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Abstract
Rationale  Our understanding of airway dysbiosis in chronic obstructive pulmonary disease (COPD) remains 
incomplete, which may be improved by unraveling the complexity in microbial interactome.

Objectives  To characterize reproducible features of airway bacterial interactome in COPD at clinical stability and 
during exacerbation, and evaluate their associations with disease phenotypes.

Methods  We performed weighted ensemble-based co-occurrence network analysis of 1742 sputum microbiomes 
from published and new microbiome datasets, comprising two case-control studies of stable COPD versus healthy 
control, two studies of COPD stability versus exacerbation, and one study with exacerbation-recovery time series data.

Results  Patients with COPD had reproducibly lower degree of negative bacterial interactions, i.e. total number 
of negative interactions as a proportion of total interactions, in their airway microbiome compared with healthy 
controls. Evaluation of the Haemophilus interactome showed that the antagonistic interaction networks of this 
established pathogen rather than its abundance consistently changed in COPD. Interactome dynamic analysis 
revealed reproducibly reduced antagonistic interactions but not diversity loss during COPD exacerbation, which 
recovered after treatment. In phenotypic analysis, unsupervised network clustering showed that loss of antagonistic 
interactions was associated with worse clinical symptoms (dyspnea), poorer lung function, exaggerated neutrophilic 
inflammation, and higher exacerbation risk. Furthermore, the frequent exacerbators (≥ 2 exacerbations per year) had 
significantly reduced antagonistic bacterial interactions while exhibiting subtle compositional changes in their airway 
microbiota.

Conclusions  Bacterial interactome disturbance characterized by reduced antagonistic interactions, rather than 
change in pathogen abundance or diversity, is a reproducible feature of airway dysbiosis in COPD clinical stability and 
exacerbations, which suggests that we may target interactome rather than pathogen alone for disease treatment.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a 
worldwide health challenge, ranking third leading cause 
of death globally [1]. It is featured by persistent airway 
inflammation, emphysema, and airflow obstruction, with 
episodes of exacerbations accelerating disease progress 
[1].

Increasing evidence suggest that airway dysbiosis con-
tributes to COPD: alterations of human airway microbi-
ome are correlated with lung immunology, exacerbation 
frequency, and mortality [2–4]; and depletion of murine 
microbiota mitigates chronic pulmonary inflamma-
tion [5]. However, the design of interventions to restore 
microbiota remains difficult due to lack of a clear picture 
of COPD dysbiosis. Microbial features including diversity 
metrics and differentially abundant taxa identified in pre-
vious microbiome studies are very inconsistent, either at 
COPD clinical stability or during exacerbation (Supple-
mentary Tables 1–2). Furthermore, although alterations 
in alpha diversity and relative abundance of taxa within 
the Proteobacteria, Firmicutes, and Bacteroidetes are 
reported in COPD stability, there is minor change in air-
way microbiome during exacerbation [6]. These ambigui-
ties urge the need to understand airway dysbiosis in an 
alternative prospective.

Human-associated microbiomes are ecosystems where 
microbes do not exist in isolate but form complex inter-
action networks, known as the interactome [7]. Unrav-
elling the interactions between gut microbiota and 
pathogenic species has promoted the clinical success 
of fecal microbiota transplantation for the treatment 
of Clostridium difficile [8] and inflammatory bowel dis-
eases [9]. Compared to intestinal microbiota, the airway 
microbiota is a low-biomass organ, yet in which different 
bacterial species can still exert potent interactions: air-
way derived Rothia mucilaginosa mitigates Pseudomonas 
aeruginosa induced inflammation in a 3-D alveolar epi-
thelial model [10]; and episodic aspiration of oral com-
mensals effectively decrease Streptococcus pneumonia 
susceptibility in mice [11]. However, the role of these 
microbial interactions in COPD has not been considered 
in previous microbiome studies that exclusively focused 
on differential abundance or diversity metrics.

Here we present a large-scale network analysis of 
sputum microbiomes (n = 1,742) from 5 geographi-
cally diverse cohorts including cross-sectional and lon-
gitudinal data to explore the role of airway bacterial 
interactome in COPD. We demonstrate that bacterial 
interactome is disturbed at both COPD stability and 
exacerbation and strongly associated with exacerbation 

phenotype, which expand our current knowledge regard-
ing COPD dysbiosis and shed light on future therapeutic 
design.

Methods
A prospective chinese cohort of COPD patients and 
controls
The EndAECOPD (Endotype-Driven Prediction of Acute 
Exacerbations in COPD) cohort aimed to identify biolog-
ical predispositions to exacerbations of COPD in Chinese 
populations with study protocol published previously 
[12]. Between May, 2018 and Jan, 2020, 165 stable COPD 
patients free of antibiotics in the past two months were 
consecutively enrolled and underwent sputum induc-
tion at the West China Hospital. In total, 143 patients 
provided a qualified sputum sample with sufficient DNA 
for 16S rRNA gene sequencing. Patients were followed 
by telephone interview every three months for 1-year to 
monitor their exacerbations. An additional 44 healthy 
volunteers recruited at the same center were sequenced 
later as part of this work.

