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The novel role of ER protein TXNDC5 
in the pathogenesis of organ fibrosis: 
mechanistic insights and therapeutic 
implications
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Abstract 

Fibrosis-related disorders account for an enormous burden of disease-associated morbidity and mortality world‑
wide. Fibrosis is defined by excessive extracellular matrix deposition at fibrotic foci in the organ tissue following 
injury, resulting in abnormal architecture, impaired function and ultimately, organ failure. To date, there lacks effec‑
tive pharmacological therapy to target fibrosis per se, highlighting the urgent need to identify novel drug targets 
against organ fibrosis. Recently, we have discovered the critical role of a fibroblasts-enriched endoplasmic reticulum 
protein disulfide isomerase (PDI), thioredoxin domain containing 5 (TXNDC5), in cardiac, pulmonary, renal and liver 
fibrosis, showing TXNDC5 is required for the activation of fibrogenic transforming growth factor-β signaling cascades 
depending on its catalytic activity as a PDI. Moreover, deletion of TXNDC5 in fibroblasts ameliorates organ fibrosis and 
preserves organ function by inhibiting myofibroblasts activation, proliferation and extracellular matrix production. In 
this review, we detailed the molecular and cellular mechanisms by which TXNDC5 promotes fibrogenesis in various 
tissue types and summarized potential therapeutic strategies targeting TXNDC5 to treat organ fibrosis.
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Introduction
Fibrosis, a non-physiological repair process in multiple 
organs, occurs in response to chemical, immunological 
and physical insults, evolutionarily designed as the body’s 
matrix synthetic machinery to repair and maintain tissue 
homeostasis. Upon injury, the release of multiple pro-
fibrotic cytokines (such as transforming growth factor-β 

[TGFβ] and tumor necrosis factor-α [TNFα]), growth 
factors (such as connective tissue growth factor [CTGF], 
fibroblast growth factor 2 [FGF-2], insulin-like growth 
factor [IGF], platelet-derived growth factor [PDGF]) 
and reactive oxidants from damaged cells or infiltrating 
inflammatory cells triggers the activation and prolifera-
tion of fibroblasts [1–3]. Activated fibroblasts transition 
into α-smooth muscle actin (α-SMA)-expressing myofi-
broblasts, which are responsible for producing extracel-
lular matrix (ECM) proteins that are required for acute 
tissue repair and wound healing [4]. This process is 
reversible once the tissue repair is completed, and acti-
vated fibroblasts are removed owing to apoptosis. If the 
injury to the tissue is perpetual, however, fibroblast acti-
vation becomes uncontrolled, turning themselves into 
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apoptosis-resistant fibrosis-associated fibroblasts (FAFs). 
Incessant and excessive accumulation of FAFs and ECM 
proteins, therefore, leads to scar formation, architectural 
distortion, progressive loss of tissue function and ulti-
mately organ failure.

TGFβ is the pivotal factor that drives organ fibrosis. 
Although TGFβ inhibits proliferation in most cell types 
and triggers apoptosis in epithelial cells, it stimulates 
mesenchymal cell proliferation and ECM production. 
TGFβ is secreted as part of a large latent complex, con-
sisting of latent TGFβ-binding protein (LTBP), latency-
associated peptide (LAP) and TGFβ itself [5]. After 
cleavage of LTBP and LAP by matrix metalloproteases 
or integrins, activated TGFβ dimer is released from the 
complex and interacts with TGFβ receptor 2 (TGFBR2) 
[6]. After binding with TGFβ, TGFBR2 recruits and 
phosphorylates TGFβ receptor 1 (TGFBR1), which fur-
ther phosphorylates and activates SMAD2/3 to associate 
with SMAD4 [7]. The SMAD2/3/4 complex then enters 
nucleus and works with other co-transcription factors to 
regulate target genes to trigger the activation and trans-
differentiation of resident or immigrated fibroblasts into 
myofibroblasts and ECM production. These activated 
myofibroblasts produce ECM proteins, such as collagens 
(Type I, III and IV), fibronectin, elastin and proteoglycan, 
to restore tissue integrity and maintain tissue homeosta-
sis [8]. If the injury is not resolved properly, fibroblasts 
will continue to be activated to produce and accumu-
late excessive amounts of ECM proteins. This will con-
sequently lead to the formation of stiff fibrotic matrix, 
where matrix stiffness provides mechanical stimulus to 
further promote fibrotic tissue remodeling and fibrosis 
progression [9]. In some cases, it could result in abnormal 
tissue architecture, function and ultimately organ failure. 
In addition to the canonical SMAD signaling pathway, 
TGFβ also stimulates non-canonical (SMAD-independ-
ent) pathways, such as mitogen activated protein (MAP) 
kinases (c-Jun N-terminal kinase [JNK], extracellular-sig-
nal regulated kinase [ERK] and p38), phosphatidylinosi-
tol-3-kinase (PI3K), Rho-like GTPases and janus kinases 
(JAKs) to induce organ fibrosis [10].

