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Abstract 

Background:  Study of pulmonary arterial hypertension (PAH) in claims-based (CB) cohorts may facilitate understand‑
ing of disease epidemiology, however previous CB algorithms to identify PAH have had limited test characteristics. We 
hypothesized that machine learning algorithms (MLA) could accurately identify PAH in an CB cohort.

Methods:  ICD-9/10 codes, CPT codes or PAH medications were used to screen an electronic medical record (EMR) 
for possible PAH. A subset (Development Cohort) was manually reviewed and adjudicated as PAH or “not PAH” and 
used to train and test MLAs. A second subset (Refinement Cohort) was manually reviewed and combined with the 
Development Cohort to make The Final Cohort, again divided into training and testing sets, with MLA characteristics 
defined on test set. The MLA was validated using an independent EMR cohort.

Results:  194 PAH and 786 “not PAH” in the Development Cohort trained and tested the initial MLA. In the Final Cohort 
test set, the final MLA sensitivity was 0.88, specificity was 0.93, positive predictive value was 0.89, and negative predic‑
tive value was 0.92. Persistence and strength of PAH medication use and CPT code for right heart catheterization were 
principal MLA features. Applying the MLA to the EMR cohort using a split cohort internal validation approach, we 
found 265 additional non-confirmed cases of suspected PAH that exhibited typical PAH demographics, comorbidities, 
hemodynamics.

Conclusions:  We developed and validated a MLA using only CB features that identified PAH in the EMR with strong 
test characteristics. When deployed across an entire EMR, the MLA identified cases with known features of PAH.
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Introduction
Pulmonary arterial hypertension (PAH) is a progressive 
and fatal rare disease with an incidence of approximately 
1/1,000,000 population. PAH is a challenging diagnosis to 
make often resulting in delayed diagnosis and etiology is 

unknown in many cases [1]. Much of our current under-
standing of disease epidemiology has come from care-
fully performed registries including patients evaluated 
at expert centers [2–4]. However, these registries have 
inadequate ability to identify risk factors that precede 
disease development, clinical features that may be clues 
to disease presence and facilitate earlier diagnosis, or 
real-world efficacy data on PAH therapies. The ability to 
confidently identify PAH cases in large administrative 
claims datasets and electronic medical records (EMRs) 
is a key first step to answering these impactful questions. 
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Limiting algorithm components only to administrative 
data is advantageous because extraction of raw diag-
nostic data (e.g. hemodynamics) is not practical in most 
EMR and such data are not available in claims data-
bases. Application of machine learning approaches that 
automatically weight different components to increase 
accuracy may outperform the rules-based approaches 
published to date.

PAH is a distinct form of pulmonary hypertension 
(PH) which must be distinguished clinically from other 
forms of PH by extensive evaluation of lung and cardiac 
structure and function and right heart catheterization [5, 
6]. PAH is thought to have a distinct molecular etiology 
from other forms of PH and is treated with specific medi-
cations that are not uniformly known to be beneficial in 
other forms, particularly in PH associated with left heart 
failure. These complex diagnostic and treatment require-
ments are coupled with imprecision in billing codes 
used for PAH [7], which taken together make confident 
identification of PAH patients within a large administra-
tive claims database highly challenging. Prior attempts 
at creating algorithms have had limited diagnostic accu-
racy for PAH specifically to date, and reliance on admin-
istrative coding alone has proven insufficient to reliably 
identify PAH patients from the medical record [4, 7–14]. 
While machine learning algorithm has been used to iden-
tify PH in claims data [15], this approach has not, to our 
knowledge, specifically been used for PAH. These litera-
ture limitations are, in part, because to manual review of 
patient level data to adjudicate a diagnosis of PAH was 
limited.

We hypothesized that a three-component algorithm 
based on ICD codes, procedural codes for right heart 
catheterization, and PAH-specific medications might 
perform best and offer widespread applicability to most 
EMRs and commercially available administrative claims 
databases. Using a combination of well-phenotyped 
patients within a large de-identified electronic medi-
cal record, manual review of potential PAH cases, novel 
machine learning analytic techniques, and a split cohort 
internal in silico validation cohort, we sought to develop 
and test an algorithm that accurately identifies PAH 
patients with only administrative claims data at a large 
tertiary care center.

Methods
Study population
The Vanderbilt University Institution Review Board 
approved this study with a waiver of consent as non-
human subjects research. Data for this study were 
extracted from Vanderbilt’s Synthetic Derivative (SD) 
database, which is a deidentified form of the EMR at Van-
derbilt University Medical Center previously described 

[16, 17]. The SD contained > 2.5 million unique patients 
at the time data were extracted.