Sputum induction and sample assays
Sputum induction with stringent oral cleaning to 
decrease contamination was performed according to 
standard protocols [12]. Sputum plug was aliquoted 
for 16S rRNA gene analysis, bacterial DNA quantifica-
tion, inflammatory cell counting, and cytokine detec-
tion. After bacterial DNA isolation, the V3-V4 region of 
the 16S rRNA gene was amplified and sequenced on the 
Illumina MiSeq PE300 platform [12] with proper reagent 
controls (Supplementary Methods and Supplementary 
Fig.  1). The raw sequence data have been deposited in 
the Genome Sequence Archive in National Genom-
ics Data Center (HRA003966). Total bacterial DNA was 
quantified by using an ABI7,500 qPCR system (Applied 
Biosystems, USA) with the PCR primers 5′- ​A​C​T​C​C​T​A​
C​G​G​G​A​G​G​C​A​G​C​A​G-3′ and 5′- ​A​T​T​A​C​C​G​C​G​G​C​T​
G​C​T​G​G-3′. A panel of 19 sputum inflammatory media-
tors including interleukin (IL) − 1β, IL-2, IL-4, IL-5, IL-6, 
IL-8, IL-10, IL-12p70, IL-13, IL-17, IL-18, IL-23, IL-33, 
interferon-γ, C-X-C motif chemokine ligand 1, granu-
locyte-macrophage colony-stimulating factor, S100A8, 
S100A9 and matrix metalloproteinase-12 was assayed by 
using a Human Magnetic Luminex Assay kit (R&D Sys-
tems, USA).

Public sputum microbiome datasets
We retrieved public 16S rRNA gene sequencing data 
of sputum samples from patients with COPD at either 
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clinical stability or exacerbation and healthy controls 
(HC) by exhausted literature search in PubMed and 
dataset search in the Short Read Archive and the Euro-
pean Nucleotide Archive databases. The search term and 
inclusion/exclusion criteria are available in Supplemen-
tary Table 3. Only case-control studies of stable COPD 
versus HC or studies comparing COPD stability versus 
exacerbation were included. Studies that recruited sub-
jects with respiratory diseases other than COPD, had 
relevant information indicating antibiotic use in the past 
month prior subject enrollment, or had sample size of 
< 20 for individual group (HC or COPD) after data pro-
cessing (illustrated below), were excluded.

Microbiome data preprocessing and taxonomic profiling
All 16S rRNA gene datasets were processed using 
a standardized pipeline in QIIME 2.0 (Quantitative 
Insights Into Microbial Ecology) [13]. The demultiplexed 
sequencing reads were merged, denoised, and resolved 
into amplicon sequence variants (ASVs) using DADA2 
(Divisive Amplicon Denoising Algorithm 2) [14]. Sam-
ples with < 1,000 clean reads were discarded. Taxonomy 
assignment was performed with a custom Naive Bayes 
classifier trained on Greengenes Database 13_8 99% 
operational taxonomic units. Alpha-diversity (Shannon 
index) and beta-diversity (weighted UniFrac distance) 
metrics were calculated. Principal coordinates analysis 
was performed and permutational multivariate analysis 
of variance (999 permutations) was used for significance 
testing. Taxa with a prevalence of > 5% and an abundance 
of > 0.05% were kept for further analysis. Linear discrimi-
nant analysis effect size (LEfSe) analysis was used to iden-
tify differentially abundant taxa [15].

Microbial co-occurrence network analysis
To identify microbial association networks while sup-
pressing spurious correlations due to compositional 
effects of microbiome data, we implemented the 
weighted ensemble-based co-occurrence analysis along 
with Reboot [16, 17]. This approach calculated five cor-
relation measures including Mutual Information, Bray-
Curtis dissimilarity, Spearman and Pearson correlation, 
and generalized boosted linear models (GBLM), and 
merged the edge P values from the ensemble networks 
using the weighted Simes test. Then the network edge 
scores were merged as a weighted aggregate of the nor-
malized absolute edge scores and the sign assigned based 
on GBLM, Spearman, and Pearson correlation (more 
details described at https://github.com/translational-
respiratory-lab/The_Interactome). Co-occurrence net-
works were visualized in Cytoscape 3.9 and network 
parameters including node degree (the number of edges 
connected to a particular node), betweenness centrality 
(the fraction of shortest paths passing through a node), 

and stress centrality (the absolute number of shortest 
paths passing through a node) were calculated [18].

Microbial network clustering and prediction of 
exacerbations
Spectral clustering was performed on the combined 
patient network to identify homogeneous COPD sub-
types [17, 19]. The optimal number of clusters was 
determined by using the eigengap method, with a boot-
strapping approach implemented to assess the robustness 
of identified clusters [17]. A life-table analysis was used 
to evaluate the ability of network clusters in prediction of 
time to next exacerbation.

