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Abstract 

Background  Pulmonary arterial hypertension is a major cause of death in systemic lupus erythematosus, but there 
are no tools specialized for predicting survival in systemic lupus erythematosus-associated pulmonary arterial 
hypertension.

Research question  To develop a practical model for predicting long-term prognosis in patients with systemic lupus 
erythematosus-associated pulmonary arterial hypertension.

Methods  A prognostic model was developed from a multicenter, longitudinal national cohort of consecutively eval-
uated patients with systemic lupus erythematosus-associated pulmonary arterial hypertension. The study was con-
ducted between November 2006 and February 2020. All-cause death was defined as the endpoint. Cox regression 
and least absolute shrinkage and selection operators were used to fit the model. Internal validation of the model 
was assessed by discrimination and calibration using bootstrapping.

Results  Of 310 patients included in the study, 81 (26.1%) died within a median follow-up of 5.94 years (interquartile 
range 4.67–7.46). The final prognostic model included eight variables: modified World Health Organization functional 
class, 6-min walking distance, pulmonary vascular resistance, estimated glomerular filtration rate, thrombocytope-
nia, mild interstitial lung disease, N-terminal pro-brain natriuretic peptide/brain natriuretic peptide level, and direct 
bilirubin level. A 5-year death probability predictive algorithm was established and validated using the C-index (0.77) 
and a satisfactory calibration curve. Risk stratification was performed based on the predicted probability to improve 
clinical decision-making.

Conclusions  This new risk stratification model for systemic lupus erythematosus-associated pulmonary arterial 
hypertension may provide individualized prognostic probability using readily obtained clinical risk factors. External 
validation is required to demonstrate the accuracy of this model’s predictions in diverse patient populations.
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Introduction
Pulmonary arterial hypertension (PAH) is a fatal condi-
tion and a leading cause of death among patients with 
systemic lupus erythematosus (SLE) [1]. The prevalence 
of PAH in patients with SLE is estimated to be < 5% [2]. 
However, with the high prevalence of SLE in Asian coun-
tries, SLE-associated PAH (SLE-PAH) accounts for a 
large proportion of connective tissue disease-associated 
PAH and group 1 PAH cases [3, 4]. Therefore, a reason-
able assessment of prognosis and timely intervention in 
patients with SLE-PAH are quite necessary.

Currently, the approach to assessing patients with SLE-
PAH relies on the recommendation for group 1 PAH, such 
as the 2015 and 2022 European Society of Cardiology 
(ESC) / European Respiratory Society (ERS) guidelines 
[5, 6], the risk scores derived from the ESC/ERS guide-
line risk table [7–9] and the Registry to Evaluate Early and 
Long-Term PAH Disease Management (REVEAL) prog-
nostic tools [10]. However, SLE-PAH is rarely considered 
by these prognostic tools because of the limited number 
of cases. Even though the mode of death in SLE-PAH is 
predominately due to right ventricular failure. Multiorgan 
involvement of lupus is likely to worsen right ventricu-
lar failure due to PAH [11]. This needs to be taken into 
account when assessing the prognosis of SLE-PAH. Given 
this situation, prognosis prediction tools specific for SLE-
PAH are needed in clinical practice.

The Chinese SLE Treatment and Research Group 
(CSTAR) was established and funded by the Chinese 
Ministry of Science and Technology in 2009 and was fur-
ther extended with the formation of the Chinese Rheu-
matism Data Center, which is directed by the National 
Health and Family Planning Commission of China [12, 
13]. The CSTAR-PAH cohort is a multicenter registry 
consisting of 14 referral CSTAR centers designed to pro-
spectively follow patients with SLE-PAH diagnosed by 
right heart catheterization (RHC) [14, 15]. Using data 
from the CSTAR-PAH cohort, we aimed to develop a 
validated practical model for predicting long-term (i.e., 
5-year) prognosis in individual patients with SLE-PAH.

Materials and methods
The methods described in this article follow the Trans-
parent Reporting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis statement [16].