Development cohort
Our final algorithm was developed in an iterative pro-
cess involving multiple stages as is standard [18]. We 
first identified sufficient true cases of PAH within the SD 
to develop an initial algorithm, which we refer to as the 
Development Cohort. To narrow our search, we used a 
screening tool in which we defined possible PAH as hav-
ing at least one of the following features suggestive of a 
diagnosis of PAH (Fig.  1): ICD-9/10 code for primary 
pulmonary hypertension, CPT code variant for right 
heart catheterization, or PAH-specific medications (cap-
turing both generic and brand names). The prevalence of 
each variable in the Synthetic Derivative is provided in 
Additional file 1: Table S1. This enrichment step identi-
fied 8000 charts with at least one feature, which we then 
sorted by the number of features above to focus the 
chart review on patients most likely to have PAH. Then, 
980 charts with at least one feature were independently 
reviewed by PH specialists (KS, SH, or ARH). In addi-
tion to confirmatory chest imaging and pulmonary func-
tion testing, the determination of PAH required a right 
heart catheterization demonstrating a mean pulmonary 
artery pressure ≥ 25  mmHg, pulmonary vascular resist-
ance ≥ 3 Wood units, and pulmonary capillary wedge 
pressure ≤ 15 mmHg according to the World Symposium 
on Pulmonary Hypertension (WSPH) guidelines at the 
time of patient evaluation [19]. These gold-standard PAH 
cases and “not PAH” controls were used for the first stage 
in machine learning algorithm development. The Devel-
opment Cohort was randomly divided into 70% training 
set and 30% test set to produce our first algorithm. The 
algorithm resulting from the Test Set of the Development 
Cohort is referred to as the “Initial Algorithm” with test 
characteristics reported below.

Refinement cohort
The Initial Algorithm developed from the test set of the 
Development Cohort was deployed against the remain-
ing 7020 charts flagged in our screening tool to create 
the Refinement Cohort which contained 741 additional 
predicted PAH cases. Among the 741 predicted cases, we 
identified an additional 468 manually confirmed cases of 
PAH.

Final cohort
In our final step, the Development and Refinement 
Cohorts were combined into a single cohort, Final 
Cohort, including PAH cases and non-cases from 1694 
manually reviewed charts and excluding cases < 18 from 
the Development Cohort. The purpose of this step was to 
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apply an additional layer of algorithm training. “This total 
cohort was also divided randomly and separated into a 
training set consisting of 80% of the cases and a test set 
consisting of the remaining 20% of cases.”. The results 
reported for our final algorithm are those developed from 
the test set of the Final Cohort. Although the cases in this 
final set are derived from the Development and Refine-
ment Cohorts, the final model was trained anew on the 
Final Cohort and is independent of prior models (i.e. all 
model parameters were randomly set in the final model 
before beginning training on the Final Cohort). The algo-
rithm evolved from the Development and Refinement 
Cohorts and as such this specific version of the algorithm 
had not previously been examined against the cases and 
controls.

Internal validation
Algorithm validation is a minimum requirement of 
machine learning studies. Our final algorithm was 
deployed in the remainder of patients in the SD that were 
not previously studied in any Cohorts (approximately 2 
million cases). The purpose of this internal validation set 
was to report the characteristics of patients selected by 
the algorithm and determine their similarity to published 
PAH demographics and clinical features [20–22]. This 
step simulates application of the algorithm in an admin-
istrative dataset because it only uses claims-based data. 
These cases were aggregated to identify the prevalence of 
commonly published features of PAH: age, sex, comor-
bidities including congenital heart disease and connective 

tissue disease by ICD9/10 codes as previously published 
[23], PAH-medication use, and hemodynamic data from 
right heart catheterization (mean right atrial pressure, 
mean pulmonary artery pressure, pulmonary capillary 
wedge pressure, cardiac output, and cardiac index). The 
features of cases identified in the SD were then compared 
with published PAH registries.

Machine learning algorithms
We used several distinct machine learning techniques 
described in the supplement to identify an algorithm 
with the best performance characteristics: Elastic net 
[24], random forests (RF) [25], extreme gradient boosting 
(XGBoost) [26]. For optimization, we used Bayesian opti-
mization [27]. Algorithms were trained using the ranger 
[28], xgboost [29], and glmnet [30] R packages. We per-
formed cross validation using the caret [31] R package 
and Bayesian hyperparameter optimization using the 
mlrMBO [20] R package.

