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Abstract 

Introduction  Lung cancer remains the leading cause of death from cancer, worldwide. Developing early detection 
diagnostic methods, especially non-invasive methods, is a critical component to raising the overall survival rate and 
prognosis for lung cancer. The purpose of this study is to evaluate two protocols of a novel in vitro cellular immune 
response test to detect lung cancer. The test specifically quantifies the glycolysis metabolism pathway, which is a 
biomarker for the activation level of immune cells. It summarizes the results of two clinical trials, where each deploys 
a different protocol’s version of this test for the detection of lung cancer. In the later clinical trial, an improved test 
protocol is applied.

Method  The test platform is based on changes in the metabolic pathways of the immune cells following their activa-
tion by antigenic stimuli associated with Lung cancer. Peripheral Blood Mononuclear Cells are loaded on a multiwell 
plate together with various lung tumor associated antigens and a fluorescent probe that exhibits a pH-dependent 
absorption shift. The acidification process in the extracellular fluid is monitored by a commercial fluorescence plate 
reader device in continuous reading for 3 h at 37 °C to document the fluorescent signal received from each well.

Results  In the later clinical trial, an improved test protocol was applied and resulted in increased test accuracy. 
Specificity of the test increased to 94.0% and test sensitivity increased to 97.3% in lung cancer stage I, by using the 
improved protocol.

Conclusion  The improved protocol of the novel cellular immune metabolic response based test detects stage I and 
stage II of lung cancer with high specificity and sensitivity, with low material costs and fast results.
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Background
Lung cancer (LC) remains the worldwide leading cause of 
death from cancer. Unfortunately, approximately 75% of 
patients are diagnosed at an advanced stage of the disease 
(III, IV) [1]. Despite significant investment and advance-
ment in LC research, only 16% of LCs are detected at the 
early stages [2]. Thus, even with recent advancements in 
treatment, survival remains poor. Developing early detec-
tion diagnostic methods, especially non-invasive meth-
ods, is a critical component in raising the overall survival 
rate and prognosis for lung cancer [3].

Current diagnostic methods (e.g., Computed Tomog-
raphy—CT, Positron Emission Tomography—PET, Low-
dose CT- LDCT, radiography) have high sensitivity but 
low specificity. False positive rates of 96.4% for LDCT 
and 94% for radiography [4–7] lead to a large number of 
unnecessary follow-up procedures. These procedures are 
expensive, invasive and can have significant complica-
tion risks. These can be pronounced in the elderly where 
para-physiological changes occur in the lungs which can 
lead to inappropriate interpretation of radiological find-
ings that put patients at risk of over or under treatment 
as Baratella et  al. report [8]. Recent work demonstrates 
that core-needle biopsy performed under CT leads to 
accurate histological diagnosis of LC with high sensitiv-
ity and specificity [9]. While it is less invasive than other 
procedures used to obtain tissue from the lung nodule, it 
is not without complication risks [9]. Invasive follow-up 
procedures are expensive and can have significant com-
plication risks. Nuñez et al. reported [10] high frequency 
of complication rates, and factors associated with com-
plications in a national sample of veterans screened for 
lung cancer by invasive procedures such as bronchos-
copy, transthoracic needle lung biopsy and thoracic sur-
gery. Shin et al. [11] demonstrated that after lung cancer 
surgery, pulmonary function and patient-reported out-
comes noticeably decreased in the immediate postopera-
tive period and improved thereafter, except for dyspnea 
and lack of energy. Hence, in recent years, several alter-
native liquid biopsy approaches such as metabolomic, 
transcriptomic, genomic, and proteomic [1, 12–16] for 
the identification of cancerous biomarkers have been 
explored for the early detection of LC. These approaches 
use different pathological, molecular, and biochemical 
analyses. Unlike invasive lung tissue biopsy to detect LC 
biomarkers, a liquid biopsy such as blood sample or other 
body fluid is non-invasive. For example, biomarkers as 
circulating cell-free tumor DNA (cf DNA), cell-free RNA 
(cf RNA), exosomes, tumor-educated platelets (TEP), and 
circulating tumor cells (CTCs) can be detected in blood 
to detect LC [17, 18]. Common to all of these diverse 
methods is that the detection of LC in its early stage has 
low sensitivity and/or specificity. Klein et al. validated a 

targeted methylation-based test to detect cancer and 
reported sensitivities of 16.8% to detect stage I and 40.4% 
to detect stage II [19, 20]. Xue et al. stated in their review 
of molecular technologies in liquid biopsy that early 
detection still needs to be improved [21].

