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Abstract

Background: The differential diagnosis of tuberculous pleural effusion (TPE) is challenging. In recent years, artificial
intelligence (Al) machine learning algorithms have started being used to an increasing extent in disease diagnosis
due to the high level of efficiency, objectivity, and accuracy that they offer.

Methods: Data samples on 192 patients with TPE, 54 patients with parapneumonic pleural effusion (PPE), and 197
patients with malignant pleural effusion (MPE) were retrospectively collected. Based on 28 different features
obtained via statistical analysis, TPE diagnostic models using four machine learning algorithms (MLAs), namely
logistic regression, k-nearest neighbors (KNN), support vector machine (SVM) and random forest (RF) were
established and their respective diagnostic performances were calculated. The respective diagnostic performances
of each of the four algorithmic models were compared with that of pleural fluid adenosine deaminase (pfADA).
Based on 12 features with the most significant impacts on the accuracy of the RF model, a new RF model was
designed for clinical application. To demonstrate its external validity, a prospective study was conducted and the
diagnostic performance of the RF model was calculated.

Results: The respective sensitivity and specificity of each of the four TPE diagnostic models were as follows: logistic
regression — 80.5 and 84.8%; KNN- 78.6 and 86.6%; SVM — 83.2 and 85.9%; and RF - 89.1 and 93.6%. The sensitivity
and specificity of pfADA were 854 and 84.1%, respectively, at the best cut-off value of 17.5 U/L. RF was the superior
method among the four MLAs, and was also superior to pfADA. The newly designed RF model (based on 12 out of
28 features) exhibited an acceptable performance rate for the diagnosis of TPE with a sensitivity and specificity of

respectively.

90.6 and 92.3%, respectively. In the prospective study, its sensitivity and specificity were 100.0 and 90.0%,

Conclusions: Establishing a model for the diagnosis of TPE using RF resulted in a more effective, economical, and
faster diagnostic method. This method could enable clinicians to diagnose and treat TPE more effectively.
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Background

Tuberculous pleurisy is a common disease that causes
pleural effusion. In 2014, approximately 1.5 million tuber-
culosis patients died worldwide [1]. Accurate diagnosis
and timely treatment are vital. The gold standard in the
diagnosis of tuberculous pleural effusion (TPE) derives
from positive findings in pathogenic and pathological ex-
aminations. However, pathogenic diagnosis using smears
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or cultures of specimens of respiratory tract or pleural
fluid exhibits low positivity rates and/or long culturing
times [2]. Pathological diagnosis via thoracoscopic pleural
biopsy is traumatic, holds the risk of complications, and is
associated with high costs and prohibitive technical con-
straints. Therefore, the diagnosis of TPE remains challen-
ging. In clinical practice, the most widely used diagnostic
biomarker for TPE is pleural fluid adenosine deaminase
(pfADA). When lymphocyte predominates in exudative
pleural fluid with elevated levels of pfADA and no
evidence of other diseases, pleural effusion is diagnosed as
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TPE. However, neutrophils may also predominate during
the early stages of TPE [3], and the pfADA cut-off values
for the diagnosis of TPE differ across several different
studies [4, 5]. Therefore, it is necessary to develop a
method for the early diagnosis of TPE which is less inva-
sive and more accurate.

In recent years, research into the use of artificial
intelligence (AI) in the field of medicine has increased.
Machine learning is a type of Al that allows computers
to learn without being explicitly programmed for a given
task. Using machine learning algorithms (MLAs) such as
support vector machine (SVM), k-nearest neighbor
(KNN), and random forest (RF), highly efficient, object-
ive, and accurate disease diagnosis models can be con-
structed. Based on structural MRI data, Bisenius et al.
[6]applied the SVM method for predicting primary pro-
gressive aphasia subtypes. Their results showed that the
method provided a high degree of accuracy of between
91 and 97%. Forghani et al. [7] used the RF method to
design a model for predicting lymph node metastasis of
squamous cell carcinoma of the head and neck, achiev-
ing a diagnostic accuracy of 88%. Kim et al. used
decision tree, RF, KNN and SVM methods to construct
several models for the diagnosis of glaucoma [8]. The
sensitivity, specificity, and accuracy of these four models
reached 95% and higher. The application of MLAs in the
diagnosis of TPE is uncommon [9], and comparisons
between the diagnostic performances of various algorithmic
models have not been drawn. The diagnostic performances
of pfADA and MLAs have also not been compared.