Statistical analysis
Sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and area under the 
curve (AUC) of the initial algorithm were calculated from 
the test set of the Development Cohort and the perfor-
mance of the final algorithm were calculated from the 
test set of the Final Cohort. The best performing algo-
rithm (RF) was evaluated to determine which features 
were most important for categorization. Each feature 
(ICD-9/10 code for primary pulmonary hypertension, 

Fig. 1  Features of screening tool. The screening tool included PAH medications, including brand and generic names, current procedural 
terminology (CPT) codes for right heart catheterization and International Classification of Diseases (ICD) 9 or 10 codes for pulmonary hypertension. 
With final testing of the algorithm, characteristics of the algorithm that were tested included the strength, persistence and durability
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CPT code variant for right heart catheterization, or PAH-
specific medications) was assigned a strength, persis-
tence, and durability. Strength was defined as the number 
of mentions throughout the medical record. Persistence 
was defined as the number of days that code or term 
stayed on the record. Durability was defined as the per-
sistence divided by the length of the record after the first 
appearance on the record. Statistics were computed using 
the same R package used to train the models, Classifica-
tion And REgression Training (caret). TRIPOD checklist 
is in the supplemental material.

Results
Initial development of algorithm
Among patients in the SD flagged by the screening tool 
with an PAH feature, we manually reviewed 980 charts, 
which comprised the Development Cohort (Fig.  2). Of 
these, 194 were determined to have true PAH and 786 
were confirmed as not PAH. Based on the Development 

Cohort, our machine learning algorithms (RF, XGBoost 
and Elastic Net) underwent initial training and test-
ing. These 980 manually reviewed cases were divided 
randomly into a training set (70%) and a test set (30%). 
The test characteristics of the best-performing Initial 
Algorithm (RF) in the Development Cohort were: speci-
ficity: 0.98, sensitivity: 0.66, positive predictive value: 
0.88, negative predictive value: 0.92. Results of the ini-
tial algorithm using each of the three machine learning 
approaches and comparison with mediation use alone are 
reported in Additional file 1: Table S2, Fig. S1. The Initial 
Algorithm developed from the test set of the Develop-
ment Cohort was deployed against the remaining 7020 
charts flagged in our screening tool to create the Refine-
ment Cohort which contained 741 additional predicted 
PAH cases. Among the 741 predicted cases, we identi-
fied an additional 468 manually confirmed cases of PAH. 
Identification of these additional 468 cases allowed more 

Fig. 2  Study flow diagram. PAH  pulmonary arterial hypertension, Spec  specificity, Sens  sensitivity, PPV  positive predictive value, NPV  negative 
predictive value
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robust training and testing of the algorithm in the next 
step.

Final development of algorithm
The Development and Refinement Cohorts were com-
bined to become the Final Cohort, which included 653 
PAH cases and 1041 confirmed non-cases. This cohort 
was divided into two groups: a training set, which 
included 80% of the patients (n = 1356) and a test set, 
which included the other 20% of the patients (n = 338). 
The RF algorithm performed slightly better than the 
other methods in the training and test sets. The RF algo-
rithm yielded an area under the curve of 0.94 (95% [CI] 
0.94–0.95, sensitivity 0.85 (95% [CI] 0.83–0.87), specific-
ity 0.92 (95% [CI] 0.91–0.92), PPV of 0.87 (95% [CI] 0.85–
0.88), and NPV 0.91 (95% [CI] 0.91–0.92) in the training 
set (Table  1). The algorithm derived from the training 
set of Cohort C was considered our Final Algorithm. In 
our last step, the performance of the final algorithm was 
examined against the test set of the Final Cohort. The 
final RF algorithm yielded an area under the curve (AUC) 
of 0.96, sensitivity of 0.88, specificity of 0.93, positive pre-
dictive value (PPV) of 0.89, and negative predictive value 
(NPV) of 0.92 in the test set (Table 1). Final results for the 
additional machine learning techniques are reported in 
Additional file 1: Table S3.

Features of machine learning algorithm
The features that contributed most to the performance of 
the final random forest algorithm are shown in Fig. 3. The 
distribution of strength, persistence, and durability for 
each of the final model variables is shown in Additional 
file 1: Fig. S2) The top features include persistence of the 
medication Flolan, the persistence of the medication 
Adcirca, the persistence of the medication Epoprostenol 
the strength of the medication Adcirca, and the strength 
of the CPT code 93501 for right heart catheterization.