Studies show that activation of immune cells requires 
changes in the way metabolic energy (ATP molecules) is 
generated. Immune system cells alter their energy gen-
eration in order to obtain an effector function. Usually, 
the shift is from the oxidative phosphorylation cycle into 
an aerobic glycolysis cycle. This shift provides immedi-
ate energy that gives the immune system the ability to 
attack the foreign antigen [22–24]. Hence, it appears that 
the activation state of the immune system, in response to 
tumor development, differs from the non-cancerous state 
[25–30]. These important discoveries corroborate our 
hypothesis that changes caused by cancer are reflected 
in different metabolic activity profiles of immune cells 
such as Peripheral Blood Mononuclear Cells (PBMCs) 
in response to various antigenic stimulants. In general, 
an effective in vitro response of the immune cells to re-
stimulation with a LC tumor-associated antigen (TAA) 
stimulant indicates that the immune cells were previously 
exposed to the specific stimulant. Importantly, it indi-
cates that the cells are able to produce an immunological 
response to it.

This article describes an improved immunometabo-
lism blood test that measures the function of the immune 
cells in response to antigenic stimuli based on changes in 
the metabolic pathways of cells. There are several clas-
sical methods to test lymphocytes’ function. Mixed leu-
kocyte culture (MLC) determines histocompatibility by 
co-culturing PBMCs of a potential donor with those of 
an allograft recipient. MLC takes 3–8 days to get results 
and involves the use of H3 thymidine radiolabeling [31]. 
Limiting dilution assay (LDA) also assesses histocom-
patibility between two parties. It determines the precur-
sor frequencies of cytotoxic and helper T lymphocytes. 
The duration of this test is generally longer than MLC 
and takes 7–18  days [32]. Lymphocyte transformation 
test (LTT), in contrast to MLC and LDA, measures lym-
phocyte responses toward nonspecific stimuli (mito-
gens/drugs) or specific stimuli (antigen). A proliferative 
response shows that antigens of the respective microor-
ganism are presented by antigen-presenting cells, and are 
recognized by pre-existing, antigen-specific T lympho-
cytes. The duration of this test is 8–10 days [33]. A more 
recent method to test the function of lymphocytes is the 
enzyme-linked immunospot (ELISpot) assay. It is a sensi-
tive and quantitative method to detect cytokine produc-
tion level in cell culture supernatant after growing cells 
with stimulant antigen. The duration of this ELISpot test, 
including cell culturing, is 2–12  days [34, 35]. Various 



Page 3 of 11Shai et al. Respiratory Research           (2023) 24:52 	

flow cytometry assays that measure lymphocyte function-
ality include tests that are based on the detection of cell 
divisions by fluorescent CFSE staining, use of multimer 
staining of human leukocyte antigen (HLA) restricted 
peptides with their T cell receptor, use of other staining 
of cell’s receptors, or measurement of proteins that corre-
late with cell activation [36]. Like ELISpot, these types of 
tests need cell culturing for 2–12 days. ImmuKnow test 
measures the response of CD4+ T-helper lymphocytes 
to the mitogen phytohaemagglutinin-L (PHA), a general 
stimulator. It measures the amount of ATP produced by 
the cells following nonspecific stimulation. The duration 
of this test is 2 days [37]. While the methods described 
are non-invasive or devoid of the radiation risk of imag-
ing, they all require days of execution, are cumbersome 
to perform, and there are no uniform standards (posi-
tive and negative controls, measurement units and work-
ing protocols) in performing these methods by different 
users. Therefore, the need for an assay that monitors 
in  vitro cellular immune responses (primarily T and B 
cells) to antigenic stimuli with TAA, within a few hours, 
to determine immune activation levels is important.