In this study, we selected logistic regression, KNN,
SVM, and RF to construct TPE diagnostic models. By
comparing the respective diagnostic performances of
these four models, the most effective model was selected
for the differential diagnosis of TPE. We also compared
the diagnostic performances of pfADA versus the four
MLA methods.

Methods

Subjects and study design

Data from patients diagnosed with TPE, parapneumonic
pleural effusion (PPE), and malignant pleural effusion
(MPE) who had undergone thoracentesis between January
2003 and August 2018 were retrospectively collected.

TPE diagnosis was confirmed when pleural effusion
exhibited exudativity and met at least one of the follow-
ing conditions [10-12]: (1) positive smear for acid-fast
bacilli in pleural fluid/sputum/bronchial aspirate/bron-
choscopic brushing specimen; (2) positive culture or
positive polymerase chain reaction (PCR) for Mycobac-
terium tuberculosis in pleural fluid/sputum/bronchial
aspirate; (3) epithelioid caseous granuloma or positive
acid-fast staining in pleural or lung tissue; (4) moderately
or strongly positive 5U tuberculin skin test, positive T-
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cell spot test (T-SPOT), or positive M. tuberculosis anti-
body test, and a clinical response to anti-tuberculosis
treatment; (5) typical symptoms of tuberculosis with no
evidence of additional respiratory diseases, and a marked
response to anti-tuberculosis treatment. A clinical re-
sponse to anti-tuberculosis treatment refers to symptom-
atic relief, remission or elimination of pleural effusion in
patients who have been followed up for at least 12 months
after receiving anti-tuberculosis treatment.

MPE was diagnosed if pleural effusion was exudative
and met one of the following criteria [11]:(1) malignant
cells were found in lung tissue; (2) malignant cells were
found in pleural fluid or pleural tissues.

PPE was diagnosed if patients met all the following cri-
teria [11]: (1) exudative effusion associated with pneu-
monia; (2) absence of other causes of pleural effusion;
(3) the patient’s symptoms disappeared, lung shadows
and pleural effusion were absorbed after a two-month
follow-up after antibiotic treatment.

The exclusion criteria were as follows: (1) patients
with transudative pleural effusion; (2) patients without
pfADA results; (3) patients in the TPE and PPE groups
who were unable to provide information during follow-
up visits.

The following features were evaluated: patients’ gender
and age, symptoms (fever, cough, sputum, bloody sputum,
chest tightness, chest pain, anorexia, fatigue, night sweats,
weight loss), history of smoking, hematologic parameters
(total and differential cell count, erythrocyte sedimenta-
tion rate (ESR), C-reactive protein (CRP), ADA, lactate
dehydrogenase (LDH), carcinoembryonic antigen (CEA)),
pleural fluid parameters (bloody effusion, Rivalta test, total
and differential cell count, total protein, glucose, chloride,
ADA, LDH, and CEA concentrations). In cases where
more than one thoracocentesis had been performed, the
statistical analysis was performed using only the data from
the first pleural fluid sample prior to commencing treat-
ment. Hematological data were obtained from the blood
samples taken nearest to the first thoracentesis.

ADA activity was measured using enzymatic colorimetry
(ADA kit, Junshi Biotechnology Co., Ltd., Shanghai, China).
LDH levels were measured using the lactic acid substrate
method (LDH assay kit, DiaSys Diagnostic Systems Shang-
hai Co., Ltd., Germany). CRP levels were measured via
scattering immunoturbidimetry (Lifotronic PA-900 specific
protein analyzer and original reagent, Shenzhen, China).
CEA levels were measured using chemiluminescent im-
munoassay kits (Roche, Mannheim, Germany). ESR was
determined using an Italian TEST1TH Automatic Blood
Sedimentation Instrument. Specific gravity was measured
via dry chemical analysis (American iChem VELOCITY
Automatic Analyzer). Total and differential cell counts in
blood and total red/white blood cells in pleural fluid were
measured using a Japanese Sysmex XN-3000 Automatic
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Blood Analyzer. Differential cell counts in pleural fluid
were counted manually. Total protein, glucose, and chlor-
ide concentrations were measured using an Hitachi 7600
Automatic Biochemical Analyzer and original reagents.