Participants
We developed a prognostic model for all-cause death in 
the CSTAR-PAH cohort, which included patients with 
RHC-confirmed SLE-PAH from 14 referral centers par-
ticipating in the CSTAR between November 2006 and 
May 2016 [15]. SLE was diagnosed by a rheumatologist 

at each CSTAR center in accordance with the 2012 Sys-
temic Lupus International Collaborating Clinics clas-
sification criteria [17]. Diagnoses of PAH were based 
on RHC, defined as the mean pulmonary arterial pres-
sure ≥ 25 mmHg at rest, pulmonary arterial wedge pres-
sure ≤ 15  mmHg, and pulmonary vascular resistance 
(PVR) > 3 Wood units [5, 15]. Patients with other forms of 
pulmonary hypertension identified via a pulmonary func-
tion test showing total lung capacity < 60% and ventilation 
perfusion scintigraphy or computed tomographic pulmo-
nary angiography showing pulmonary thromboembolism 
were excluded. We also excluded those with overlapping 
connective tissue diseases. The researchers at each center 
guaranteed the integrity and accuracy of their protocols 
and data, and approval from the medical ethics commit-
tee was obtained according to local regulations.

Patient assessment and clinical outcomes
Baseline was defined as the time of SLE-PAH diagnosis 
confirmed by RHC. At baseline, we obtained information 
related to the following: demographic characteristics, 
medical history, physical examination findings, transtho-
racic echocardiography results, pulmonary function test 
results, hemodynamic measurements from RHC, and 
serum laboratory results. Planned and recorded compre-
hensive follow-up evaluations were arranged for patients 
every 3–12  months or earlier if there was a change in 
symptoms. Investigators, blinded to both variables and 
outcomes, reviewed and classified all clinical evaluations 
in a structured format. Data were collected indepen-
dently from each participating center.

The endpoint of the present analysis was all-cause 
death during the follow-up period. The causes of death 
were ascertained by experienced rheumatologists at each 
referral center based on clinical records, social security 
data, and death registries. Deaths were assessed without 
knowledge of the candidate predictor variables.

Candidate predictors
A multidisciplinary team of cardiologists, rheumatolo-
gists, and researchers selected the predictors for further 
evaluation in the prognostic model, based on existing 
literature and clinical judgment (see “Additional file  1: 
Appendix S1” for summary of candidate predictors) [18, 
19]. From an initial list of 117 baseline predictor vari-
ables, 36 candidate predictors were selected (Additional 
file  1: Table  S1) for further analyses. To improve model 
fit, all continuous predictors were first tested for nor-
mality and transformed appropriately if the association 
between a continuous predictor and the outcome was not 
linear [20] (see “Additional file 1: Appendix S2” for con-
tinuous variable transformation).
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Statistical analysis
Continuous variables are presented as medians with 
interquartile ranges, while categorical variables are pre-
sented as frequencies. The follow-up time was calculated 
from the date of baseline to the date of death from any 
cause or last follow-up before the end of the study period 
(February 1, 2020). For patients who were lost to follow-
up, follow-up was censored at the date of last contact. 
Reverse Kaplan–Meier methods were used to estimate 
the median follow-up time [21]. All statistical analyses 
were performed using R statistical software version 3.4.3 
(http://​www.R-​proje​ct.​org/).

Missing data were explored to understand the patterns 
in value gaps, and those were considered to be missing 
at random. The values for the missing predictors were 
imputed using multiple imputation techniques based on 
chained equations (MICE) from R statistical software 
[22]. All candidate predictors with missing values were 
included in the multiple imputation model, together with 
the outcome, all related prespecified predictors (Addi-
tional file 1: Table S1) of the risk model, and the estimate 
of the cumulative hazard function [23]. A total of five 
imputed datasets were generated, and estimates obtained 
from the imputed datasets were combined using the 
Rubin rule [24].

