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Abstract

Background: Smoking is the main risk factor for chronic obstructive pulmonary disease (COPD). Women with COPD
who smoke experienced a higher risk of hospitalization and worse decline of lung function. Yet the mechanisms of
these gender-related differences in clinical presentations in COPD remain unknown. The aim of our study is to identify
proteins and molecular pathways associated with COPD pathogenesis, with emphasis on elucidating molecular gender
difference.

Method: We employed shotgun isobaric tags for relative and absolute quantitation (iTRAQ) proteome analyses of
bronchoalveolar lavage (BAL) cells from smokers with normal lung function (n = 25) and early stage COPD patients (n
= 18). Multivariate modeling, pathway enrichment analysis, and correlation with clinical characteristics were performed
to identify specific proteins and pathways of interest.

Results: More pronounced alterations both at the protein- and pathway- levels were observed in female COPD patients,
involving dysregulation of the FcyR-mediated phagocytosis-lysosomal axis and increase in oxidative stress. Alterations in
pathways of the phagocytosis-lysosomal axis associated with a female-dominated COPD phenotype correlated well with
specific clinical features: FcyR-mediated phagocytosis correlated with FEV;/FVC, the lysosomal pathway correlated with
CT < =950 Hounsfield Units (HU), and regulation of actin cytoskeleton correlated with FEV; and FEV1/FVC in female COPD
patients. Alterations observed in the corresponding male cohort were minor.

Conclusion: The identified molecular pathways suggest dysregulation of several phagocytosis-related pathways in BAL
cells in female COPD patients, with correlation to both the level of obstruction (FEV,/FVC) and disease severity (FEV,) as
well as emphysema (CT < =950 HU) in women.

Trial registration: No.. NCT02627872, retrospectively registered on December 9, 2015.
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Background

Chronic obstructive pulmonary disease (COPD) is re-
ported to be a leading cause of mortality worldwide and
represents an important socioeconomic burden [1, 2].
Cigarette smoking is the most common etiology of COPD.
Habitual cigarette smoking causes chronic inflammation
in the small airways and lung parenchyma, leading to nar-
rowing of the small airways and destruction of the alveolar
walls [3]. A number of studies have demonstrated pro-
nounced gender differences in susceptibility, respiratory
symptoms, and lung function as well as in molecular
markers of inflammation in COPD [4—6], with a higher
frequency of hospitalization and mortality among women
[7, 8]. Female smokers are more prone to lung function
reduction [6] with reports of up to 50% higher risk of de-
veloping COPD compared to men after correction for
smoking history [8—10]. However, the mechanisms under-
lying these gender-related differences are not well under-
stood. Proteomics has deepened our understanding of the
molecular pathogenesis of COPD in recent years using
samples from different lung compartments [11, 12] [13,
14]. However, in spite of known gender differences in the
clinical presentation, very few studies have investigated
molecular gender differences. In our Karolinska COSMIC
cohort, we have previously reported molecular gender dif-
ferences in COPD in several compartments, including the
BAL cell proteome using two-dimensional differential gel
electrophoresis (2D-DIGE) [15]. Here we performed
iTRAQ-label based shotgun proteomics to investigate im-
mune cells from the lung (BAL cells). Shotgun proteomics
facilitates investigation of a different proteome compart-
ment than the previously reported 2D-DIGE approaches,
and thus provides complementary information about the
BAL cell proteome alterations due to smoking and COPD.
Emphasis on the investigation reported here is on specific
proteins and pathways related to pathological alterations
in smoking-induced COPD. Results related to the effects
of smoking prior to disease manifestations are reported in
a companion paper [16].

Methods
Detailed methods are provided in the Additional file 1.