Statistical analysis and the design and evaluation of
algorithmic models

Statistical analysis was performed using the SPSS version
20.0 software (SPSS Inc., Chicago, IL, USA). The qualita-
tive variables were presented as numbers and percent-
ages, and the continuous variables were presented as
medians and ranges. The differences in qualitative
variables between patients with and without TPE were
assessed using the Chi-square test. The differences
between the continuous variables were analyzed using
the Mann-Whitney U Test. Statistical significance was
set at P < 0.05, and statistically significant variables were
introduced into the diagnostic models.

For this study, we selected four MLAs to establish
models for the diagnosis of TPE, namely logistic regres-
sion, KNN, SVM, and RF. The workflow for constructing
the models was as follows (Fig. 1):

In the process of establishing the models, logistic re-
gression, KNN, and SVM required data preprocessing.
The data were scaled proportionally so that the unit
restrictions could be removed without changing the ori-
ginal data distribution, and the missing values were set
to the normalized average values. The RF model did not
require data preprocessing, and the original data were
input directly for splitting.

The four methods’ parameters were set as follows: (1)
for logistic regression, the maximum number of iterations
was 100, the regularization coefficient was 1, and the
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minimum convergence error was 0.000001; (2) for KNN,
the nearest neighbor number was 5; (3) for SVM, the posi-
tive penalty factor was 1.0, the negative penalty factor was
1.0, and the convergence coefficient was 0.001; (4) for RF,
the number of trees in the forest was 100, the minimum
amount of leaf node data was 2, the minimum proportion
of leaf node data to parent node data was 0, the maximum
depth of a single tree was infinite, and the amount of ran-
dom data input by a single tree was 100,000.

The diagnostic performances of the four algorithmic
models (i.e., sensitivity, specificity, and accuracy) were cal-
culated based on the confusion matrix which included the
predicted and actual classification data. Since the data
were randomly allocated to a 70% training set and a 30%
test set, we conducted 20 model-building tests on each al-
gorithm to determine the average sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV), positive likelihood ratio (PLR), negative likelihood
ratio (NLR), and accuracy of each of the four algorithmic
models as the final results. The best cut-off value and
diagnostic performance of pfADA were assessed using re-
ceiver operating characteristic (ROC) curve analysis.

Among the four algorithmic models, we found that RE
offered the best diagnostic performance. The respective im-
pacts of each feature on the accuracy of the RF model were
rank ordered. In the RF model, larger Gini index average
reduction values indicated a greater effect of a particular
feature on the accuracy of the classification model.

Results

Patient characteristics

During the study, 1262 patients with pleural effusion
were reviewed, of which 819 were excluded from the

Fig. 1 Workflow for constructing diagnostic models using MLAs
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analysis for the following reasons: (1) 188 patients exhib-
ited transudative pleural effusion; (2) 213 patient had
not undergone thoracentesis; (3) 10 patients lacked
pfADA results; (4) 179 patients in the TPE and PPE
group were unable to provide information during
follow-up visits; (5) 229 patients exhibited pleural effu-
sion with unclear causes. Finally, 443 patients met the
analysis criteria, namely 192 with TPE, 54 with PPE, and
197 with MPE. The patients’ malignancies associated
with pleural effusion were as follows: lung cancer (172
patients); pleural mesothelioma (3 patients); breast
cancer (5 patients); lymphoma (2 patients); pancreatic
cancer (1 patient); gastric cancer (3 patients); duodenal
ampullary carcinoma (1 patient); thyroid cancer (5
patients); pleural bidirectional differentiation malignant
tumor (epithelioid hemangioendothelioma) (1 patient);
laryngeal carcinoma (1 patient); papillary carcinoma of
the nasal cavity (1 patient); adenocarcinoma with an
unknown primary site (2 patients).