To improve model accuracy and reduce model overfit-
ting, we used the least absolute shrinkage and selection 
operator (LASSO) method [25] to select the most predic-
tive variables from the preselected predictors. The opti-
mal model was determined by cross-validation, sample 
size, and rationality of the predictors. Subsequently, the 
final model was developed using the Cox proportional 
hazards regression model [26]. The Cox proportional 
hazards assumption for each covariate was tested using 
Schoenfeld residuals [27] (e-Fig. 1). The 5-year all-cause 
death probability for an individual patient with SLE-PAH 
can be calculated using the following formula:

where S0(t) is the 5-year average survival probability, and 
the prognostic index equals the sum of the products of 
the predictors and their coefficients.

Bootstrapping was used to evaluate the performance 
of the model and permit adjustment for optimism. This 
is the most efficient internal validation procedure, as all 
aspects of model development, including variable selec-
tion, are validated [28]. For this purpose, 200 bootstraps 
were generated.

The predictive discrimination of this model was 
assessed using Harrell’s concordance index (C-index) 
[29]. Ensemble reliability was measured using the reliabil-
ity component of the Brier score [30]. The observed and 

Pat 5 years = 1− S0(t)
exp(prognostic index)

predicted hazards of all-cause death in patients with SLE-
PAH were assessed using a calibration curve [31, 32]. In 
addition, patients were divided into five risk groups based 
on the cutoff points at the 20th, 40th, 60th, and 80th per-
centiles of probability distribution in the imputed dataset. 
Graphical comparisons of the observed and predicted all-
cause deaths at 5 years according to the five risk groups 
were also performed. Finally, we developed easy-to-use 
measures to stratify risk. The final risk group was reas-
signed into high-, medium-, and low-risk groups based 
on the risk distributions of the five risk groups.

The REVEAL tools have powerful clinical applica-
tions in patients with PAH (World Health Organization 
[WHO] group 1(10). The discriminative power of the 
REVEAL prognostic Eq. (10) and simplified risk calcula-
tor [33] at 5 years were assessed (see “e-Appendix 3” for 
validation of the REVEAL model). The risk calculator’s 
ability to stratify risk at 5 years was also validated using 
Kaplan–Meier survival curves. Subsequently, we com-
pared the performance of our SLE-PAH model with that 
of the REVEAL model.

Results
Clinical features and characteristics
The study cohort comprised 310 patients with RHC-
confirmed SLE-PAH. Among them, 25.8% were newly 
diagnosed with PAH (The duration between onset of 
symptoms associated with PAH and the performance 
of RHC is within 3  months). The time from SLE-PAH 
onset to diagnosis by RHC was 1.5  years. The baseline 
clinical characteristics are shown in Table 1. Among the 
310 patients, 306 with a confirmed mortality status were 
included in further analyses. During a median follow-
up period of 1,615 patient-years, 81 deaths occurred. 
The median follow-up time using reverse Kaplan–Meier 
methods was 5.94 years (IQR 4.67–7.46), and 167 (54.6%) 
patients had ≥ 5 years of follow-up.

Predictor variables
Eight variables with nonzero coefficients in the LASSO 
Cox regression model were selected to predict the risk of 
all-cause death, which included assessment of functional 
capacity, hemodynamic variables, organ involvement, 
and laboratory parameters. The definitions of the predic-
tor variables are listed in Table 2. The coefficients of the 
eight variables in the five imputed datasets are listed in 
Additional file 1: Table S2.

Model development and model performance
The entire follow-up data (306 patients with 81 events) 
were used to develop the prediction model. Hazard ratios 
and 95% confidence intervals were estimated by fitting the 

http://www.R-project.org/
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Cox proportional hazards model (Table 3). The cumulative 
risk of all-cause death in 5 years for an individual patient 
with SLE-PAH can be calculated using the following 
formula:

Pat 5 years = 1− 0.9167271exp(prognostic index)

The prognostic index was calculated as follows:  
0.6106 × modified WHO functional class – 0.0015 ×  
6MWD + 0.0528 × PVR  –  0.0136 × EGFR + 0.3233 ×  
thrombocytopenia + 0.4907 × mild  ILD + 0.9482 × NT-
proBNP/BNP +  0.6751 ×  Dbil  (log  transformed), 
where 6MWD is six-minute walking distance, EGFR is 

Fig. 1  Calibration curve of the SLE-PAH prognostic model by comparing the observed vs predicted survival. A Imputed data; B complete data. 
SLE-PAH, systemic lupus erythematosus-associated pulmonary arterial hypertension
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estimated glomerular filtration rate, ILD is interstitial 
lung disease, NT-proBNP/BNP is N-terminal pro-brain 
natriuretic peptide / brain natriuretic peptide level, and 
Dbil is direct bilirubin level. The coding of the predictors 
is presented in Table 2.