Results
Consistent processing of published and new microbiome 
datasets included in this study
To identify reproducible associations between airway 
microbiota and COPD, we performed 16S rRNA gene 
sequencing of sputum samples of 187 patients with 
COPD and HC recruited from the EndAECOPD cohort 
(see Supplementary Table 4 for subject characteristics), 
and analyzed them in the context of 1,555 additional 
sputum samples from four publicly available and geo-
graphically diverse datasets. In total, two case-control 
studies of stable COPD versus HC, two studies of COPD 
stability versus exacerbation, and one study with exacer-
bation-recovery time series data were included (Table 1 
[6, 20–22]). All of these datasets had considerable sample 
size. Except for SRP066375 [20], other datasets including 
COPDMAP [6], BCCS & BCES [21], and BEAT-COPD 
[22] were published with detailed study design and sub-
ject demographics. Although unpublished, SRP066375 
showed comparable quality control statistics with pub-
lished datasets (Supplementary Table 5), indicative of its 
reasonable data quality for downstream analysis.

All datasets were sequenced at high depth (mainly on 
Miseq platform) with similar primers targeting V3-V5 
hypervariable region of the 16S rRNA gene (Table  1) 
and processed separately using DADA2 algorithm [14] 
for data cleaning and taxonomic profiling. Despite this, 
hypervariable region and sequencing platform poten-
tially lead to ASV-level heterogeneity [23]. Downstream 
microbiome analysis was therefore performed at genus 
level according to the MiBioGen consortium initiative 
[24] and previous experiences [23, 25], which sacrificed 
taxa classification resolution in exchange for less data 
heterogeneity.

Microbial co-occurrence network in COPD stability reveals 
reduced negative interactions compared to HC
We first performed health-COPD comparative anal-
ysis using data of the two Asian cohorts: EndAE-
COPD and SRP066375 (Table  1). Beta diversity 
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analysis demonstrated a clear separation of samples 
between COPD and HC, and alpha diversity measured 
by Shannon index was reduced in COPD samples in 
both cohorts (Fig.  1A, B). We next applied weighted 
co-occurrence analysis with an ensemble of similarity 
measures [16, 17] to characterize potential interactions 
between different taxa (Fig.  1C, D). Network param-
eters reflecting node (microbe) importance includ-
ing degree, betweennes centrality, and stress centrality 
showed substantial inconsistency across cohorts, which 
were significantly different between COPD and HC in 
EndAECOPD but not in SRP066375 (Fig. 1E). Yet when 
focusing on the sign of edge (microbial interaction), we 
found that patients with COPD in both cohorts had sig-
nificantly reduced percent of negative interactions, i.e. 
total number of negative interactions as a proportion of 
total interactions, in their microbial network compared 
with HC (Fig.  1E-G). This trend remained significant 
when microbial networks were reconstructed separately 
by using either GBLM, Spearman, or Pearson correlation 
that determines the sign of edge weights in the ensemble 
network inference method in both cohorts (see Methods 
and Supplementary Table 6). To validate geographical 
reproducibility of this finding, we analyzed data of Hal-
dar et al [26] that compared COPD (N = 218) versus HC 
(N = 124) sputum microbiomes separately retrieved from 
two UK cohorts. Again we observed significantly lower 
percent of negative interactions in microbial network 
between COPD versus HC (47.0%[616/1,311] versus 

34.4%[188/547], P < 0.0001, χ2 test) even though COPD 
samples had significantly higher alpha diversity indices 
(Supplementary Fig.  2). Further appraisal of the effects 
of edge weights (interaction strength) on the observed 
change of negative interactions showed that the abso-
lute weights of negative interactions were also decreased 
in COPD versus HC in all above data albeit not reach-
ing statistical significance in SRP066375 (Supplementary 
Fig.  3). Collectively, we demonstrate that bacterial net-
work disturbance characterized by reduced antagonistic 
interactions, rather than diversity loss, is a reproducible 
feature of COPD dysbiosis.