Internal validation of random forest algorithm 
in the synthetic derivative
We next tested the hypothesis that our Final Algorithm 
would identify a patient population with demographic 
and clinical characteristics similar to published PAH reg-
istries. This experiment simulates real world application 
of the Final Algorithm in a claims-based database in that 

it only uses administrative data and we did not manually 
confirm PAH cases. We deployed the final RF algorithm 
across Vanderbilt’s entire medical system using the SD 
(approximately 2.5 million unique records), excluding 
PAH cases and non-cases used to develop the algorithm. 
The algorithm identified an additional 137 cases of sus-
pected PAH and these were added to 128 cases from the 
test set of the Final Cohort which were not used to train 
the algorithm. These cases were not manually reviewed 
(as would be the case in an administrative database) but 
instead aggregated to compare characteristics of these 
patients to non-cases in the SD and to PAH patients in 
prior registries (Table 2). The group of patients identified 
as PAH by the algorithm fit traditional demographics of 
PAH with a mean age of 52 ± 14 years, a predominance 
of females (72%), and high prevalence of connective tis-
sue disease (33%) and congenital heart disease (19%) in 
identified patients. Further, in those patients with hemo-
dynamic data (189/265), we found evidence of predomi-
nantly pre-capillary pulmonary hypertension with a 
mean pulmonary artery pressure of 49.8 ± 13.6  mmHg, 
pulmonary capillary wedge pressure of 11.3 ± 6.1 mmHg, 
and pulmonary vascular resistance of 9.9 ± 5.9 Wood 
Units.

Discussion
Recognizing an unmet need to confidently identify PAH 
in health care systems across the country and claims 
databases, we used machine learning tools to develop and 
validate an algorithm that identifies patients with PAH 
with strong testing characteristics. We further tested the 
algorithm in a second cohort within the SD and showed 
that cases it identifies share demographic and hemody-
namic similarities to published PAH registries [21, 22, 
32]. Importantly, our algorithm only required admin-
istrative data (CPT or ICD 9/10 codes and medications 
used for PAH), yet improved on previously published 
CB-algorithms by incorporating strength and persistence 
of these codes, and thus this algorithm could be useful in 
claims-based databases. We employed a modified active 
learning process to develop this algorithm that identified 
subjects with true disease in an initial screen which was 
used to develop a model that was then refined and tested 
on larger cohorts. The final model was deployed on the 
entire EMR (excluding patients used to develop the 

Table 1  Test characteristics of the RF algorithm for the Testing Algorithm in the Final Cohort

For the cohort that was split into training and test sets (labeled “Final Test Set” and “Final Training Set” in Fig. 1). Values for training represent means and 95% 
confidence intervals based on 30 samples from tenfold cross validation repeated 3 times

Dataset AUC​ Sensitivity Specificity PPV NPV

Test (n = 338) 0.96 0.88 0.93 0.89 0.92

Training (n = 1356) 0.94 (0.94–0.95) 0.85 (0.83–0.87) 0.92 (0.91–0.92) 0.87 (0.85–0.88) 0.91 (0.91–0.92)
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algorithm), in a form of split cohort in silico validation. 
Overall this approach demonstrated the ability of this 
algorithm to detect individuals in the EMR with disease 
characteristics similar to PAH.

There are many challenges in the care and diagno-
sis of PAH that would benefit from algorithms to detect 
this disease in claims-based algorithms. First, risk fac-
tors for idiopathic PAH other than use of anorexigens 
[33], have been difficult to detect and subject to recall 
bias. Using a claims-based dataset, preceding exposures 
and patient characteristics could be explored. Real-world 
efficacy of many PAH therapies and combination thera-
pies could be tested and effects of non-PAH therapeutics 

and demographic features on PAH outcomes could be 
assessed, as they have been in undifferentiated popula-
tions with pulmonary hypertension [34, 35]. Thus far 
other algorithms have not achieved this level of confi-
dence in PAH cases and thus the impact of their findings 
regarding this specific diagnosis are limited [4, 7, 12, 15, 
36].