Disease characteristics model criteria

Among the 36 features, 28 differed significantly between
TPE and non-TPE patients (Table 1). The following 28
features were introduced into the model: age, fever,
cough, chest pain, anorexia, fatigue, night sweats, history
of smoking, total blood WBC, neutrophil percentage
(N%) in blood, lymphocyte percentage (L%) in blood,
monocyte percentage (M%) in blood, platelet count
(PLT), ESR, CRP, serum LDH, serum ADA, serum CEA,
bloody effusion, Rivalta test results, total WBC in pleural
fluid, N% in pleural fluid, L% in pleural fluid, pleural
fluid total protein, pleural fluid glucose concentration,
pleural fluid LDH (pfLDH), pfADA, pleural fluid CEA
(pfCEA).

Diagnostic performances of pfADA and the four
algorithmic models

The best cut-off value for pfADA in the diagnosis of
TPE was 17.5 U/L with a sensitivity of 85.4%, a specifi-
city of 84.1% and an accuracy of 84.7%. The TPE diag-
nostic performances of the four algorithmic models and
pfADA are presented in Table 2, Fig. 2 and 3. Among
the four algorithmic models, RF is the superior method
for diagnosing TPE, with a sensitivity, specificity, PPV,
NPV, PLR, and accuracy higher than those of logistic re-
gression, KNN, SVM, and pfADA. NLR was lower than
pfADA and the other three algorithmic models.

The impact of each feature on the accuracy of the RF
model

According to the Gini index average reduction values,
the respective impact of each feature on the accuracy of
the RF model (from high to low) were as follows:
pfADA, pfCEA, age, total blood WBC, M% in blood, L%
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in pleural fluid, N% in pleural fluid, fever, night sweats,
pleural fluid total protein, pfLDH, serum CEA, total
WBC in pleural fluid, ESR, glucose concentrations in
pleural fluid, platelet count, CRP, N% in blood, fatigue,
bloody pleural fluid, L% in blood, serum LDH, Rivalta
test results, serum ADA, chest pain, history of smoking,
anorexia, and cough.

Since the lower-ranking features had negligible im-
pacts on the accuracy of the classification model, the
Gini index average reduction values are only given for
the first 12 features (Fig. 4).

Diagnostic performance of the new RF model using the
first 12 features

To reduce the number of features used in the RF model
for the sake of clinical application, we selected 12 fea-
tures to establish the new RF model. The process was
the same as in Fig. 1. The diagnostic performance of the
new RF model for the diagnosis of TPE is shown in
Table 3.

Diagnostic performance of the RF model for TPE in
prospective study

To demonstrate external validity of our study, we pro-
spectively collected data from 27 patients with pleural
effusion from October 2018 to August 2019. The pa-
tients were 18 to 86 years old and the median age was
66 years old. 15 patients (55.6%) were female. Using our
RF model, 9 patients were diagnosed as TPE and 18
patients were diagnosed as non-TPE. After a series of
examinations, the final confirmed diagnosis was as fol-
lows: 7 cases of TPE (5 cases with epithelioid caseous
granuloma in pleural tissue, 1 case with epithelioid case-
ous granuloma in lung tissue, 1 case with positive PCR
for Mycobacterium tuberculosis in bronchial aspirate), 20
cases of non-TPE (3 cases of PPE, 17 cases of MPE).
Compared with the final diagnosis, only 2 cases were
misdiagnosed as TPE (1 case of PPE and 1 case of MPE).
The sensitivity, specificity and accuracy for diagnosing
TPE were 100.0, 90.0, and 92.6%, respectively.