Interactome analysis identifies a set of taxa whose 
antagonistic networks rather than abundances confer 
consistent changes in COPD
In general, differential abundance analysis is used to iden-
tify disease-associated microbial biomarkers, yet is sensi-
tive to both technical artifacts and individual variabilities 
in environmental exposure and lifestyle [27]. This has led 
to the identification of varying biomarker species in dif-
ferent discovery cohorts, as suggested by EndAECOPD 
and SRP066375 datasets that have only a few overlapping 
taxonomic biomarkers (Streptococcus, Catonella, Diali-
ster, Pavimonas, and Fusobacterium) (Fig. 2A, B). In con-
trast, through network analysis, we identified 20 taxa that 
showed consistently altered degree of negative interac-
tions (percent change of > 5%) between COPD versus HC 
in the two cohorts (Fig. 2C), 10 of which (Haemophilus, 

Table 1  Characteristics of the large-scale COPD microbiome datasets included in this study
Analysis plan Study/Dataset Group No. of 

samples
Sam-
ple 
types

Country Primer Platform Reads per 
sample‡
Median (IQR)

Health-COPD compara-
tive analysis

EndAECOPD
(This study)

HC 44 IS China V3-4 MiSeq 48,726
(40,853–55,601)COPD 143

SRP066375 [20] HC 116 IS China (50), 
Nepal (50)
Bangladesh 
(49), Peru 
(41)

V4 MiSeq 34,890
(28,377–40,453)COPD 74

Stability-exacerbation 
comparative analysis

COPDMAP [6] Stability 445 IS, SS UK V4 MiSeq 50,941
(46,905–56,712)Exacerbation 270

BCCS & BCES [21] Stability 80 IS, SS Norway V3-4 MiSeq 26,777
(17,709–34,457)Exacerbation 94

Exacerbation-recovery 
time series analysis

BEAT-COPD [22] Stability 106 IS, SS UK V3-5 454 9,304
(7,472–11,514)Exacerbation 137

Post-therapy* 136
Recovery† 97

Definition of abbreviations: BCCS & BCES = Bergen COPD cohort study & Bergen COPD Exacerbation Study, BEAT-COPD = Biomarkers to Target Antibiotic and 
Systemic COPD, COPD = chronic obstructive pulmonary disease, COPDMAP = COPD Medical Research Council/Association of the British Pharmaceutical Industry, 
EndAECOPD = Endotype-Driven Prediction of Acute Exacerbations in COPD, HC = healthy control, IQR = interquartile range, IS = induced sputum, SS = spontaneous 
sputum

*2 weeks after therapy

†6 weeks post-exacerbation visit

‡The number of clean reads per sample included for downstream analysis for each dataset. Only one sample of less than 1000 clean reads was filtered during quality 
control for SRP066375 and BCCS & BCES, respectively
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Fig. 1  Co-occurrence network analysis of sputum microbiome between COPD and HC. A, B. Comparison of beta diversity (weighted UniFrac distance) 
and alpha diversity (Shannon index, Mann–Whitney U-test) between COPD and HC in the EndAECOPD cohort (n = 187) (A) and the SRP066375 cohort 
(n = 190) (B). C, D. Co-occurrence network maps of COPD and HC illustrating identified microbial interactions in EndAECOPD (C) and SRP066375 (D). 
Each node represents a microbe and microbial interactions are illustrated by connecting edges. The number of interactions for a microbe is calculated as 
degree. Node size is proportional to the number of interactions for each microbe. Selected taxa of clinical relevance are noted with white color. E. Com-
parison of key network parameters illustrating node and edge characteristics respectively between COPD and HC in both cohorts. Degree, betweenness 
centrality, and stress centrality were compared between COPD and HC by Mann–Whitney U-test. Percent of negative interactions, i.e. total number of 
negative interactions as a proportion of total interactions, were compared by χ2 test. F, G. Visualization of the opposing network by displaying positive and 
negative interactions between the most abundant taxa in COPD and HC in EndAECOPD (F) and SRP066375 cohort (G). Edge transparency is proportional 
to interaction strength between microbes in terms of edge weights. Negative interactions are classified if the sign of the edge weights is negative, and 
vice versa. # denotes paraphyletic group; • denotes unclassified genus; •• denotes classified but unnamed genus
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Fig. 2  Network analysis of biomarker taxa in patients with COPD. A, B Enriched and depleted taxa in patients with COPD identified by Linear discriminant 
analysis effect size (LEfSe) analysis in EndAECOPD (A) and SRP066375 cohort (B). Genera significantly enriched or depleted in COPD in both cohorts were 
noted with red or green, respectively. (C) Venn diagram and barplot showing overlapped genera with altered degree of negative interactions (percent 
change of > 5%) between COPD versus HC in EndAECOPD and SRP066375 cohort. Genera that were further recovered in data of Haldar et al. were noted 
with red. (D-G). Visualization of the Campylobacter and Haemophilus interactomes between COPD and HC in EndAECOPD (D, F) and SRP066375 cohort 
(E, G). # denotes paraphyletic group; • denotes unclassified genus; •• denotes classified but unnamed genus
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Fig. 3 (See legend on next page.)
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Campylobacter, Gemellaceae, Fusobacterium, Lepto-
trichia, Atopobium, TM7.3, Oribacterium, Actinomyces, 
and Rothia) were also recovered in the aforementioned 
UK study by Haldar et al [26] (Supplementary Fig.  2). 
Most of these taxa (18/20) showed fewer negative inter-
actions with other taxa in COPD, corresponding to the 
reduced antagonistic interactions of the entire network.