In a previous publication, we presented a novel, non-
invasive, cancer detection platform [38]. Our platform, 
named Liquid ImmunoBiopsy™, is based on measure-
ments of metabolic activity profiles of immune cells. In 
our previous study we showed that by using machine 
learning methods to get a multivariate prediction model 
and training on the metabolic profiles, we were able 
to differentiate between blood samples of LC patients 
(n = 100, all stages) and control subjects (n = 100) with 
91% sensitivity and 80% specificity in a cross-validation 
statistical evaluation. Since the clinical benefits for early 
detection of LC are demonstrated, we continued to 
develop the metabolic activity (MA) test protocol. The 

objective of this presented research is to investigate the 
accuracy of the metabolic activity test for lung cancer 
(MA-LC) in its improved protocol version versus the 
previous version by comparing MA-LC results from two 
additional clinical trials. The first clinical trial (n = 328) 
is referred to here as the “earlier” clinical trial, and the 
second additional clinical trial (n = 245) is referred to 
here as the “later” clinical trial. The earlier MA-LC pro-
tocol was used in the earlier clinical trial (n = 328), and 
an improved protocol was used in the later clinical trial 
(n = 245). We tested whether the improved protocol 
does, in fact, increase the sensitivity and specificity of the 
MA-LC to detect stage I and stage II LC.

Methods
Metabolic activity test
Improved protocol
Blood samples were collected in VACUETTE® tube 
9 ml K3EDTA (Greiner Bio-One 455,036). Samples were 
transported in thermo-stated containers set to 18–25 °C 
until PBMCs separation. Fresh PBMCs were isolated 
by Lymphoprep™ kit, according to the manufacturer’s 
instructions (Axis-Shield). Total cell numbers were 
counted using automated cell counter LUNAII (Logos 
Biosystems). PBMCs concentration was adjusted to 
4 × 106 cells/ml with Assay Buffer PBS (Biological Indus-
tries Cat No 02-020-1A) with the addition of 5.5  mM 
glucose (Sigma Cat No G8769). Each well in a black non-
binding, 96 multiwell plate (Greiner Bio-One) was loaded 
with 100  μl of the PBMCs solution and 100  μl of assay 
buffer containing 8-Hydroxypyrene-1,3,6-trisulfonic acid 
(HPTS, Thermo Fisher Cat No H348) in final concen-
tration of 0.5 μM, and including 1 of the 8 TAA stimu-
lants (short peptides 9–23 amino acids—Table 1) in final 
concentration of 10  μg/ml. These TAA were previously 

Table 1  List of TAA​

a Proteins in which only a partial sequence of ~ 9–23 amino acids were used
b Two such partial sequences were used

Stimulant name

New York esophageal squamous cell carcinoma-1 (NYESO-1)a,b A human tumor antigen expressed in squamous cell carcinoma and adenocarcinoma

Melanoma-associated antigen A3 (MAGE-A3)a,b Tumor antigens encoded by MAGE-A genes. Expressed in various tumor types but not 
in normal cells, except male germline cells or placenta

Gastrin-releasing peptide (GRP)a A mitogenic molecule for many lung cell types. GRP peptides bind to specific surface 
receptors and initiate a complex cascade of signaling events (including MAPK and 
EGFR involvement) that culminates in the stimulation of DNA synthesis and cancer cell 
division

Human Epidermal Growth Factor Receptor 2 (HER2)a,b A transmembrane glycoprotein and member of the epidermal growth factor receptor 
family. HER2 deregulation, including overexpression, amplification, and mutation, has 
been described in NSCLC

Neuron-specific enolase (NSE)a A dimeric isoform of the glycolytic enzyme enolase found mainly in neurons. A well-
known marker of small cell lung cancer and for NSCLC