Study subjects and design

This study was carried out on subjects from the Karo-
linska COSMIC cohort (ClinicalTrials.gov identifier
NCT02627872) [15, 17-23], a three group cross-sectional
study consisting of age- (45-65 years) and gender-
matched groups of healthy never-smokers (Never-
smokers), smokers with normal lung function (Smokers),
and COPD patients (GOLD stage I-II, FEV1>50% and
FEV,/FVC<0.7), consisting of both current smokers
(COPD) and ex-smokers (exCOPD, >2 vyears since
smoking cessation). Sixty-nine subjects were selected for
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iTRAQ proteomics analysis (Fig. 1), with results related to
COPD pathology reported here, and results related to the
effects of smoking reported in the companion paper.
Smokers were matched in terms of smoking history (>10
pack years; > 10 cigarettes/day the past 6 months). All
subjects underwent spirometry and high resolution CT
[18, 21]. Participants had no history of allergy (negative
IgE tests) or asthma, did not use inhaled or oral corticoste-
roids, and had no exacerbations for >3 months prior to
study inclusion. The study was approved by the Stockholm
regional ethical board (Case no. 2006/959-31/1) and
informed written consent was obtained from all subjects.
BAL cell samples were collected during bronchoscopy as
previously described [24]. BAL T-cell subtypes were
quantified using flow cytometry [17, 20].

Proteomic analysis

Trypsinized protein extracts from 1.5 x 10° BAL cells were
labeled with 4-plex iTRAQ reagents, with the 114 isobaric
tag dedicated to a pooled reference sample used for ratio-
metric normalization to reduce the variance between
batches [25], while the subject samples were randomized
and labeled with the 115, 116 or 117 isobaric tags. Labeled
peptides were fractionated into 5 mix-mode fractions, and
analyzed on an LTQ-Orbitrap Velos Pro (Thermo Scien-
tific, Sunnyvale, California, USA) connected to a Dionex
Ultimate NCR-3000RS (LC system, Sunnyvale, California,

Karolinska COSMIC cohort
iTRAQ analysis

LN

Never-smokers Smokers Smokers Ex-smokers
(M/F:9/9) || (M/F:11/14) || with cOPD || with COPD
(M/F:10/8) || (M/F:3/5)

\ J L )
Y Y

Companion paper

Fig. 1 Flow chart outlining the study design and emphasis groups
of the current vs. the companion paper [16]. A total of 69 subjects
from the Karolinska COSMIC cohort, well-matched in terms of age,
gender, and lung functions, were selected for iTRAQ proteomic
investigations, including 18 healthy Never-smokers (9 male, 9 female),
25 Smokers with normal lung function (11 male, 14 female), 18 current
smokers with COPD (10 male, 8 female), and 8 ex-smokers with COPD
(3 male, 5 female). This manuscript focus on the alterations in proteomes
and pathways related to COPD pathology (i.e, comparisons of Smoker
vs. smokers with COPD, to some extent related to comparisons of
healthy Never-smokers vs. ex-smokers with COPD (exCOPD)). The
companion paper focuses on the effects of smoking prior to
disease presentation, i.e., comparison of the Never-smoker vs

Current study
(including Never-smoker vs exCOPD)

Smoker groups [16]
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USA). Full scan MS spectra were acquired with resolution
R=120,000 at m/z 400. Peak integration of iTRAQ MS/
MS spectra was performed by Proteome discoverer 2.1
(Thermo Fisher Scientific) searched against the UniProt
human database (2015_12). Ratio data of samples to refer-
ence was log2 transformed.

Statistical analyses

Univariate statistical analysis was performed using Stu-
dent’s t-test (p <0.05), followed by correction for mul-
tiple hypothesis testing according to Storey (q-value)
[26]. The level of heterogeneity of the protein expression
between genders for the comparison of Smoker vs
COPD groups was quantified by means of I in order to
determine if gender stratified statistical analysis was ap-
propriate [27]. The heterogeneity tests indicated that 35
of 142 significantly altered proteins in the joint gender
model displayed moderate-to-high heterogeneity be-
tween genders (I*>0.50, Additional file 2: Table S1),
meaning that the majority of proteins in the joint gender
model were driven by differences in one gender, as
exemplified by ISOC2 (Fig. 2a).

Multivariate statistical modeling was performed using
SIMCA 14.0 (Umetrics, Umea, Sweden) including princi-
pal component analysis (PCA) and orthogonal projection
to latent structure-discriminant analysis (OPLS-DA) [28].
In contrast to the more commonly used PCA modeling,
OPLS analysis is a supervised method designed to separ-
ate structured noise unrelated (orthogonal, often intra-
group variance) to the predictive variance of interest (e.g.,
COPD patients vs healthy subjects). The resulting “noise
filter” increases the interpretability of the multivariate
model, particularly in deriving the observed group
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separation back to the specific proteins driving the separ-
ation. For more information of how to interpret these
models, or the related model statistics, please see [29]. Pro-
teins with an absolute value of the scaled loadings of the
first predictive component (|p(corr)[1]|) greater than the
critical value of the Pearson correlation coefficient (p <
0.05) was considered significant for OPLS-DA models.