PAH is a diagnosis of exclusion, requiring complex 
cardiopulmonary assessment including right heart cath-
eterization and treated with relatively few medications. 
A major challenge to identification of cases in EMRs is 
lack of precision in ICD9/10 codes as they are gener-
ally not reflective of current classification of pulmonary 

Fig. 3  Ranked features of final random forests algorithm. Importance of features of the algorithm are depicted. Strength was defined as the 
number of mentions throughout the medical record. Persistence was defined as the number of days that code or term stayed on the record. 
Durability was defined as the persistence divided by the length of the record after the first appearance on the record
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hypertension [5, 7]. Prior attempts at development of 
algorithms have had challenges including lack of access 
to primary, little or no patient-level data for manual chart 
review or missing validation in a second cohort [4, 14, 15, 
36]. We were able to overcome these limitations using 
the SD which can be searched both by simple ICD9/10 
and CPT codes and medication and also contains granu-
lar diagnostic data to positively identify PAH cases who 
are referred to our high-volume center for pulmonary 
hypertension assessment. After screening the entire SD 
by these minimal features, we manually reviewed 1694 
charts and assigned patients to “PAH” or “Not PAH” sta-
tus, which trained the machine learning algorithm. The 
process of using known cases to train an algorithm is a 
departure from prior studies in this area which have cre-
ated algorithms a priori (e.g. two codes plus one medi-
cation) and then reviewed charts to determine their 
performance. By “feeding” the algorithm known cases 
upfront and using a multi-step training process, we were 
able to develop an algorithm that outperforms prior 
efforts. As previously hypothesized, the use of machine 

learning made separates our algorithm from those before 
it. For comparison, the best PPV from the Papani et  al. 
algorithms was 69.4% [12] and from the Gillmeyer et al. 
algorithms was 86% [14]. Our AUC of 0.96 compares 
favorably to the c-statistic of 0.87 cited by Papani et  al. 
[12].

A strength of our study is performing a functional 
“test” of the algorithm in a different, unstudied portion 
of the SD. Our final experiment simulated real world 
application of the algorithm to an external dataset or 
EMR. When we applied the algorithm to our entire 
EMR, excluding all patients used in the training stages, 
we identified 265 patients with characteristics similar 
to published PAH registries [21, 22, 32] including high 
prevalence of congenital heart disease and connective 
tissue disease, female predominance and, in those with 
right heart catheterization data, hemodynamics consist-
ent with precapillary PH [5]. It is important to note that 
these 265 cases identified by the machine learning algo-
rithm were not included in the derivation and valida-
tion steps. In other words, the algorithm never saw these 

Table 2  Test characteristics of cases identified by the random forest algorithm when deployed on the Synthetic Derivative (including 
cases from the test set)

SD  synthetic derivative, CTD  connective tissue disease, CHD  congenital heart disease, ERA  endothelin receptor antagonists, GC  guanylate cyclase, 
PDE5  phosphodiesterase type 5, RA  right atrial, PA  pulmonary arterial, PWP  pulmonary wedge pressure, CO  cardiac output, TD  thermodilution, CI  cardiac index, 
PVR  pulmonary vascular resistance. Data expressed as % (n) or mean (SD) unless otherwise noted. For French Registry [32], all values taken from Table 1. For 
REVEAL [34], demographics and hemodynamics are taken from Table 1, and medications are taken from Table 2. For UK-Ireland Registry [33], demographics and 
hemodynamics are taken from Table 1, and medications are taken from Table 2 (values added across all years, n = 479)
* For REVEAL, Fick CI was used unless it was missing, in which case thermodilution CI was used. For French Registry, CI method was not indicated
** Method not indicated
*** PVRI was reported for French Registry (M = 20.5, SD = 10.2) and REVEAL (M = 21.1, SD = 12.5)

Test Characteristics RF Algorithm in SD RF Algorithm SD Non-Cases French Registry REVEAL UK-Ireland Registry

n 265 2,270,971 674 2525 482

Age (years) 52.0 (13.7) 52.0 (21.4) 50.0 (15.0) 50.1 (14.4) 50.1 (17.1)

Sex, % female (n) 72.1% (191) 54.2% (1,253,660) 65.3% 79.5% 69.9%

Comorbidities

CTD (n) 33.2% (88) 2.0% (465) 15.3% 25% –

CHD (n) 19.2% (51) 0.9% (19,950) 11.3% 10% –

Medications

ERA (n) 70.6% (187)  < 0.1% (26) – 47% 44.2%

GS stimulators (n) 1.5% (4)  < 0.1% (9) – – –

PDE5 inhibitors (n) 84.2% (223) 0.4% (9,224) – 49% 29.2%

Prostanoids (n) 63.0% (167)  < 0.1% (2) – – 18.8%

Hemodynamics (n = 189) (n = 8806)