Phytohemagglutinin (PHA) A mitogen that induces non-specific activation of T/B immune cells
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selected based on higher elicited metabolic shift reac-
tivity of PBMCs of lung cancer patients than PBMCs of 
healthy subjects. The samples were loaded in triplicates 
and each triplicate appears twice in the plate layout, once 
in the right half side of the plate and once more in the 
left side. PBMCs were first loaded, followed by stimu-
lants, to obtain a final volume of 200 μl in each well. Fur-
thermore, each multiwell plate included four controls: 
one containing only the fluorescent HPTS probe without 
cells and without TAA stimulant; the second containing 
the HPTS probe with cells but without TAA stimulant, 
which represents the ‘basal state’; the third containing 
mitogen Phytohemagglutinin (PHA) in final concentra-
tion of 10 μg/ml, which is used as a positive control; and 
the fourth containing lactic acid in final concentration of 
500  μM, used as chemical control. After the plate wells 
were loaded, the left half side of the plate was sealed her-
metically with film (ThermalSeal RT™, Excel Scientific, 
Inc.) to avoid ventilation of CO2 and NH3, termed the 
‘closed’ mode, while the right half side was left unsealed 
and termed the ‘open’ mode. Both states enable the 
measurement of real-time accumulation of ‘soluble’ 
versus ‘volatile’ metabolic products (lactic acid versus 
CO2 and NH3), thereby differentiating between oxida-
tive phosphorylation (OXPHOS), anaerobic glycolysis 
and aerobic glycolysis. The multiwell plate was loaded 
into a commercial fluorescence plate reader device (fil-
ter based BioTek—Synergy H1 and Gen5 software ver. 
3.11.19). Fluorescence intensities were measured at 
513  nm under sequential excitation at wavelengths of 
455 and 403 nm. The concentration of acidity units was 
calculated as a function of the ratio (d) between the two 
above-mentioned excitation wavelengths as described in 
our previous published article [38]. Acidification process 
was monitored in continuous reading for 3 h at 37 °C to 
document the fluorescent signal received from each well. 
These reflect time-dependent changes in acid concentra-
tion of the extracellular fluid in reaction to exposure to a 
stimulant or a control. The raw data from the plate reader 
device are processed instantly using proprietary Savicell 
software.

Previous protocol
A description of the assay can be found in a previously 
published article [38]. In brief, each well in a black non-
binding, low-volume 384 multiwell plate (Greiner Bio-
One) was loaded with 10  μl of the PBMCs solution (5 
× 106 cells/ml) and 10  μl of 10  mM PBS containing 1 
of the 16 stimulating reagents (stimulants) in increasing 
concentrations and 0.5 μM/well HPTS. Each test plate 
included two controls: one containing only the fluores-
cent HPTS probe, without cells and without stimulants; 
the other containing the HPTS probe with cells but 

without stimulants, which represents the ‘basal state’. 
The acidification process was monitored for approxi-
mately 1.5  h at 37  °C by a commercial fluorescence 
plate reader (TECAN Infinite M200/ F200; application 
Tecan i-control 1.10.4.0, 1.11.1.0, 1.12.4.0). First, the 
reader monitored the acidification process without a 
plate seal (‘open’ state), and then, the multi-well plate 
was sealed hermetically (ThermalSeal RT™, Excel Sci-
entific, Inc.) to avoid ventilation of CO2 and NH3 for 
the second phase of the test (‘closed’ state).

Cohort details of the earlier clinical trial
Subjects were enrolled between 2014-06-02 and 2017-
11-16 in three medical centers. In all cases, the study 
received approval of Institutional Review Boards 
(IRB)  in accordance with the Declaration of Helsinki, 
and subjects read and signed a dedicated consent 
form. Inclusion and exclusion criteria were applied as 
described in our previously published article [38], apart 
from excluding lung cancer stages III and IV from the 
cohort. The reference standard for lung cancer is biopsy 
or surgery and the cancer stage is determined by a 
physician specialist based on defined medical criteria. 
Control subjects were age and sex matched with lung 
cancer subjects (Fig. 1).

Cohort details of the later clinical trial
Subjects were enrolled between 2019-03-24 and 2021-
03-09 in three medical centers. In all cases, the study 
received IRB approval in accordance with Declaration of 
Helsinki, and subjects read and signed a dedicated con-
sent form. The same inclusion and exclusion criteria were 
applied as described in our previous published article 
[38] apart from that subjects with diabetes were included 
in this trial as we previously learned that diabetes does 
not impact the MA-LC results. The reference standard 
for lung cancer is biopsy or surgery and the cancer stage 
is determined by a physician specialist based on defined 
medical criteria. Control subjects were age and sex simi-
lar with lung cancer subjects. Subjects with different 
types of lung cancer and different stages of lung cancer 
were included, with emphasis on early stages for cross 
validation statistical evaluation (Fig. 2).

Data analysis
Each subject was assigned a datasheet containing raw 
fluorescent readings of the plate wells as a function of 
time. The fluorescent readings were transformed into 
values which correlate with the acidity of the sample. We 
modeled the biological progression of the immunological 
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response and extracted a set of informative features for 
use in our assay.