Campylobacter, recently found to be a strongest micro-
bial biomarker of eosinophilic COPD, was the top con-
tributor to the decreased network antagonism in COPD, 
while Haemophilus, an established neutrophilia-asso-
ciated pathogen, acted in the opposite way [3] (Fig. 2C). 
Changes in relative abundance of these two genera in 
COPD versus HC were neither observed in most of pre-
vious microbiome studies (Supplementary Table 1) nor in 
EndAECOPD and SRP066375 cohorts (Fig.  2A, B; Sup-
plementary Fig.  4). In comparison, our network analy-
sis identified distinct Campylobacter and Haemophilus 
interactomes regarding proportion of negative interac-
tions between COPD and HC in both cohorts (Fig. 2D-
G), suggesting the superiority of interactomics over 
differential abundance analysis in the identification of 
disease-associated biomarkers.

Airway microbial network displays reduced negative 
interactions during COPD exacerbation, which recovers 
following treatment
To clarify how bacterial interactomes would change dur-
ing the course of COPD exacerbation, we performed 
stability-exacerbation comparative analysis using data of 
COPDMAP and BCCS & BCES cohorts (Table  1). Beta 
diversity analysis clearly distinguished samples between 
stability and exacerbation in the two cohorts, however, 
the change in Shannon index was incongruent (Fig. 3A, 
B). In contrast, we observed significantly lower degree 
of antagonistic interactions in microbial network during 
exacerbations of COPD in both COPDMAP (P = 0.012) 
and BCCS & BCES (P = 0.011) (Fig.  3C, D). We further 
evaluated the dynamic change of COPD interactomes at 
four clinical timepoints: stability, exacerbation, post-ther-
apy (2 weeks after treatment), and recovery (6 weeks post-
exacerbation) in the BEAT-COPD cohort. Longitudinal 
analysis revealed the deviation of exacerbation microbi-
omes in beta-diversity to other timepoints (Fig.  3E, F), 

demonstrating the presence of dysbiosis at exacerba-
tion. However, such dysbiosis was not captured by alpha 
diversity analysis (Fig.  3G). By contrast, co-occurrence 
network analysis highlighted major changes in interac-
tomes, with a decrease in percent of negative microbial 
interactions during exacerbations compared with base-
line (P = 0.001), post-therapy (P = 0.002), or at recovery 
(P = 0.021) (Fig. 3H). Further breakdown of interactomes 
identified eight taxa (Veillonellaceae, Streptococcus, 
Actinobacillus, Porphyromonas, Prevotella[paraphyletic 
group], Lactobacillus, Atopobium, and Leptotrichia) with 
decreased negative interactions during exacerbation 
across COPDMAP, BCCS & BCES, and BEAT-COPD 
(Fig. 3I). These findings highlight microbial interactome 
disturbance rather than diversity loss as a reproducible 
feature of COPD exacerbation.

Airway microbial interactome is associated with key 
clinical determinants of COPD
Through unsupervised spectral clustering on the base-
line sputum microbial network of COPD patients in 
EndAECOPD cohort, we identified two network clus-
ters (Fig.  4A), with a cluster robustness of 99%. The 
cluster 2 (n = 18) had significantly lower proportion of 
negative bacterial interactions compared with the clus-
ter 1 (n = 125) (Fig.  4B). Differences in microbial com-
positions were also evident between the two clusters 
as shown in Fig.  4C-E. Demographics including age, 
sex, smoking history, and medication use were similar 
between the two clusters except that patients in cluster 
2 had lower body mass index (P = 0.035) (Supplementary 
Table 7). In assessment of COPD-related parameters, 
patients in cluster 2 were found to have lower lung func-
tion (FEV1% predicted) (P = 0.040) and higher mMRC 
score (P = 0.007) (Fig.  4F, G). Further evaluation of air-
way inflammatory status by profiling sputum cells and a 
panel of 19 cytokines revealed that patients in cluster 2 
had exaggerated neutrophilic inflammation in terms of 
sputum total cells, neutrophil counts, interleukin (IL)-1β 
and IL-8 levels (Fig. 4H-L). During the 12-month follow-
up, 71%[12/17] of patients in cluster 2 experienced an 
exacerbation while only 38%[46/120] of patients in clus-
ter 1 had an exacerbation (P = 0.012). Patients in cluster 
2 experienced significantly more moderate-to-severe 