The model performance of a 5-year predicted risk was 
assessed using 306 patients with 65 events. The apparent 
C-index of the model was 0.78. After enhanced bootstrap 
adjustment for optimism, the prediction model had an 
optimism-corrected C-index of 0.77 and an optimism-
corrected Brier score of 0.04 (Table 4). A calibration plot 
with 200 bootstrap replications showed a comparison 
between the predicted and observed risks (Fig.  1). Sen-
sitivity analyses with complete data were also performed 
(see “Additional file 1: Appendix S4” and Additional file 1: 
Table S3 for sensitivity analyses).

e-Fig.  2 illustrates a good agreement between the 
observed and predicted risk of all-cause death at 5 years 
in the stacked imputed dataset and the complete origi-
nal dataset. According to the average risk probabilities 
of the five groups and consideration of clinical applica-
tion, groups 2–4 were merged into one group. Finally, 
the predicted risk was reassigned as low risk (< 0.05), 
medium risk (0.05–0.38), and high risk (> 0.38). The clini-
cal implications of the model were verified in both the 
stacked imputed dataset and the complete original data-
set (Fig. 2).

Comparison with the REVEAL prognostic model
The C-index for the prognostic equation and risk score 
calculator in the SLE-PAH cohort was 0.71 and 0.70, 
respectively, indicating poorer but modest discrimina-
tory ability compared with that of the SLE-PAH predic-
tion model. However, the Kaplan–Meier survival curves 
of the five groups classified by the REVEAL risk score cal-
culator showed that the risk groups did not predict risk 
accurately, especially in the very high risk group (Fig. 3). 
The REVEAL model seemed to be more appropriate for 
discriminating low risk, average risk, and the rest (includ-
ing moderately high risk, high risk, and very high risk). 
According to the Kaplan–Meier survival curves classified 
by the SLE-PAH prediction model, there was a significant 
difference among the three risk groups.

Discussion
To our knowledge, this study provides the first prognos-
tic model for all-cause death in patients with SLE-PAH, 
based on the largest, prospectively recruited, national 
SLE-PAH cohort. The model was based on eight objec-
tively measured and readily available variables: modified 

Table 1  Baseline clinical characteristics

WHO, World Health Organization; 6MWD, 6-min walking distance; RHC, right 
heart catheterization; PVR, pulmonary vascular resistance; SLE, systemic lupus 
erythematosus; EGFR, estimated glomerular filtration rate; ILD, interstitial 
lung disease; NT-proBNP, N-terminal pro-brain natriuretic peptide; BNP, brain 
natriuretic peptide; Dbil, direct bilirubin level; LDH, lactate dehydrogenase; 
SLEDAI, systemic lupus erythematosus disease activity index

Characteristic Median (Q1-Q3) or no.(%)

Age at baseline 32.4 (27.9,41.0)

Female sex 304 (99.3%)

Raynaud phenomenon 155(50.7%)

Shortness of breath 257(84.0%)

Fatigue 94(30.7%)

Dry cough 60(19.6%)

Episodes of chest pain 40 (13.1%)

Syncope 25 (8.2%)

Palpitation 31 (10.1%)

Modified WHO functional class -

 I–II 146 (48.7%)

 III–IV 151 (50.4%)

6MWD, m 425.0 (360.0, 480.0)

Pericardial effusion 144 (49.8%)

Mean right atrial pressure, mm Hg 5.0 (3.0, 8.0)

PVR, Wood units 9.3 (6.9, 14.2)

Cardiac index 2.7 (2.1,3.4)

Mean pulmonary artery pressure, mm Hg 46.0 (38.0, 54.0)

EGFR 108.1(90.3,120.9)