Model performance is reported as the goodness of fit
(R?), the goodness of prediction based on 7-fold cross-
validation (Q?), p-value for cross-validated ANOVA (CV-
ANOVA) [29] and 200-fold permutation test [30, 31].
OPLS-DA models with R* or Q* greater than 0.9 and 0.5
respectively, were considered as good model, [30]. P-value
of CV-ANOVA less than 0.05 were considered to be sig-
nificant [31]. Multivariate correlation analysis of clinical-
and demographical data with proteins was performed
using partial least squares regression (PLS).

Pathway enrichment analysis was performed based on
proteins found to be significantly altered in OPLS-DA
models comparing female Smoker and COPD groups
using KOBAS 2.0 [32], with pathway enrichment analysis
performed based on the KEGG pathways database [33].

Results

Clinical characteristics are summarized in Table 1. No
significant differences were observed between Smoker
and COPD groups in either gender (Table 1), except for
the reductions of FEV; (p<0.01) and FEV,/FVC (p<
0.01) in COPD, as part of the cohort design.

Proteome alteration in smokers with COPD
Univariate statistical analysis comparing smokers with nor-
mal lung function (Smokers) vs. current-smoker COPD
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Fig. 2 a) The protein (Isochorismatase domain-containing protein 2, ISOC2, Uniprot: Q96AB3) exemplifies the profile of a protein that was identified as
significantly altered in the joint gender analysis (p = 0.01), in spite of a high heterogeneity (F = 0.88). Stratification by gender revealed that this significance
was completely driven by that of in female population (p =0.0002), and was not altered in males (p = 0.66) b) Venn diagram showing the overlap in
alterations of proteomic profiles between Smokers and COPD groups in joint gender and gender stratified univariate statistical analyses. Only three
proteins were altered in both male and female COPD patients, and the majority of protein alterations in female patients were unique
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Table 1 Clinical characteristics of Smokers and COPD groups, stratified by gender

Male Female

Smoker (n=11) COPD (n=10) p-value Smoker (n = 14) COPD (n=8) p-value
GOLD (I/11) na. 4/6 na. na. 5/3° na.
GOLD (A/B) na. 8/2 na. na. 7/1° na.
Age 552+60 569+6.3 NS 57155 584+39 NS
BAL macrophages [%)] 95.7+24 970+ 14 NS 964+ 2.5 951428 NS
BAL lymphocytes [%] 23(1.2,54) 14 (0.2, 56) NS 1.7.(1,72) 33(1,86) NS
BAL neutrophils [%]° 0.8 (0.2, 3.6) 08 (0, 1.6) NS 0.5 (0,28) 0.5(02,14) NS
BAL eosinophils [%]° 0.0 (0, 1.4) 03(0,12) NS 0.1(0,12) 0.2 (0, 0.6) NS
BAL basophils [9]° 0.0 (0, 04) 0.0 (0, 0) NS 0.0 (0,0.2) 0.0 (0,0.2) NS
BAL mast cells/10 vis fields® 3(0.8) 3(0.6) NS 3(0.13) 1.5(0.20) NS
BMI 254+28 251+£39 NS 248+26 247 £4.2 NS
Packs/years 414+188 423+10.1 NS 376114 37.3+£94 NS
Cigarettes/day in last 6 months 194+78 184+52 NS 156+58 149+79 NS
FEV; (% predicted) 104£12.1 760+80 <001 107 +14.12° 815+ 14° < 001
FEV,/FVC (% predicted) 773£50 61.8+£6.6 < 0.01 774 +53¢ 588+6.6° <001

Data are presented as mean + SD tested by using t-test; or , median (minimum, maximum) for skewed data, tested by Mann-Whitney U test; n.a., not applicable; NS,
not significant (p > 0.05); ® no significant difference between male and female COPD patients (p > 0.30); <, no significant difference between male and female

smokers (p > 0.70)

patients (COPD) revealed 142 significantly altered proteins
(p <0.05,q<0.30; Additional file 2: Table S1) Given the
high heterogeneity scores (see Methods), statistical
analyses were also performed following stratification by
gender.