RA pressure (mmHg) 10.1 (6.0) 8.8 (8.3) 8 (5.) 9.3 (5.6) 10.1 (6.0)

Mean PA (mmHg) 49.8 (13.6) 27.7 (11.7) 55 (15) 50.7 (13.6) 54.1 (13.9)

PWP (mmHg) 11.3 (6.1) 15.5 (8.3) 8.0 (3) 9.1 (3.5) 9.2 (3.5)

CO, Fick (L/min) 4.8 (2) 5.6 (3.7) – – 4.0 (1.5)**

CO, TD (L/min) 4.8 (1.7) 5.1 (2.4) – – 4.0 (1.5)**

CI, Fick (L/min/M2) 2.5 (1.0) 2.9 (2.7) 2.9 (0.9)* 2.4 (0.8)* 2.1 (6.3)

CI, TD (L/min/M2) 2.5 (0.8) 2.6 (2.2) 2.9 (0.9)* 2.4 (0.8)* 2.1 (6.3)

PVR (Wood units) 9.9 (5.9) 2.6 (2.5) *** *** 12.8 (6.3)
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cases while it was being trained. Specifically, the final test 
set from Cohort C contained 338 subjects total. Of these 
338, there were 137 predicted cases by the RF algorithm. 
The RF was deployed on the entire SD and predicted 128 
remaining cases that were not in the Final Cohort. Thus, 
the RF algorithm was not trained on the 265 cases identi-
fied in the EHR. While the prevalence of 265/2,500,000 
may be somewhat higher than the estimated prevalence 
of PAH in the US population [32], our center is a referral 
center for PAH, cardiovascular and rheumatologic dis-
ease that may be driving this finding.

Our study used machine learning algorithms to 
improve on simple binary use of code or medication. We 
explored three different machine learning algorithms: 
Elastic net [24], RF [26], extreme gradient boosting 
(XGBoost) [26]. These applications have been applied to 
predict urinary tract infections [37], chronic kidney dis-
ease [38], survival in systolic heart failure [39], and mor-
tality in postmenopausal women [40]. All of the machine 
learning algorithms used here have hyperparameters 
that must be set prior to training. The performance of 
the algorithm is often highly dependent on the choice of 
the hyperparameters. Therefore, hyperparameters must 
be tuned in order to gain the best performance possible 
from the model. Here, we utilized Bayesian optimiza-
tion [27], a type of black-box optimization technique 
aimed at globally optimizing over the parameter space of 
costly functions with greater efficiency than other meth-
ods such as grid search. In our study, optimization was 
carried out over the training set by maximizing the aver-
age area under the curve resulting from stratified tenfold 
(3-times-repeated) cross validation. After finding the 
optimal hyperparameters, the final algorithm (used for 
testing) was trained on the entire training set. Although 
all three machine learning algorithms performed well, we 
ultimately tested the RF algorithm on the entire remain-
ing SD because of its slightly superior testing character-
istics. RF utilizes an ensemble learning method known 
as bagging  in which classifiers are trained using boot-
strapped samples of the data and a majority vote is taken 
to produce the final result.

Our work is not without limitations. One potential 
source of error for the algorithm is inappropriate use 
of PAH-specific medications. We attempted to address 
this through extensive manual chart review of large 
numbers of suspected PAH. While cases of mixed etiol-
ogy PH were possible, if the reviewing expert and treat-
ing clinician determined that the patient had enough 
features of PAH to treat the patient as such, they were 
included in the true cases. No algorithm can account 
for the current limitations of classification of pulmo-
nary hypertension and algorithms such as this for rare 
diseases are at risk of class imbalance. As previously 

suggested, alignment of ICD codes with the WSPH def-
initions of pulmonary hypertension would like improve 
coding and performance of this algorithm alike [4]. 
While we performed an internal validation of the 
algorithm in a new, unstudied portion of the SD, this 
algorithm will be strengthened through validation in 
non-referral centers with a lower prevalence of the dis-
ease. Our CB approach is only useful in countries that 
use similar data. And lastly, the elevated prevalence of 
PAH at our center compared to the general population 
may reduce the generalizability and external validity of 
our algorithms.

Conclusions
In conclusion, we created and validated a machine learn-
ing algorithm that identified specifically PAH patients 
from the EMR at a tertiary referral center. This algorithm 
performed with favorable testing characteristics. When 
deployed across an entire medical system, identified case 
demographic and clinical features were similar to known 
PAH patients from previously studied registries.
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