Machine Learning (ML) models were trained using 
logistic regression implemented by the publicly avail-
able scikit-learn Python library. For cross-validation, 
a stratified fivefold split was used. Confidence interval 
(CI) was calculated using Wilson score interval. Each 
stage is displayed separately for sensitivity calculation. 
We determined the decision boundary by choosing the 
point on the ROC curve with the highest Euclidean dis-
tance from the main diagonal. For a measure of sepa-
ration between lung cancer and control subjects, the 
area under the receiver operating characteristic curve 
(AUC) was chosen. Repeated evaluations with dif-
ferent random, cross validation train/test splits were 
performed to verify result stability. Our cancer refer-
ence method is based on the results from tissue biopsy 
pathology of lung nodules, which determines whether 
there is a malignancy, and the lung cancer type. The 
cancer stage is determined by a physician specialist 
based on defined medical criteria.

Results
Analytical sensitivity and specificity of the metabolic 
activity lung cancer test (MA‑LC)
The Metabolic Activity test measures the change in acid 
concentration over time in reaction to exposure to a stim-
ulant. We use 8-Hydroxypyrene-1,3,6-trisulfonic acid 
(HPTS)—a highly water-soluble, membrane-impermeant 
pH indicator (pH 6.6 to 8.0) that is added to each plate’s 
well. HPTS exhibits a pH-dependent adsorption shift 
that allows the performance of ratiometric pH measure-
ments by using the excitation ratio of 403/455 nm (d) that 
correlates with acidity. Analytical sensitivity of the newly 
developed metabolic activity test represents the smallest 

amount of change over time of acidity in a sample that 
can be accurately measured by the MA test.

To calculate the analytical sensitivity, we first deter-
mined the limit of blank (LOB). Our blank is PBMCs 
without a stimulant. We measure the highest result that 
is likely to be observed with a blank with certainty of 
90% (z-score of 1.645 times the standard deviation of the 
repeats). Next, we’ve added to the LOB the lowest meas-
urement result that is likely to be observed with PBMCs 
with a stimulant with certainty of 90%. The calculated 
lower limit of quantification (LLOQ) for metabolism 
activity based on the above calculations is 0.000119 (d/
minute) in change of acidity over time. This points out 
the high sensitivity of the MA test to detect tiny changes 
in acid concentration over time.

The MA test measures time-dependent changes in acid 
concentration of the extracellular fluid in a reaction that 
relates to the glycolysis metabolic cycle. We verified that 
the test specifically quantifies glycolysis by measuring the 
acidity (d) change over time. We use 2-deoxy-D-glucose 
(2-DG), a glucose analogue able to suppress glycolysis 
by competitively inhibiting hexokinase 2 (HK2). Add-
ing a general stimulant (mitogen PHA, stimulates meta-
bolic activity in a nonspecific manner) to PBMCs causes 
detectable extracellular acidification reaction resulting 
from the secretion of lactic acid, a product of the glycoly-
sis pathway into the extracellular fluid (blue line—Fig. 3) 
while adding 2DG (10  mM/well) together with PHA to 
PBMCs (using PBMCs from the same subject), prevented 
the extracellular acidification as a result of the inhibition 
effect of 2DG on glycolysis metabolic pathway (orange 
line—Fig. 3).

Oligomycin (OMC) is an inhibitor of the oxidative 
phosphorylation metabolic cycle. It is an Adenosine 
Triphosphate (ATP) synthase inhibitor that prevents 
phosphorylation of Adenosine Diphosphate (ADP) to 

Fig. 1  Lung cancer type distribution. Distribution of lung cancer 
types in the cohort of the earlier clinical trial. Subjects were enrolled 
between 2014-06-02 and 2017-11-16 in three medical centers. The 
’Other’ group includes lung cancer types other than non-small cells 
lung cancer and small cells lung cancer

Fig. 2  Lung cancer type distribution. Distribution of lung cancer 
types in the cohort of the later clinical trial. Subjects were enrolled 
between 2019-03-24 and 2021-03-09 in three medical centers
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ATP. Inhibition of ATP synthase via the oxidative phos-
phorylation metabolic cycle stimulates the increase of the 
glycolysis cycle in order to meet the energy production 
need of the cell. We verified that adding OMC (4  μM/
well) together with PHA to PBMCs increased the glyco-
lysis rate (orange line—Fig. 4) compared to the glycolysis 
rate that was detectable in PBMCs with PHA alone (blue 
line—Fig. 4). The test specifically quantifies the increase 
in glycolysis metabolic pathway caused by OMC inhibi-
tion on the oxidative phosphorylation metabolic cycle.