Acute/subacute cutaneous lupus 101 (33.0%)

Chronic cutaneous lupus 48 (15.7%)

Oral or nasal ulcers 63(20.6%)

Nonscarring alopecia 109(35.6%)

Arthritis 165(54.0%)

Serositis 108 (35.3%)

Renal disorder 103 (33.7%)

Neurologic disorder 12 (3.92%)

Hemolytic anemia 7(2.28%)

Thrombocytopenia 60 (19.7%)

Mild ILD 73 (24.8%)

Low complement 173 (56.5%)

Direct Coombs test 45 (14.7%)

Anti-Sm antibodies 105 (34.3%)

Anti-RNP antibodies 186 (61.6%)

NT-proBNP level 1074.0 (280.0,2254.0)

BNP level 186.0 (59.0,540.0)

NT-proBNP level/BNP -

 0 BNP < 50 /NT-proBNP < 300 207 (76.4%)

 1 BNP > 50/ NT-proBNP > 300 64 (23.6%)

Dbil 3.5 (2.4, 5.0)

LDH 228.0 (186.0, 293.0)

Serum uric acid 342.0 (280.0, 456.0)

SLEDAI 4.0 (2.0, 9.0)
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Table 2  Definitions of the predictor variables in the final model

Abbreviations: WHO, World Health Organization; PH, Pulmonary arterial hypertension; 6MWD, 6-min walking distance; PVR, pulmonary vascular resistance; RHC, right 
heart catheterization; EGFR, estimated glomerular filtration rate; ILD, interstitial lung disease; HRCT, high-resolution computed tomography; N-terminal pro-brain 
natriuretic peptide; BNP, brain natriuretic peptide; Dbil, direct bilirubin level

Predictor variable Definition Coding

Modified WHO functional class Developed initially for heart failure by the New York Heart 
Association and adapted for PH by the WHO

Binary (Modified WHO functional class I/II 0, Modified WHO 
functional class III/IV 1)

6MWD Six minute walk distance at baseline Continuous (m)

PVR It was determined at baseline based on the RHC as fol-
lows: PVR = ( mean pulmonary artery pressure − pulmo-
nary artery wedge pressure) / cardiac output

Continuous (wood)

EGFR It was assessed based on glomerular filtration rate, which 
was estimated using the Chronic Kidney Disease-Epide-
miology Collaboration equation

Continuous (ml/minute/1.73 m2)

Thrombocytopenia Thrombocytopenia (< 100,000/mm3) at least once in the 
absence of other known causes, such as drugs, portal 
hypertension, and thrombotic thrombocytopenic 
purpura

Binary (no 0, yes 1)

Mild ILD Clinical diagnosis of ILD was based on the evidence 
of HRCT, other potential causes were excluded, such 
as infection, drug toxicity and heart failure. Mild ILD 
was defined as minimal disease on HRCT combined 
with total lung capacity > 60%

Binary (no 0, yes 1)

NT-proBNP level/BNP NT-proBNP level or BNP level at baseline Binary (BNP < 50 /NT-proBNP < 300 0, BNP > 50/ NT-
proBNP > 300 1)

Dbil (log transformed) Levels of serum direct bilirubin at baseline Continuous (log transformed)

Table 3  Risk prediction model of SLE-PAH

Abbreviations: WHO, World Health Organization; 6MWD, 6-min walking distance; EGFR, estimated glomerular filtration rate; ILD, interstitial lung disease; NT-proBNP, 
N-terminal pro-brain natriuretic peptide; BNP, brain natriuretic peptide; Dbil, direct bilirubin level

Predictor variables Risk prediction model

β coefficient Hazard ratio 95% CI P value

Modified WHO functional class 0.6106 1.8415 1.1134–3.0459 0.0174

6MWD -0.0015 0.8586 0.6476–1.1383 0.2894

PVR 0.0538 1.4967 1.1125–2.0135 0.0077

EGFR -0.0136 0.6641 0.4828–0.9135 0.0119

Thrombocytopenia 0.3233 1.3817 0.8251–2.3136 0.2190

Mild ILD 0.4907 1.6334 0.9930–2.6869 0.0533

NT-proBNP level/BNP 0.9482 2.5812 0.9379–7.1034 0.0664

Dbil (log transformed) 0.6751 1.6413 1.2521–2.1515 0.0003

Table 4  Model performance

Performance measure Apparent cohort performance Average optimism calculated from 200 
bootstrap validation