(See figure on previous page.)
Fig. 3  Longitudinal analysis of the COPD interactome during exacerbations. (A, B). Comparison of beta diversity (weighted UniFrac distance) and alpha 
diversity (Shannon index, Mann–Whitney U-test) between stability and exacerbation samples in COPDMAP (n = 715) (A) and BCCS & BCES cohort (n = 174) 
(B). (C, D). Visualization of the interactomes in terms of positive and negative interactions between the most abundant taxa at stability and during exac-
erbation in COPDMAP (C) and BCCS & BCES (D). # denotes paraphyletic group; • denotes unclassified genus; •• denotes classified but unnamed genus. (E, 
F). Microbial clustering (E) and one-way ANOVA analysis of weighted UniFrac distance for beta diversity (F) between stability, exacerbation, post-therapy, 
and recovery in the BEAT-COPD cohort (n = 476). *** P < 0.0001 (Exacerbation-stability distance versus Stability-stability distance). (G). One-way ANOVA 
analysis of alpha diversity (Shannon index) between stability, exacerbation, post therapy, and recovery in BEAT-COPD cohort. (H). Visualization of the 
interactomes in terms of positive and negative interactions between the most abundant taxa across timepoints in BEAT-COPD cohort. (I). Venn diagram 
and barplot showing overlapped genera with altered degree of negative interactions (percent change of > 5%) between exacerbation versus stability 
across the three cohorts
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exacerbations (P = 0.004) (Fig.  4M) and had higher pro-
portion of frequent exacerbators (35%[6/17] versus 
11%[13/120], P = 0.015). A life-table analysis showed that 
the exacerbation risk was significantly higher among 
patients in cluster 2 (Log-rank test, P = 0.004; Wilcoxon 
signed rank test, P = 0.006) (Fig. 4N).

Frequent exacerbators have reduced antagonistic 
interactions in microbiota while exhibiting subtle 
compositional changes
Finally, we focused specifically on the association of 
microbial network with the frequent exacerbator phe-
notype (≥ 2 moderate-to-severe exacerbations during 
1-year follow-up). We classified COPD patients accord-
ing to exacerbator phenotype (n = 137; 6 patients lost to 
follow-up) in EndAECOPD. Characteristics between 
frequent and infrequent exacerbators were shown in 
Supplementary Table 8. Frequent exacerbators (n = 19) 
had significantly greater breathlessness (mMRC) score 
and higher level of sputum IL-1β (P = 0.016) and S100A8 
(P = 0.029) compared to infrequent exacerbators (n = 118) 
(Fig.  5A–E). Conventional microbiome analysis indi-
cated a broad similarity of microbiome signatures, with 
no significant differences observed in microbial com-
position, beta diversity, alpha diversity or bacterial load 
(Fig.  5F–I). Yet interestingly, the frequent exacerbator 
phenotype presented the typical network disturbance, 
i.e., reduced antagonistic interactions (Fig. 5J). Besides, 7 
of the 10 stability-related taxa and 5 of the 8 exacerba-
tion-related taxa identified in above network analysis also 
showed reduced negative interactions in frequent exac-
erators (Fig. 5K). These findings suggest that network dis-
turbance, instead of alterations in microbial abundance 
or load, may be a key driver of the frequent exacerbator 
phenotype in patients with COPD.

Disscussion
In this paper, we have performed a cross-cohort microbi-
ome analysis to uncover the interaction pattern of airway 
bacteria in COPD. We demonstrate that loss of nega-
tive bacterial interactions, rather than change in micro-
bial abundance or diversity, is a reproducible feature of 
COPD dysbiosis both at clinical stability and during exac-
erbation, which is strongly associated with disease phe-
notypes especially exacerbation risk.

This study reveals a highly reproducible signature of 
COPD network disturbance, that is, reduced negative 
interactions, which is validated in geographically diverse 
cohorts across different disease phases regardless of using 
different network inference methods. Interpretation of 
its ecological relevance requires further experimental 
discoveries, as computationally interspecies relation-
ships can have various ecological meanings [28]. Among 
these, cooperation (positive) and competition (negative) 

are two commonest types of microbial interactions [29]. 
Growing evidence demonstrate that cooperating net-
works are ecologically unstable due to positive feedbacks 
whereas microbial competitions suppress these positive 
feedbacks to promote microbiota stability that is essential 
for host health [29, 30]. Therefore, the observed decrease 
in proportion of negative bacterial interactions in COPD 
may reflect an imbalance between cooperation and com-
petition within ecological networks where reduced com-
petition leads to dysregulated positive feedbacks and 
subsequent microbiota destabilization. Such unstable 
microbiome communities are marked by their vulner-
ability to perturbations [29], which potentially underpins 
the clinical observations that patients with COPD easily 
develop airway dysbiosis and deteriorated respiratory 
symptoms (exacerbation) upon exposure to various irri-
tants [31]. Indeed, we detected significant perturbations 
of microbiota during COPD exacerbation in three siz-
able cohorts, as indicated by fewer antagonistic interac-
tions and distinct beta diversity. Intriguingly, although 
unstable, the microbial interactome in COPD is some-
what resilient and plastic, as suggested by the longitudi-
nal interactome dynamics in which negative interactions 
decreased during exacerbation but recovered after treat-
ment. Collectively, loss of negative microbial interac-
tions is likely an indicator of competitive deficiency and 
microbiota destabilization in COPD that is potentially 
modifiable.