These two experiments show that acidity changes over 
time in PBMCs extracellular fluid correlate with changes 
of the glycolysis metabolic cycle.

Data analysis
Each subject was assigned a datasheet containing raw 
fluorescent readings of the plate wells as a function of 
time. The fluorescent readings were transformed into 
values which correlate with the acidity of the sample. We 
modeled the biological progression of the immunologi-
cal response and extracted a set of informative features 
for use in our assay. Machine Learning (ML) models were 
trained using logistic regression implemented by the 
publicly available scikit-learn Python library. For cross-
validation, a stratified fivefold split was used. We deter-
mined the decision boundary by choosing the point on 
the receiver operating characteristic (ROC) curve with 
the highest Euclidean distance from the main diagonal. 
Repeated evaluations with different random, cross vali-
dation train/test splits were performed to verify result 
stability. Our cancer reference method is based on the 
results from tissue biopsy pathology of lung nodules, 
which determines whether there is a malignancy, and 
the lung cancer type. The cancer stage is determined by 
a physician specialist based on defined medical criteria.

Sensitivity and specificity of MA‑LC for detection 
early‑stage LC of the earlier clinical trial
Performance was evaluated using a stratified fivefold 
cross validation. Confidence interval (CI) was calcu-
lated using Wilson score interval. Clinical stages I and II 
are displayed separately for sensitivity calculation; for a 
measure of separation between lung cancer and control 
subjects, the area under the receiver operating charac-
teristic curve (AUC) was chosen (Fig. 5). Table 2 shows 
demographics and clinical characteristics for participat-
ing subjects in the earlier clinical trial.

Sensitivity and specificity of MA‑LC for detection 
early‑stage LC of the later clinical trial
Performance was evaluated using a stratified fivefold 
cross validation. Confidence interval (CI) was calculated 
using Wilson score interval. Clinical stages I, II and III, 

IV were combined for sensitivity calculation; N/A indi-
cates cases where the cancer clinical stage was not availa-
ble. For a measure of separation between lung cancer and 
control subjects, the area under the receiver operating 
characteristic curve (AUC) was chosen (Fig.  6). Table  3 
shows demographics and clinical characteristics for par-
ticipating subjects in the later clinical trial. 

Fig. 3  Acidity signal is related to glycolysis metabolic pathway (2DG 
suppresses acidification/glycolysis). The blue line shows acidity (d) 
changes over time of PBMCs together with a general stimulant 
(mitogen PHA). The orange line shows acidity (d) changes over time 
of PBMCs together with a general stimulant (mitogen PHA) and 2DG 
(10 mM/well)

Fig. 4  Inhibition of oxidative phosphorylation metabolic pathway by 
OMC increases glycolysis. LThe orange line shows acidity (d) changes 
over time of PBMCs together with a general stimulant (mitogen PHA) 
and OMC. The blue line shows acidity (d) changes over time of PBMCs 
together with a general stimulant (mitogen PHA)
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Discussion
We describe an improved immunometabolism blood 
test that measures the function of the immune cells in 
response to LC antigenic stimuli based on enhancement 
of the glycolysis metabolic pathway of immune cells. 

Glycolysis enhancement is a marker for the rapid activa-
tion of most immune cells [29].

This research article compares results from two clini-
cal trials; in the earlier clinical trial an earlier MA-LC 
protocol was used and in the later clinical trial an 
improved protocol was used. Since the clinical benefits 
for early detection have been demonstrated, this current 
research focuses on early-stage lung cancer (stages I, II). 
Our results indicate that the MA-LC in its final version 
improves the test’s specificity from 81.7% (Table 4 – ear-
lier clinical trial) to 94% (Table  5 – later clinical trial), 
while sensitivity increased from 92.3% (Table  4 – ear-
lier clinical trial) to 94.9% (Table  5 – later clinical trial) 
in identifying LC stage I, and from 89.5% (Table 4 – ear-
lier clinical trial) to 100% (Table 5 – later clinical trial), in 
identifying LC stage II. The higher specificity and sensi-
tivity in the later clinical trial is the result of fine tuning 
the previously published protocol. These improvements 
include calibration of stimulants and PBMCs concen-
trations, selection of the most suitable stimulants, and 
improvements in quality control methods. 