Optimism-
corrected 
performance

Total C-index 0.79 0.02 0.77

C-index at 5 years 0.80 0.03 0.77

Brier score 0.13 0.01 0.14



Page 7 of 12Qu et al. Respiratory Research          (2023) 24:220 	

Fig. 2  Comparison of observed and predicted risks according to three risk groups of the SLE-PAH prognostic model. Vertical bars represent 
observed and model-based predicted probability of all-cause death by 5 years. A Imputed data; B complete data. SLE-PAH, systemic lupus 
erythematosus-associated pulmonary arterial hypertension
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Fig. 3  Survival by risk group according to the A REVEAL simplified risk calculator, B our purposed SLE-PAH prognostic model using complete data 
and C our purposed SLE-PAH prognostic model using imputed data. REVEAL, Registry to Evaluate Early and Long-Term PAH Disease Management; 
SLE-PAH, systemic lupus erythematosus-associated pulmonary arterial hypertension
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WHO functional class, 6MWD, PVR, EGFR, thrombo-
cytopenia, mild ILD, NT-proBNP/BNP, and Dbil. Three 
risk groups were identified based on predicted probabil-
ity and clinical applicability. The internal validation of the 
model showed its robustness and adequate performance.

Our study had several advantages. First, to provide a 
comprehensive evaluation of SLE-PAH, the candidate 
predictors were selected not only based on the known 
prognostic factors for PAH but also by considering the 
clinical features and assessment of SLE. The candidate 
predictors were confirmed by expert opinion to ensure 
objectivity and stability [16]. Subsequently, the LASSO 
method was used to reduce the dimensions and statisti-
cally control for potential selection bias. It surpasses the 
method of choosing predictors based on the strength of 
their univariable association with the outcome. Second, 
the model was built from easily accessible variables with 
a specific formula, which means it can be straightfor-
wardly applied in clinical settings and is readily amenable 
to external validation. Third, we may keep the variables 
as continuous if they show a linear relationship with the 
outcome, because categorization of predictors causes 
a loss in information [20], which will lead to existing 
algorithms having a low positive predictive accuracy for 
outcome.

The new SLE-PAH model we have developed showed 
good discrimination with satisfactory calibration between 
the expected and observed risks, whereas the REVEAL 
model might not particularly suitable for patients with 
SLE-PAH [5]. REVEAL tools have been extensively vali-
dated and have performed well in geographically diverse 
PAH populations [33–35]. However, as one of the etiolo-
gies of PAH, SLE is an autoimmune disease characterized 
by lesions in multiple organs [12].To effectively predict 
the death of SLE-PAH, both multi-organ involvement 
and PAH-related right ventricular failure need to be con-
sidered. Besides, patients with SLE-PAH were younger, 
overwhelmingly female. Sex differences can lead to inac-
curacies when we use REVEAL to predict the progno-
sis of SLE-PAH [36]. Therefore, limitations may remain 
when assessing SLE-PAH. This study showed that when 
applied to SLE-PAH, the REVEAL prognostic model 
had limited discriminatory power (C-index statistics, 
0.71 and 0.70), which may lead to inaccurate stratifica-
tion of risk groups, especially the moderately high risk, 
high-risk, and very high risk groups. Additional recom-
mendations for the risk assessment of PAH include the 
2015/2022 ESC/ERS guidelines on PAH [5, 6] and Results 
From the Comparative, Prospective Registry of Newly 
Initiated Therapies for Pulmonary Hypertension (COM-
PERA) [37]. Nevertheless, these recommendations are 
primarily expert consensus-based risk stratification tools 
rather than rigorously derived models. Consequently, we 

encountered limitations in our ability to calculate the risk 
probability and make comparisons with our own model.