In females, 164 proteins were significantly altered in
Smoker vs. COPD groups (p <0.05, q<0.30, Additional
file 2: Table S6). In the corresponding males, 24 proteins
(p < 0.05) were significantly altered, none of which passed
correction for multiple testing (q < 0.30, Additional file 2:
Table S6). Few altered proteins overlapped between
the joint gender and gender stratified models, , and more
than half of the significantly altered proteins were
uniquely altered in female COPD patients (Fig. 2b).

Subsequent OPLS-DA multivariate modeling gave a
good separation between joint gender Smoker and
COPD groups (Fig. 3a; R*=0.85, Q*=0.66, p[CV-
ANOVA] = 4.6 x 10~°) with 116 proteins driving the sep-
aration (|(p(corr)[1]| > 0.32, Additional file 2: Table S2).
In concordance with the heterogeneity analysis
(Additional file 2: Table S1), stratification by gender re-
vealed a significant difference in the proteome alter-
ations due to COPD between men and women, with
very little overlap between genders. In the female popu-
lation, 145 significantly altered proteins (|p(corr)[1]| >
0.45, Fig. 3c, Additional file 2: Table S2) drove the sig-
nificant OPLS-DA model (Fig. 3b; R*=0.85, Q*=0.81;
p[CV-ANOVA] =19x1077). In males, 24 proteins
(Fig. 3e) drove the significant OPLS-DA model (Fig. 3d;
R*=0.78, Q*=0.73, p[CV-ANOVA] =9.4x 10°°), with
only 4 proteins overlapping between genders (Fig. 3f).

Pathway enrichment analysis

Pathway enrichment analysis for female Smoker vs
COPD groups revealed 6 significantly enriched pathways
(q<0.05, Table 2, Additional file 2: Table S3): oxidative
phosphorylation, citrate cycle, glutathione metabolism,
FcyR-mediated phagocytosis, lysosomal pathway and
regulation of actin cytoskeleton. No pathways were
found to be significantly enriched in male Smoker vs.
COPD groups. Accordingly, pathway enrichments found
in the corresponding joint gender comparison was
driven primarily by alterations in the female cohort
(Table 2). The majority of proteins in the metabolic
pathways, including oxidative phosphorylation, citrate
cycle, amino acids metabolism, fatty acid metabolism
(Additional file 2: Table S3) and glutathione metabolism
were up-regulated, while those in the FcyR-mediated
phagocytosis (Fig. 4), regulation of actin cytoskeleton
and lysosomal pathways were down-regulated in female
COPD patients (Additional file 2: Table S3).

Direct comparisons of female vs. male COPD patients
was performed using OPLS-DA analysis, yielding 119 sig-
nificant proteins (R*=0.92, Q*=0.86, p[CV-ANOVA] =
4.6 x 1077) representing 7 significant pathways (p < 0.05),
including oxidative phosphorylation, FcyR-mediated
phagocytosis, lysosome and citrate cycle (Additional file 2:
Table S4).