Discussion

Al has heralded changes in all aspects of society in re-
cent years, and research into its potential uses in the
medical field is also expanding. In disease diagnosis, Al
machine learning algorithms can process vast amounts
of data while making the best use of preexisting infor-
mation to develop highly predictive disease diagnostic
models. Presently, MLAs used in medical diagnostics
include logistic regression, KNN, SVM, RF and others.
Hwang et al. developed a deep-learning-based automatic
detection (DLAD) algorithm for detecting active pul-
monary tuberculosis on chest radiographs. The study
results showed that DLAD is superior to thoracic
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Table 1 Comparison of clinical and laboratory findings between TPE and non-TPE patients
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TPE(n=192) non-TPE(n = 251) P value
Male 131(68.2) 157(62.5) 0214
Female 61(31.8) 94(37.5)
Age(years) 36.5(24.3, 59.0) 67.0(56.0, 77.0) 0.000
Has a history of smoking 53(27.6) 96(38.2) 0.019
Fever>37.5°C 127(66.1) 57(22.7) 0.000
Cough 151(78.6) 205(81.7) 0.0M1
Sputum 86(44.8) 143(57.0) 0427
Bloody sputum 2(1.0) 12(4.8) 0.526
Chest tightness 73(38.0) 117(46.6) 0.070
Chest pain 106(55.2) 103(41.0) 0.003
Anorexia 68(35.4) 98(39.0) 0.000
Fatigue 57(29.7) 24(9.6) 0.000
Night sweats 60(31.3) 12(4.8) 0.000
Weight loss 32(16.7) 40(15.9) 0.700
In blood:
WBC(x 10%/L) 5.8(4.9,73) 7.6(5.8,9.9) 0.000
N% 66.4(60.0, 72.4) 71.3(65.8, 77.3) 0.000
L% 19.8(15.4, 24.2) 18.0(124, 234) 0.009
M% 10.5(8.5, 13.1) 7.7(6.0,9.2) 0.000
HB(g/L) 129.0(119.0, 139.0) 130.0(116.5, 140.5) 0.564
PLT(x107/L) 281.0(227.3, 342.5) 250.0(210.0, 301.8) 0.000
ESR(mm/h) 59.0(43.0, 85.0) 36.0(19.0, 69.0) 0.000
CRP(mg/L) 58.8(29.8, 101.0) 26.6(6.7, 76.2) 0.000
LDH(U/L) 191.5(1583, 225.8) 208.0(171.0, 280.0) 0.044
ADA(U/L) 9.0(7.0, 12.0) 7.0(5.0,11.0) 0.022
CEA(ng/mL) 14(09, 2.2) 59(2.1,29.1) 0.000
In pleural fluid:
Bloody effusion 2(1.0) 40(15.9) 0.000
Positive Rivalta test 189(98.4) 212(84.5) 0.000
WBC(x 10%/L) 1200.0(427.3, 2560.0) 432.5(135.0, 1200.0) 0.000
RBC(x 10%/L) 1600.0(800.0, 3160.0) 1600.0(720.0, 4420.0) 0218
N% 10.0(4.0, 21.0) 19.0(6.0, 50.0) 0.000
L% 86.5(70.0, 92.0) 70.0(41.0, 86.0) 0.000
Total protein(g/L) 52.0(49.0, 55.0) 47.0(42.0, 52.0) 0.000
Glucose(mmol/L) 52(44,6.5) 6.1(44,72) 0.004
Chloride(mmol/L) 104.0(100.3, 106.0) 104.0(101.0, 107.0) 0.089
LDHU/L) 415.0(265.0, 609.0) 264.0(167.0, 460.0) 0.000
ADA(U/L) 26.0(21.0, 40.0) 7.0(5.0, 13.0) 0.000
CEA(ng/mL) 1.0(06, 1.6) 30.0(1.9, 170.0) 0.000

Data in the table are expressed either as a frequency (percentage) or a median (interquartile range)

TPE tuberculous pleural effusion, non-TPE non-tuberculous pleural effusion (including parapneumonic pleural effusion and malignant pleural effusion), WBC white
blood cells, RBC red blood cells, N neutrophils, L lymphocytes, M monocytes, HB hemoglobin, PLT platelets, ESR erythrocyte sedimentation rate, CRP C-reactive

protein, LDH lactate dehydrogenase, ADA adenosine deaminase, CEA carcinoembryonic antigen
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Table 2 Performances of the four algorithmic models and pfADA for diagnosing TPE