Previous studies have assessed the performance of vari-
ous predictors of PAH prognosis. The clinical plausibility, 
feasibility, and applicability of the final selected predic-
tors were further confirmed by expert opinion. The mod-
ified WHO functional class, 6MWD, NT-proBNP/BNP, 
Dbil, and PVR are well-recognized predictors and have 
been confirmed to be associated with PAH prognosis [5, 
10, 38–45]. Moreover, previous studies have shown that 
PVR might be a measure that is sensitive to treatment 
effects [41]. In this study, we confirmed that PVR was 
associated with a continuous increase in the risk of death 
due to SLE-PAH, and its potential clinical application is 
worth further exploration. Notably, our model develop-
ment approach took into account the multisystem clini-
cal manifestations in patients with SLE, including EGFR, 
thrombocytopenia, and mild ILD. Multisystem involve-
ment may contribute to the development of more severe 
forms of the disease and yield a poor prognosis. Never-
theless, prognostic information from systematic evalu-
ation of patients with SLE-PAH more closely mirrors 
actual practice.

Risk stratification is helpful in identifying patients who 
may benefit from intensive therapy, which would improve 
clinical decision-making. Both complete case analysis 
and imputed data analysis showed that the mortality rate 
of SLE-PAH was > 50% in the high-risk group, and some 
of the patients were censored during the follow-up. Given 
the good response to immunosuppressive therapy in 
patients with SLE-PAH [2, 46], clinical strategies to rein-
force b both immunosuppressive and PAH target therapy 
may be particularly beneficial in high-risk patients. Of 
course, the intention of the proposed SLE-PAH progno-
sis model is not to replace physicians’ clinical judgment 
but rather to complement clinical reasoning by providing 
objective individualized prognostic information. Specific 
clinical decision-making needs further investigation. The 
ability to prospectively identify high-risk patients repre-
sents the first step in improving outcomes. However, we 
still need to treat prediction probability as a continuum, 
interpreted within each patient’s clinical context, since 
the model does not categorize patients into simple high- 
or low-risk groups with predefined therapeutic strategies 
(Additional file 2).

This study has several limitations. The cohorts con-
sisted of patients with SLE-PAH, recruited on the basis 
of prespecified criteria, which may limit the use of the 
model in all patients with SLE-PAH. We did not include 
patients who had only been examined using transthoracic 
echocardiography instead of RHC. However, according 
to the ESC/ERS recommendation, the diagnosis of PAH 
should be confirmed by definitive RHC [5]. In addition, 
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most of the baseline data were collected at an early stage 
in the course of SLE-PAH. The model was better used in 
patients with disease stages similar to those of the study 
cohort. The applicability to reassessment of risk at any 
point in the course of this model needs further validation.

Because PAH is a relatively rare complication of SLE 
and the mortality rates have declined significantly in 
recent years, all samples in the CSTAR-PAH cohort were 
used to develop a specific SLE-PAH model. We have not 
yet obtained a separate dataset of patients with SLE-PAH 
for external validation. The generalizability of the results, 
especially to other regions and races, should be carefully 
considered. Further research is required to confirm our 
proposed models and to measure their performance.

This study presents a retrospective analysis of the 
prospective CSTAR PAH cohort. It is important to note 
that a limited amount of data is not derived from stand-
ardized prospective clinical evaluations. Consequently, 
we have incorporated a portion of missing data, which 
can be attributed to challenges in acquiring certain 
investigations and inconsistencies in specific reports 
across various centers. We addressed this problem by 
using a multiple imputation method, which is widely 
regarded as the best approach. However, the mecha-
nisms underlying the missing pattern may be compli-
cated and may bias the estimates. A study with more 
complete data is needed in the future to obtain accurate 
estimates.

Conclusion
The risk prediction model proposed in this study pro-
vides individualized estimates of risk regarding all-cause 
death in SLE-PAH, which should be used by physicians 
experienced in the management of the condition. By 
obtaining an evidence-based assessment of the patient, 
clinicians may be better able to individualize and opti-
mize therapeutic strategies to improve survival. External 
validation will be required to demonstrate the accuracy 
of this model in different cohorts of SLE-PAH.
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