Pathways correlate with lung function and emphysema

CT data was acquired as previously described [18, 21].
The percentage of attenuation values <-950 HU was in-
creased in female COPD patients compared to the
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Fig. 3 Multivariate OPLS-DA models comparing Smokers vs COPD groups before and after stratification by gender. OPLS-DA modeling showed
significant separations between Smoker and COPD groups for a) joint gender (R* = 0.85, Q* = 0.66, p[CV-ANOVA] = 46 x 107 116 proteins), b) females
(R*=085,Q°=081;p=19x 10", 145 proteins) and d) males (R*=0.78, Q>*=0.73, p= 94 x 107°, 24 proteins). However, the predictive performances
(@) were better following stratification by gender for both gender models. c) Loadings of the top 24 proteins out of 145 significant variables in the
female COPD vs Smoker model; e) All 24 significant proteins from the male COPD vs Smokers model. There was no overlap among 24 top proteins of
both gender models. A comprehensive list of loadings along with protein names and statistics are provided in Additional file 2: Table S2. f) Venn diagram
displaying overlap between genders in protein alterations due to COPD based on the OPLS-DA models displayed in b) and d). Only four proteins
(QONSE4, P02751, 095470, and PO1876) were altered in both male and female smokers with COPD
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female Smoker group (p=0.007, Additional file 1:
Figure S3), but not in the corresponding males. CT <
-950 HU values significantly correlated with the lyso-
somal- (R*=0.81, p=0.002; Fig. 5a) and glutathione
metabolism (R*=0.66, p=0.01) pathways in female
COPD patients, but not in males. The proteins from
the FcyR-mediated phagocytosis and regulation of
actin cytoskeleton pathways correlated with FEV,/
FVC (R*=0.54, p=0.04; R*=0.83, p=0.002, Fig. 5b;
respectively), while the proteins from the regulation
of actin cytoskeleton and oxidative phosphorylation
pathways correlated with FEV; in female COPD pa-
tients (R*=0.51, p=0.05; R*=0.52, p=0.04; respect-
ively). No significant correlations were found in the
female Smoker or male groups.

Pathways correlated with T-cell subsets

The proportion of CD4" and CD8" T-cell, as well as
their subtypes expressing chemokine receptors CXCR3,
CXCR4 and CCR5, or the activation marker CD69 in the
BAL cell populations were quantified in the BAL cell
population using flow cytometry [17, 20]. Protein abun-
dances in the FcyR-mediated phagocytosis, regulation of
actin cytoskeleton, and lysosomal pathways correlated
with the proportion of CD4*CXCR4" T-cells (R*=0.97,
p<0.0001, Fig. 5¢; R*=093, p<0.0001; R*=0.61,
respectively) as well as with CD8*CXCR4" T-cells (R* =
0.77, p =0.009; R = 0.86, p = 0.001, Fig. 5d; R*> = 0.86, p
=0.001, respectively). Proteins from the lysosomal path-
way also correlated significantly with the overall propor-
tion of CD8" and CD4* T cells (R* = 0.58, p = 0.03; R* =
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Table 2 Pathways affected in COPD patients compared to smokers with normal lung function

Female Smoker vs COPD Male Smoker vs COPD Joint Smoker vs COPD

Pathways (background No.) Hits p-value pFDRP Hits p-value pFDR? Hits p-value pFDRP
Oxidative phosphorylation? (211) 12 60x10°  33x107* 3 0.06 0.21
Citrate (TCA) cycle (64) 6 11x10%  29x107° 3 17x107° 002
Glutathione metabolism (89) 6 57x107* 0.01 1 0.30 0.50
FcyR-mediated phagocytosis (165) 7 26%1073 0.03 5 50x 107 88x 1073
Lysosome® (222) 8 56x107° 004 5 131072 002
Regulation of actin cytoskeleton (387) 11 41x107° 004 8 11x107%  45x107°
Phagosome (287) 8 15x107% 010 5 43x107° 004

Fatty acid metabolism (94) 4 211072 013 2 78x107° 029 3 54x107° 005

Focal adhesion (310) 3 27%107 0.29 5 0.01 0.09
Proteasome 4 31x10% 82x107°
Endocytosis 7 19%10° 003

Pathway enrichment analysis for female, male and joint gender comparisons of Smoker vs COPD groups were based on 145, 24 and 116 proteins driving the
respective OPLS-DA models,. *This pathway was detected in female COPD patients by two-dimensional difference gel electrophoresis (2D-DIGE) analysis [15]; More
significant pathways were found in female COPD patients for iTRAQ-based proteomics is a platform with higher resolution and more sensitiveness than