The interactomics provides a new conceptual frame-
work for understanding the microbial etiology of COPD 
and its exacerbation. Traditionally, chronic infection 
or colonization with pathogenic bacteria especially 
Haemophilus is thought to promote chronic airway 
inflammation and an increase in bacterial load triggers 
exacerbations [32]. However, this theory does not con-
sider coexisting commensals that may interact with respi-
ratory pathogens. Here interactomic analyses suggest 
that the persistent airway inflammation of COPD that 
exaggerates during exacerbation is more likely to be a 
consequence of bacterial interactome disturbance rather 
than infection. This is first supported by our analysis of 
the Haemophilus interactome showing that the interac-
tion pattern of this established pathogen rather than its 
abundance is altered in COPD. Besides, the interactome 
disturbance featured by reduced negative interactions 
is prevalent both at COPD stability and during exac-
erbation while diversity loss, a sign of bacterial infec-
tions, is relatively rare [33]. Additionally, we verify in the 
EndAECOPD cohort that the interactome disturbance 
is correlated with COPD neutrophilic inflammation and 
exacerbation events (Fig.  4). Although Haemophilus 
was also enriched in the patient cluster characterized by 
interactome disturbance (Fig.  4E), indicating a poten-
tial link between Haemophilus colonization with airway 
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Fig. 4  Clinical determinants correlate with microbial network. (A) Unsupervised stratification of microbial networks with spectral clustering for the 143 
COPD patients in EndAECOPD cohort into two clusters (cluster 1, n = 125; cluster 2, n = 18). (B). Visualization of positive and negative interactions between 
the most abundant taxa in each cluster. Cluster 2 had significantly lower proportion of negative bacterial interactions compared with cluster 1 (P < 0.0001, 
χ2 test). # denotes paraphyletic group; • denotes unclassified genus; •• denotes classified but unnamed genus. (C). Principal Coordinates Analysis (PCoA) 
illustrating beta diversity (Weighted UniFrac distance) between network clusters. (D). Comparison of Shannon index and bacterial load (16S rRNA gene 
copies/uL sputum plug) betweeen clusters (Mann–Whitney U-test). (E). LEfSe analysis of differentially abundant taxa between clusters. (F-L). Comparison 
of baseline lung function (FEV1% predicted) (F), breathlessness (mMRC) score (G), and sputum total cells (H), neutrophils (I), eosinophils (J), IL-1β (K), 
and IL-8 (L) between the two identified patient clusters. (M). Comparison of follow-up moderate-to-severe exacerbations between the two clusters. (N). 
Survival analysis of differences between the two clusters in the time to first exacerbation
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inflammation and exacerbation. We showed in the exac-
erbator phenotype analysis that frequent exacerbators, 
characterized by greater mMRC score and higher level 
of sputum IL-1β, had reduced antagonistic interactions 
in microbiota while exhibiting no significant change in 
microbial abundance, diversity, and bacterial load (Fig. 5). 
These data suggest that network disturbance, rather than 
alterations in microbial abundance or load, may be a 

key driver of airway inflammation and exacerbations in 
patients with COPD.

COPD is a well-recognized phenotypically-heteroge-
neous disease, which is being addressed by delineating 
the shared biological underpinnings [34]. In this work, 
we have identified clinical correlations between bacterial 
interactome and multiple key disease parameters includ-
ing lung function, symptom score, airway inflammation, 

Fig. 5  Network analysis of the interactome in frequent exacerbators. Classification of the COPD patients in the EndAECOPD cohort according to exac-
erbator phenotype. (A-E). Comparison of breathlessness (mMRC) score (A), lung function (FEV1% predicted) (B), sputum total cells (C) and cytokines (D, 
E) between exacerbator phenotypes. Of the 19 detected cytokines, IL-1β (D) and S100A8 (E) were significantly elevated in frequent exacerbators. Box 
plots reflect median and IQRs, with whiskers (5–95 percentile) bounding non-outlier values. ns, not significant (Mann–Whitney U-test). IFE = infrequent 
exacerbator, FE = frequent exacerbator. F. Barplots of microbial abundance displaying similar taxonomic composition between exacerbator phenotypes 
which was confirmed by LEfSe analysis revealing no differentially abundant taxa. (G). PCoA illustrating similar beta diversity (Weighted UniFrac distance) 
between exacerbator phenotypes. (H, I). Comparison of Shannon index (H) and bacterial load (I) between exacerbator phenotypes with Mann–Whitney 
U-test. (J). Opposing network analysis of exacerbator phenotypes. The frequent exacerbators had significantly lower proportion of negative interactions 
in microbial network compared with infrequent exacerbators (P < 0.0001, χ2 test). # denotes paraphyletic group; • denotes unclassified genus; •• denotes 
classified but unnamed genus. K. Change of negative interactions (%) for the stability-related taxa (blue, up) and exacerbation-related taxa (purple, down) 
identified in above network analysis in frequent versus infrequent exacerbators. The dashed line represents ± 5%
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and exacerbation risk. Furthermore, when focusing 
specifically on the frequent exacerbator phenotype, 
that is, one of the most important COPD phenotypes, 
we showed that the frequent exacerbators had distinct 
microbial interactomes but no difference in microbiota 
compositions, suggestive of microbial network rather 
than abundance alone that potentially drives this clini-
cal state. In line with this, a previous large-scale microbi-
ome study also showed no clear clustering of microbiome 
between exacerbator phenotypes according to beta diver-
sity metrics [4]. Together with the finding that interac-
tomes differ between COPD and HC and show dynamic 
change during exacerbations, this study highlights a clini-
cal importance of microbial interactome in COPD espe-
cially the exacerbator phenotype which may help identify 
risk, guide therapy, or be targeted itself for outcome 
improvement.