The sensitivity and specificity obtained by MA-LC in 
detecting early-stage lung cancer is much higher than the 
results reported for stages I, II in the literature by using 
only one method [19–21, 39]. The superior accuracy for 
early stages by MA-LC can be explained by the hypoth-
esis that immune cells in lung-associated lymph nodes 
reach the malignant cells in the lung when the tumor is 
young, small and has yet to develop its ability to evade 
immune cells (stages I, II). Recognition of lung cancer 
TAAs (stimulants) by immune cells is possible and results 
in an immediate shift to the glycolysis pathway, enabling 

Table 2  Demographics and clinical characteristics for participating 
subjects (n = 328) – earlier clinical trial

a The age of subjects at blood withdrawal
b Subjects with at least one pack-year in their history, who have not smoked in 
the past 30 days

Characteristic Lung cancer 
group 
(n = 82)

Control 
group 
(n = 246)

All (n = 328)

Age (years)a 66.7 ± 9.6 65.0 ± 8.1 65.4 ± 8.5

Sex

 Male 46 137 183

 Female 36 109 145

Smokers

 Current 29 41 70

 Formerb 34 89 123

Clinical stage

 I 63 – –

 II 19 – –

Histological type

 Adenocarcinoma 48 – –

 Squamous cell carci-
noma

19 – –

 Other non-small cell 8

 Small cell 2

 Other 5 – –

Fig. 5  Receiver operating characteristic (ROC) curve (a) and a histogram of prediction scores (b), visual of the separation between lung cancer and 
control subjects—the earlier clinical trial. a Shows receiver operating characteristic (ROC) curve; random changes for detecting cancer are plotted 
with a dashed line. b Shows a histogram of prediction scores; ranges of prediction scores that contain both cancer and control subjects have 
overlapping bars
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an effective local immune response. As the malignant 
tumor develops and grows (cancer at later stages), it 
activates mechanisms for evading the immune system. 
This results in the failure of the immune system to ade-
quately activate and allows the tumor to escape immune 

detection and elimination [40]. Tumor-exposed immune 
cells reach peripheral blood, and repeated in vitro expo-
sure to TAAs will result in a shift to the glycolysis meta-
bolic pathway. This shift is detectable by the MA-LC. 
Metabolic pathway shift and immune cell function are 
highly correlated [29]. For example, the activation of 
immune receptors promotes glycolysis, which is the 
energy source of immune cells to fight the foreign invader 
tumor antigens.

Other biomarkers noninvasive tests focus on detect-
ing circulating biomarkers, including tumor DNA, tumor 
antigens, tumor cells, exosomes, and extracellular vesi-
cles. These biomarkers are released to peripheral blood 
primarily when the tumor reaches a certain size at a later 
stage of the disease.

We have previously shown [38] that chronic obstruc-
tive pulmonary disease (COPD) or smoking habits do 
not affect the test results, which supports other findings 
that diseases produce specific signatures in the meta-
bolic profiles, which can help distinguish between vari-
ous ailments such as cancers, autoimmune diseases, and 
infectious diseases [23]. To date, there are no laboratory 
tests for lymphocyte function that provide a quick and 
accurate answer. The immunometabolism assay can help 
diagnose early stages of cancer by using tumor associ-
ated/specific peptides.