AUC Sensitivity Specificity PPV NPV PLR NLR Accuracy
pfADA 0.890 85.4% 84.1% 80.4% 88.3% 537 0.17 84.7%
Logistic regression 0.876 80.5% 84.8% 80.2% 85.2% 547 0.23 82.9%
KNN 0.895 78.6% 86.6% 82.3% 84.0% 6.28 0.24 83.2%
SVM 0918 83.2% 85.9% 82.3% 86.6% 6.23 020 80.4%
RF 0.971 89.1% 93.6% 91.3% 91.5% 14.97 0.12 91.6%

TPE tuberculous pleural effusion, pfADA pleural fluid adenosine deaminase, KNN k-nearest neighbor, SVM support vector machine, RF random forest, AUC area
under the curve, PPV positive predictive value, NPV negative predictive value, PLR positive likelihood ratio, NLR negative likelihood ratio

radiologists in terms of image classification and lesion
localization [13].

Logistic regression is a classical statistical method. The
output result of the logistic regression model is a prob-
abilistic value of 0 to 1, with a value of 0.5 indicating a
double classification. Logistic regression is widely used
in medical diagnostics. For example, based on pfADA,
Interferon-y (IFN-y), decoy receptor (DcR) 3 and soluble
tumour necrosis factor receptor 1 (TNF-sR1) measure-
ments, Shu et al. [14] constructed a logistic regression
model for the diagnosis of TPE with a sensitivity of
82.9% and a specificity of 86.7%. Gonzalez et al. [15] also
used logistic regression to construct a model to differen-
tiate TPE from MPE with a diagnostic sensitivity of
93.5% and a specificity of 78%. However, DcR3, TNE-
sR1, and IEN-y are not routinely measured clinically,
meaning that the model designed by Shu et al. is not
broadly applicable. In the study of shu, the logistic
regression model offers a higher degree of sensitivity
compared to that of pfADA, but with a lower degree
of specificity (98.3% versus 86.7%). The study con-
ducted by Gonzalez et al. included only 47 TPE pa-
tients and 25 MPE patients. As a result of this small
number of case subjects and the exclusion of pfADA,

CEA, hematological parameters, and patients’ symptoms
in the analytical model, it offered a low degree of specifi-
city. Therefore, both models mentioned above have
marked shortcomings.

The decision process involved in the KNN method
consists of a majority vote. When a test sample is input,
the voting occurs based on the categories included in
the k-nearest training samples, and the test sample is
categorized according to the category with the largest
number of votes. Chen et al. [16] applied the KNN
method to distinguish normal respiratory sounds from
abnormal respiratory sounds. In an ideal sonic environ-
ment with no human interference, the method achieved
a 100% discrimination rate. Although the study is yet to
be duplicated in a realistic sonic environment, it showed
that the KNN method holds great potential.

SVM is another MLA that can be used for classifi-
cation. SVM principally works by constructing a hy-
perplane to maximize the distance between two types
of samples and the hyperplane. Levman et al. [17]
used the SVM method to identify malignant and be-
nign breast lesions based on vascular heterogeneity
data, achieving an average AUC of 0.79. Kanesaka
et al. [18] used the SVM method to diagnose early-
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stage gastrointestinal cancer in magnified narrow-
band images with an accuracy of 96.3%.

RF is another classifying method that comprises mul-
tiple decision trees that integrate input information via
an If-Then rule to construct a tree classifier. According
to the constructed model, new input information is
assigned to the leaf nodes via the root node, and the
final level result represents the final classification result.
However, when the decision tree is excessively deep,
over-fitting may occur, potentially resulting in inaccurate
results. RF adopts the concept of integrated learning to
synthesize the classification results of each decision tree
to prevent over-fitting, thus yielding more accurate and
stable results. Xiao et al. [19] used the RF method to
construct a diagnostic model for prostate cancer with an
accuracy of 83.1%, a sensitivity of 65.6%, and a specificity
of 93.8%. Casanova et al. [20] compared the diagnostic

performances of logistic regression and RF for the diag-
nosis of diabetic retinopathy. The study’s results demon-
strated that RF offers a higher degree of classification
accuracy.