The findings of this work provide new insights for 
design of strategies to modify airway dysbiosis. Long-
term antibiotic treatment, such as macrolides, has been 
shown to modify the airway microbiome, however, it 
does not effectively eradicate common airway pathogens 
either in emphysema, COPD, or bronchiectasis [35–37]. 
The identification of a disturbed microbial interactome 
in COPD that is potentially plastic suggest that we may 
target interactome rather than pathogen alone for disease 
treatment. Increasing evidence demonstrate that enhanc-
ing commensal competitiveness by supplementation 
of probiotics can promote intestinal pathogen elimina-
tion [38] and increase microbiota stability [39]. Here our 
interactome analysis identifies 18 genera (Campylobacter, 
Gemellaceae•, Fusobacterium, Bulleidia, Leptotrichia, 
Atopobium, Dialister, Lachnoanaerobaculum, Paludi-
bacter, TM7.3••, Oribacterium, Actinomyces, Rothia, 
Bacteroides, Weeksellaceae#••, Catonella, Prevotella, and 
Clostridiales•) that show consistently reduced negative 
interactions in COPD, suggesting their potential role in 
determining microbiota stability. To note, most of the 
18 genera characterized by reduced negative interac-
tions, e.g., Campylobacter, Fusobacterium, Leptotrichia, 
Prevotella, Catonella, Dialister, Lachnoanaerobaculum, 
Oribacterium, Actinomyces, Rothia, Bacteroides, have 
been reported to be depleted in COPD in the current 
and previous studies [23, 26, 40]. Besides, genera like 
Rothia have been experimentally confirmed to exert anti-
inflammatory effects in a Pseudomonas aeruginosa infec-
tion model [10]. Therefore, the identified 18 genera may 
be potentially beneficial. Furthermore, these commensals 
generally show negative interactions with Haemophilus 
in COPD (Fig. 2F, G), which may imply their broad com-
petition with this pathogen. Future studies are needed to 
test whether these commensals may potentially be used 
as probiotics to eliminate respiratory pathogens and 
rebuild microbiota stability in COPD.

Our study has several limitations. We included both 
induced and spontaneous sputum samples for assess-
ment of exacerbation interactomes. This is a potential 
confounder although previous analyses suggested no sig-
nificant differences in the microbiota between the two 
types of samples [41]. It is also uncertain how sputum 
can recapitulate the airway ecology given its inherent 
mixture of materials from the upper and lower respira-
tory tracts. The absence of adequate negative controls 
in publicly available datasets may limit the robustness of 
the analyses conducted. Aggregating data to the genus 
level leads to a loss of resolution, potentially obscuring 
important taxonomic distinctions. Except for bacteria, 
viruses and fungi are key members of airway microbiota 
and inter-kingdom interactions may also play crucial 
role in chronic airway diseases [17] which deserve fur-
ther investigation. The associations of bacterial network 
with COPD phenotypes were only evaluated in a single 
cohort with moderate sample size, thus require external 
validations. While network-based inference methods 
offer valuable insights into microbial interactions, their 
direct translation to clinical practice may be challenging. 
Especially in the context of the respiratory tract where 
bacterial abundance is typically low, the relevance and 
applicability of inferred networks to real-life interactions 
between bacteria may be limited. Besides, the observed 
bacterial interactions may potentially be affected by host 
responses but have not been adequately assessed in our 
work. Future large-scale longitudinal metagenomic study 
with host multiomics profiling is needed to bring in a 
more comprehensive picture of microbial interacting net-
work and its implications in disease.

The cross-cohort microbiome analysis identifies loss 
of negative bacterial interactions as a reproducible fea-
ture of COPD airway dysbiosis both at clinical stabil-
ity and during exacerbation, and as a strong predictor 
of exacerbation risk. These findings expand our current 
understanding of COPD dysbiosis based on differen-
tially abundant taxa or diversity metrics, and provide 
insight for interventional studies to restore airway eco-
systems by means other than antibiotics, e.g. probiotics 
supplementation.
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