The broad potential of this immunometabolism-based 
platform may also extend to other types of diseases, as 
well as to treatment monitoring and therapy selection. It 
could provide the cellular immune status of vaccinated 
people to SARS-COV-2 by using virus spike peptides, 
measure other cellular immune statuses to diseases such 
as allergy, autoimmune, immunodeficiency, antimicrobial 

Fig. 6  Receiver operating characteristic (ROC) curve (a) and a histogram of prediction scores (b); visual of the separation between lung cancer and 
control subjects—the later clinical trial. a) Shows receiver operating characteristic (ROC) curve; random changes for detecting cancer are plotted 
with a dashed line. b Shows a histogram of prediction scores; ranges of prediction scores that contain both cancer and control subjects have 
overlapping bars

Table 3  Demographics and clinical characteristics for participating 
subjects (n = 245) – later clinical trial

a The age of subjects at blood withdrawal
b Subjects with at least one pack-year in their history, who have not smoked in 
the past 30 days

Characteristic Lung cancer 
group 
(n = 111)

Control 
group 
(n = 134)

All (n = 245)

Age (years)a 67.9 ± 8.8 52.4 ± 13.5 59.4 ± 13.9

Sex

 Male 74 73 147

 Female 37 61 98

Smokers

 Current 61 47 108

 Formerb 30 18 48

Clinical stage

 I 39 – –

 II 21 – –

 III 25 – –

 IV 25 – –

 N/A 1

Histological type

 Adenocarcinoma 77 – –

 Squamous cell carci-
noma

21 – –

 Other 13 – –
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immunity, follow up the effect of immunotherapy treat-
ments, and measure drug efficacy.

Liquid ImmunoBiopsy™ is a new, promising, and non-
invasive platform that measures the metabolic state of the 
immune system as a direct indicator of cellular immune 
responses (primarily T and B cells) to antigenic stimuli. 
The MA-LC provides results within five hours of receiv-
ing the blood sample for MA-LC. The analytical sensitiv-
ity of the test is high with a lower limit of quantification 
(LLOQ) of 0.000119 (d/minute) in change of acidity over 
time. It specifically quantifies glycolysis which is a bio-
marker for the activation level of immune cells that are 
re-exposed in vitro to lung TAA stimulants.

The present study has limitations. Not all control sub-
jects received LDCT screening, nor were they followed-
up after the blood draw, therefore, it is unknown whether 
lung cancer cases were already present and missed. Sep-
arately, cross validation is a widely used approach for 
assessment of classification performance and can address 
known individual confounders. However, cross-validation 
procedures do not control simultaneously for all con-
founders, and the use of an independent test set is needed 
to evaluate the generalizability of these results. Prospec-
tive studies are planned to validate classifier performance 

in an independent cohort and verify the generalization 
predictions from confounder-controlled CV.

The MA-LC is, inter alia, a diagnostic method to detect 
stage I and stage II of lung cancer, with low material costs 
and fast results. Furthermore, the combination of LDCT 
scans with MA-LC may reduce the need for follow-ups 
of suspected lung nodules, prevent unnecessary radiation 
exposure, and decrease the number of unnecessary inva-
sive procedures with their associated complications. In 
addition, the MA-LC can help improve adherence to rou-
tine medical screenings in high-risk populations through 
the use of a patient-friendly blood test. A larger prospec-
tive clinical validation is a next step.

Conclusions
Data analysis of a clinical trial applying the improved 
protocol of the ImmunoBiopsy™ test shows test speci-
ficity and sensitivity of 94.0% and 97.3%, respectively in 
detecting lung cancer stage I, and test specificity and sen-
sitivity of 94.0% and 100%, respectively in detecting lung 
cancer stage II. The sensitivity and specificity obtained by 
this test in detecting stage I and stage II lung cancer is 
significantly higher than the results reported for stage I 
and stage II in the literature that uses only one method. 

Table 4  Sensitivity and specificity of MA-LC of the earlier clinical trial

Performance measures CI (95%)

Specificity 81.7% (76–86%)

Sensitivity 91.5% (83–96%)

Sensitivity per stage

Stage Number of subjects Sensitivity

I 63 92.3%

II 19 89.5%

Table 5  Sensitivity and specificity of MA-LC of the later clinical trial

Performance measures CI (95%)

Specificity 94.0% (89–97%)

Sensitivity 97.3% (92–99%)

Sensitivity per stage

Stage Number of subjects Sensitivity

I 39 94.9%

II 21 100.0%

III 25 100.0%

IV 25 96.0%

N/A 1 100.0%
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ImmunoBiopsy™ is a promising, and non-invasive test to 
help diagnose early stages of lung cancer with low mate-
rial costs and fast results. Detecting lung cancer in its 
early stage is a critical component in raising the overall 
survival rate and prognosis for lung cancer.
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