nuclear ribonucleoproteins A2/B1 P22626-2 66.1016 89.0858 0.0062 0.0425

Galectin-3 P17931 70.2732 92.4552 0.0066 0.0425

Parkinson disease protein 7 Q99497 62.8499 90.8770 0.0074 0.0442

Basic salivary proline-rich protein 1 P04280 66.1060 90.7664 0.0087 0.0486
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Fig. 3  Proteases targeting proteins whose degradation was associated with FEV1pp and the total number of substrate proteins mapped 
to the endogenous peptides

Table 4  Pathways reflected in proteins whose degradation was associated with FEV1pp

Pathway Number overlapping 
genes

Number pathway 
genes

P-value Q-value

SUMO E3 ligases SUMOylate target proteins 15 15 (177) 4.94E-06 0.00745

RMTs methylate histone arginines 15 15 (74) 4.94E-06 0.00745

SUMOylation 15 15 (182) 4.94E-06 0.00745

SUMOylation of chromatin organization proteins 14 14 (72) 1.27E-05 0.00745

HDMs demethylate histones 14 14 (50) 1.27E-05 0.00745

PKMTs methylate histone lysines 14 14 (73) 1.27E-05 0.00745

Deposition of new CENPA-containing nucleosomes 
at the centromere

14 14 (43) 1.27E-05 0.00745

Nucleosome assembly 14 14 (43) 1.27E-05 0.00745

HDACs deacetylate histones 16 17 (94) 2.08E-05 0.00883

HCMV Early Events 16 17 (109) 2.08E-05 0.00883
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processing [34]. While most studies related to the role 
of proteases in OLD, both HIV and non-HIV associated, 
have been limited to individual proteases or protease 
families; it is highly unlikely that single proteases or even 
single protease families are solely responsible for OLD 
pathogenesis. More likely there are complex interactions 
among proteases and their substrates that participate in 
multiplexed regulatory systems. In this study, we char-
acterized the complex protease proteome in HIV-asso-
ciated OLD via a combination of proteome profiling and 
identified protease activity and their substrates through 
peptidomic analysis.

Utilizing a comprehensive proteomic approach that 
included a combination of targeted aptamer-based pro-
teomics and untargeted mass spectrometry with TMT 
labeling we identified 101 proteases within the BALF in 
PLWH, 22 of which were significantly associated with 
lung function as measured by FEV1pp. Proteases are 
key regulatory proteins in both homeostasis and disease 
and several of the proteases we identified are associated 
with normal lung function. One protease, gastricsin, is a 
gastric protease and likely represents micro-aspiration, 
which is common in individuals with OLD [36]. Inter-
estingly, gastricsin was observed in individuals with 
preserved FEV1. Aspiration is likely to be equally, if 
not more, common in those with severe lung function, 
although it is probably less prevalent compared to the 
proteases that are upregulated in disease. We found both 
prothrombin and urokinase-type plasminogen activa-
tor to be associated with normal lung function and these 
proteases have roles in fibrin homeostasis in the healthy 
lung [37, 38]. Many of the proteases associated with 
lower lung function have been described in OLD, such 
as the metalloproteinases, cathepsins, caspases and neu-
trophil elastase. Caspases are proteases involved in apop-
tosis and associated with the generation of emphysema 

[39]. Unfortunately, we were not able to correlate specific 
proteases with emphysema in this cohort as CT imaging 
was limited.

What is most striking is that no single protease or pro-
tease family predominates. Rather, there is upregulation 
of many proteases across divergent protease families. 
Proteases can interact either directly or indirectly with 
other proteases and become interconnected in what has 
been termed a ‘protease web’ [40]. We found that all but 
six of the proteases that associated with lung function 
were part of such a functionally-associated network. This 
interconnection and redundancies of proteases in OLD 
create challenges in identifying individual therapeutic 
targets for anti-protease therapy. Most of the proteases 
belong to a common network and it remains unknown 
whether it requires targeting individual or multiple pro-
teases to effectively block proteolytic activity. Proteases 
are also involved in normal physiological functions; 
therefore, broad proteolytic blockage could have unto-
ward effects on homeostasis.

Proteases initiate and modulate many important cellu-
lar functions by highly specific substrate cleavage. In the 
inflammatory state, upregulated proteases have a wide 
range of substrate targets that are not limited to extracel-
lular matrix proteins. Not only do proteases cleave multi-
ple substrates, but substrates can be cleaved by multiple 
proteases. Utilizing peptidomic analysis by mass spec-
trometry, we were able to map endogenously produced 
peptides to their cognate proteins. All but three of these 
proteins had functional associations, suggesting the tar-
geting or susceptibility of specific biological pathways. 
In addition, most of these proteins were associated with 
lower lung function and mapped to pathways vital for 
cellular function, including SUMOylation. SUMOyla-
tion is critical in broad biological functions including cell 
cycle and protein stability. Cigarette smoke upregulates 

Table 5  Top 10 most active proteases mapped to cleaved proteins. P-value and FDR describes significance of correlation between 
protease and FEV1pp.

Proteases are ordered by number of associated proteins cleaved

Gene Protease No. Proteins p-Value FDR

ELANE Neutrophil elastase 23 0.003 0.018

GZMM Granzyme M 20 0.245 0.420

CTSD Cathepsin D 19 0.233 0.412

CTSE Cathepsin E 19 0.154 0.330

ASPRV1 Aspartic peptidase 18 0.166 0.346

BLMH Bleomycin hydrolase 18 0.405 0.594

CELA1 Chymotrypsin like elastase 1 18 0.000 0.005

CTSG Cathepsin G 18 0.001 0.010

PRTN3 Proteinase 3 18 0.000 0.000

ATG4B Autophagy related 4B cysteine peptidase 17 0.785 0.890
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SUMOylation in human bronchial epithelial cells, pro-
viding a potential link to OLD [41].

Although our complementary proteomics analysis 
identified proteases that had upregulated abundance 
with disease, increased abundance does not guarantee 
increased protease activity. To address this, we utilized 
endogenous peptides to characterize protease activity. To 
identify the proteases responsible for protein degradation 
we assigned cleavage sites to endogenously produced 
peptides and matched these sites to their conjugate pro-
teases. Neutrophil elastase, granzyme M and cathepsins 
D and E were among the most active proteases linked to 
substrate degradation. These proteases are commonly 
associated with OLD [42]. Although metalloproteinase 
and caspase proteases were upregulated in disease, they 
were less active.

Limitations of this study include the relatively small 
sample size, lack of non-HIV controls and lack of more 
detailed lung structure and function metrics, (e.g. CT 
quantitative imaging). In addition, there were a large per-
centage of smokers, current or past, in both those with 
normal lung function and disease. Cigarette smoking is 
associated with elevated protease activity in both humans 
and animal models and additional studies are needed to 
differentiate the roles of tobacco smoke and HIV infec-
tion in protease activation [43]. Overall, this study brings 
to light the large repertoire of proteases that are upreg-
ulated and actively involved in proteolysis in HIV-asso-
ciated OLD. In addition, we identified specific proteins 
that were subject to proteolysis that are linked to specific 
pathways vital to cellular and organ function, suggesting 
a possible role in pathogenesis Future studies are needed 
to validate these findings, especially comparing HIV to 
non-HIV controls. It is important for future mechanis-
tic studies to be aware of the multitude of proteases and 
their substrates that are active in HIV-associated OLD.
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