At present, few studies have been conducted on the
use of Al machine learning alogrithms in the diagnosis
of TPE, and no comparisons have been drawn between
the diagnostic performance of MLAs and that of pfADA.
In this study, we constructed diagnostic models for TPE
using four MLAs (logistic regression, KNN, SVM, and
RF) and compared the respective diagnostic perfor-
mances of these four models to select the superior one
for the differential diagnosis of TPE. We also compared
the diagnostic performance of MLAs versus that of
pfADA. 28 features with statistical differences between
the TPE group and the non-TPE group were introduced
into the model, including age, symptoms, haematological

pfADA

pfCEA

Age

Totalblood WBC
M% in blood

L% in pleural fluid
N% in pleural fluid
Fever=37.5C
Night sweats
Pleural fluid total protein
pfLDH

Serum CEA

T

0.00 0.02 0.04 0.06 0.08 0.10 0.12
B Giniindex average reduction values

Fig. 4 The impacts of the first 12 features on the accuracy of the RF model. pfADA: pleural fluid adenosine deaminase; pfCEA: pleural fluid
carcinoembryonic antigen; WBC: white blood cells; M: monocyte; L: lymphocyte; N: neutrophil; pfLDH: pleural fluid lactate dehydrogenase
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Table 3 Performance of the new RF model for diagnosing TPE
AUC  Sensitivity Specificity PPV~ NPV~ PLR NLR Accuracy
RF 0.965 90.6% 92.3% 80.9% 93.0% 131 0.1 91.5%

RF random forest, TPE tuberculous pleural effusion, AUC area under the curve,
PPV positive predictive value, NPV negative predictive value, PLR positive
likelihood ratio, NLR negative likelihood ratio

parameters, and pleural fluid measurements. All of these
measures are routinely used in clinical practice and
were, therefore, quickly and easily obtainable without
the need for specialized equipment. Therefore, the
models presented in this paper are broadly applicable.
The results show that RF exhibits the best diagnostic
performance among the four algorithms with a sensitiv-
ity, specificity, accuracy and AUC of 89.1, 93.6, 91.6%,
and 0.971, respectively. SVM, KNN, and logistic regres-
sion exhibited similar diagnostic performances. Previous
studies have demonstrated that RF exhibits superior per-
formance for the classification of various diseases. Chen
et al. [21] employed four MLAs (SVM, naive Bayes,
KNN and RF) to construct decision-support systems in
the diagnosis of liver fibrosis. The results indicated that
RF provided the highest degree of accuracy among the
four MLAs. Chicco et al. [22] compared the performance
of probabilistic neural networks, perceptron-based neural
networks, RF, One Rule (OneR), and decision tree classi-
fiers in the predictive diagnosis of pleural mesothelioma.
Their results showed that RF outperformed all the other
MLA models. Therefore, RF is evidently advantageous for
the application of disease diagnosis. In this study, pfADA,
SVM, KNN, and logistic regression exhibited similar per-
formances in the diagnosis of TPE, while RF stands as the
superior method.

To facilitate clinical application, we selected the 12
features with the most significant impacts on the ac-
curacy of the RF model to construct a new RF model.
The results show that the diagnostic performance of
the new model is similar to that of the RF model
constructed with 28 features. Reducing the number of
features in the model is highly significant because it
may reduce medical expenses and is more convenient
in clinical application.

Finally, we conducted a preliminary prospective study
to demonstrate external validity of our research. So far,
only 27 patients have been enrolled. While small, the
current result from our prospective study confirms the
validity of our original study. That is to say, RF has high
sensitivity, specificity, and accuracy in diagnosing TPE.

The limitations of this study are that the data was
sourced from a single center population, and the num-
ber of subjects was small. In the future, a multi-center
prospective study which includes a large sample size
should be conducted to establish a more accurate TPE
diagnostic model.
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Conclusions

Using Al machine learning algorithms to establish a
model for the diagnosis of TPE may improve diagnostic
performance. In this regard, RF is superior to logistic
regression, KNN, SVM, and pfADA. Establishing a
model for the diagnosis of TPE using RF may provide a
more effective, economical, and faster diagnostic method
based on routine clinical data to assist clinicians in mak-
ing better diagnoses and treatment decisions.
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