2D-DIGE. °FDR corrected p-value by Benjamini and Hochberg’s method; COPDs, smokers with COPD
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Fig. 4 Dysregulation of FcyR-mediated phagocytosis in female COPD patients. The protein levels of ARPC4, ARPC5, ARPC5L, ARPC1B, ARPC2,
ARPC3 decreased (blue) and Rac as well as RHOA increased (red) in BAL cells. Rearrangement of the actin cytoskeleton is a necessary driving force
for FcyR-mediated phagocytosis [41, 42]. The decreased levels of Arp2/3 and actin cytoskeletal processes may thus imply that FcyR-mediated
phagocytosis was hampered in spite of up-regulations of Rac and RhoA in COPD patients. The majority of proteins in the downstream regulation
of actin cytoskeleton- and lysosome pathways were down-regulated in female COPD patients (Additional file 2: Table S3) Blue: down-regulated; red:
up-regulated. This figure was created with KEGG pathway tool with minor modification
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0.57, p = 0.03, respectively), as well as CXCR3 on CD8"
(R*=0.66, p=0.01) and CD4" (R*=0.68, p=0.01) cells.
The corresponding correlations in female Smokers and
male groups were weaker or not significant.

iTRAQ proteomics versus 2D-DIGE proteomics

2D-DIGE analyses have been performed on the BAL
samples from the same cohort [15]. Ninety percent of
the proteins identified by iTRAQ were novel, i.e. not
previously identified by 2D-DIGE (Fig. 6a). Among
the few overlapping proteins, several key proteins
present in the pathways identified as significantly
enriched through the iTRAQ analyses were found,
and the 2D-DIGE data set thereby serves as a tech-
nical validation for the iTRAQ analyses. Some of
these key proteins are presented in Fig. 6: the levels
of protein ARP3 (Fig. 6b) involved in the pathways
FcyR-mediated phagocytosis and regulation of actin
cytoskeleton, and HEXB (Fig. 6¢) involved in the
lysosomal- and oxidative phosphorylation pathways,
decreased in both proteomics platforms, whereas
ATP5B (Fig. 6d) also involved in the lysosomal- and
oxidative phosphorylation pathways, increased in both
platforms. 1LTA4H (Fig. 6e) increased in female
COPD patients in both studies. The full list of
proteins identified by iTRAQ is presented in
Additional file 2: Table S5.

Discussion

COPD is a heterogeneous inflammatory disease mani-
festing itself in a multitude of sub-phenotypes that are
likely to involve distinct molecular pathways in the dis-
ease development. Smoking-related COPD is the most
common sub-phenotype. Smoking women experienced a
worse decline in lung function and a higher risk of
hospitalization than smoking men even after adjustment
for smoking history in large cohort studies [9, 10], with
the accelerated decline in lung function being particu-
larly pronounced after menopause [34]. By means of
iTRAQ-based analyses, clear differences in the BAL cell
proteomes of smokers with COPD compared with
Smoker with normal lung function of both genders were
demonstrated, with more pronounced alterations in
female COPD patients. The low level of overlap between
genders indicates distinct molecular gender difference in
COPD, thereby supporting our previous findings at the
proteome [15], lipidome [19], and metabolome levels
[22]. Consistently, these differences were apparent also at
the pathway level, with more pronounced alterations in fe-
male COPD patients, involving phagocytosis-related
process (FcyR-mediated phagocytosis, regulation of actin
cytoskeleton, and lysosome), and oxidative stress (oxida-
tive phosphorylation, and glutathione metabolism). In
contrast, the gender differences observed between
smokers with normal lung function and healthy never-
smokers were minor (see Companion manuscript [16]).
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As such, the gender differences observed here appear to
be isolated to COPD pathology.

Phagocytosis represents an important first line of
defense for clearance of invading organisms and protec-
tion from infections in the lung, as well as clearance of
particulate matter and debris resulting from cigarette
smoking [35]. The ligand of Fcy-receptors, IgG, coats
the surface of pathogens such as viruses, bacteria, and
fungi, which facilitates recognition by and binding to
Fcy-receptors, thereby initiating phagocytosis. Defective
phagocytosis of bacteria by alveolar macrophages in
COPD patients has been associated with bacterial
colonization in the airway [36, 37] and increased risk of
exacerbations of COPD, which is further associated with
an accelerated progression of airflow obstruction [38].
Non-opsonic mediated phagocytosis has been proposed
to be predominated in COPD ([35, 37]. However, our re-
sults suggested dysfunction also of the opsonic path-
ways, with dysregulation of FcyR-mediated phagocytosis
primarily in female COPD patients. This may afford an
explanation as to why female smoker with COPD have a
higher risk of hospitalization and exacerbations [39, 40],

both frequently linked to infections [9]. FcyR-mediated
phagocytosis was altered also in ex-smoker COPD
patients (Additional file 1: Figure S1), indicating that the
dysregulation may persist even following smoking cessa-
tion in female COPD patients.

Rearrangement of the actin cytoskeleton is necessary
for phagocytosis and engulfment of foreign particles [41,
42]. The phagosome fuses with the lysosome to form a
phagolysosome for digestion. Here we observed dysregu-
lation not only in the lysosomal pathway as previously
described [15], but also in two upstream pathways of
phagocytosis and regulation of actin cytoskeleton in fe-
male COPD patients. Proteins in FcyR-mediated phago-
cytosis and regulation of actin cytoskeleton correlated
with the level of obstruction, suggesting that these two
pathways play a more prominent role in the pathogenesis
of COPD in females. Proteins of the lysosomal pathway
also significantly correlated with CT attenuation values
<-950 HU, an index of the proportion of emphysema [43],
in female but not male COPD patients, indicating that
dysregulation of the lysosomal pathway is associated with
alveolar destruction primarily in female COPD patients.
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The three pathways related to the phagocytosis-
lysosomal axis also highly correlated with CXCR4" CD4
+ and CD8+ T-cells in BAL in female COPD patients
(Fig. 5). CXCR4 specifically binds to CXCL12 [44], and
CXCL12/CXCR4 interaction controls the homeostatic
localization, development, and polarization of immune
cells in peripheral tissues, as well as their migration
under inflammatory conditions [44]. Furthermore, the
chemotaxis of CXCL12/CXCR4 interaction is regulated
by Rho GTPases including RhoA, Racl, both of which
were upregulated in FcyR-mediated phagocytosis and
regulation of actin cytoskeleton pathways in female
COPD patients. Activation of Rho GTPases inhibit T-
cell polarization and migration [45] mediated by
CXCL12/CXCR4, indicating defective phagocytosis along
with dysregulation of T-cell polarization and migration
in female COPD patients.

The downstream lysosomal pathway was altered in
smokers with normal lung function as compared to
healthy never-smokers of both genders [16]. The selective
alterations of the lysosomal pathway along with two
upstream pathways in females but not male COPD pa-
tients further suggests their role in the molecular gender
differences in COPD pathogenesis.

Oxidative phosphorylation is the source of reactive
oxygen species (ROS), and glutathione is a key antioxi-
dant against the damage of oxidative stress induced by
ROS. The increases in oxidative phosphorylation and
glutathione metabolism also stress the importance of
these two pathways in disease pathology in COPD.
Detailed discussion in the Additional file 1.

Even though the Karolinska COSMIC cohort repre-
sents a large study within the scope of sampling by
bronchoscopy, the group sizes following stratification by
gender and current smoking status [46] are relatively
small, making it difficult to generalize the findings. How-
ever, the molecular alterations in female COPD patients
observed at several molecular levels from multiple lung
compartments in this cohort, including metabolomes
[22] and oxylipins [19] in airway exudates and serum,
as well as proteomes in lung immune- [15] and epithe-
lial [47] cells, with significant overlap in the molecular
pathways identified provide added validity to these
findings.

Conclusion

In conclusion, analyses of the BAL immune cell proteome
using iTRAQ proteomics revealed gender-specific prote-
ome alterations due to COPD, with very limited overlap
between male and female COPD patients. In women, the
altered pathways involved dysfunction in FcyR-mediated
phagocytosis, regulation of actin cytoskeleton, lysosomal,
and oxidative stress pathways that correlated with the de-
gree of obstruction, and emphysema. No alterations were
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observed in the male cohort. Furthermore, the gender-
specific dysregulation of the phagocytosis-lysosomal axis
and T-cell polarization may provide mechanistic clues to
the faster decline of lung function and higher risk of
hospitalization observed in female COPD patients. Given
the lack of gender differences in smokers with normal
lung function (see companion paper RERE-D-17-00418.1,
with DOI:10.1186/s12931-017-0695-6 12931_2017_695),
our results suggest that the pathogenesis of COPD differs
in female and male smokers in early disease stages. These
results also stress the importance of gender stratification
both in terms of elucidation the mechanisms underlying
smoking-induced COPD, as well as for the development
of relevant diagnosis and treatment strategies for COPD.
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