Fibrosis-related disorders cause enormous medi-
cal burden, and up to 45% of all deaths are attributed to 
severe fibrosis globally. However, current treatments for 
fibrosis have limited efficacy [11]. Of note, inhibiting the 
TGFβ signaling pathway directly to reduce organ fibrosis 
may cause undesired side effects. For example, blockage 
of TGFβ-mediated SMAD3 phosphorylation prevented 
bleomycin (BLM)-induced pulmonary fibrosis (PF); 
however, TGFβ or SMAD3 deletion caused abnormal 
lung organogenesis and systemic inflammation in mouse 
models [12, 13]. These evidence suggest that inhibition of 
TGFβ may cause systematic adverse effects and may not 

be an ideal therapeutic target for organ fibrosis. Delineat-
ing and leveraging novel mechanisms underlying organ 
fibrogenesis to develop potential therapeutic approaches, 
hence, are urgently needed [14]. Here, we discuss the 
current knowledge on the novel role of an endoplas-
mic reticulum (ER) protein thioredoxin (TRX) domain 
containing 5 (TXNDC5) in the pathogenesis of fibrosis, 
the underlying molecular/cellular mechanisms and the 
potential approaches to treat organ fibrosis by targeting 
TXNDC5.

Thioredoxin domain containing 5 (TXNDC5)
TXNDC5, also known as endothelial protein disulfide 
isomerase (Endo-PDI), endoplasmic reticulum protein 46 
(ERp46) or protein disulfide isomerase family A, member 
15 (PDI15), is a member of PDI family. TXNDC5 cata-
lyzes the formation of native disulfide bonds and rear-
ranges the disulfide bonds via its TRX domains in the ER 
[15, 16]. Each TRX domain harbors a CGHC motif that 
serves as the catalytic domain for PDI activity (Fig.  1). 
Functionally, TXNDC5 facilitates proper protein fold-
ing, prevents unfolded protein response (UPR)-related 
apoptosis [15, 17], and mediates redox reaction via inter-
acting with NADPH oxidase [18]. Moreover, TXNDC5 
synergizes with heat shock cognate 70 protein (HSC70), 
another chaperone protein, to exacerbate the inflamma-
tory phenotypes through NF-κB signaling, independent 
of its PDI activity [15, 19].

TXNDC5 was found enriched in endothelial cells (ECs) 
and fibroblasts [20], where TXNDC5 dysregulation was 
implicated in multiple diseases, including organ fibro-
sis, atherosclerosis, diabetes, liver disease, rheumatoid 
arthritis (RA), cancer, neurodegenerative disease and 
vitiligo [15, 21, 22]. In addition, TXNDC5 expression 
is induced under hypoxic conditions in disease states, 
including RA [23], non-small cell lung cancer [24], and 
colorectal cancer. A previous study demonstrated that 
TXNDC5 renders EC resistant to hypoxia-initiated apop-
tosis [20]. Taken together, current evidence suggests that 
aberrant TXNDC5 expression could contribute to a wide 
spectrum of diseases through its distinct functions in dif-
ferent cell types.

The pathological role of TXNDC5 in organ fibrosis
TXNDC5 was reported to promote fibrosis in multi-
ple organs, including the heart [25], lung [26], kidney 
[27], and liver [28], as the intermediary of TGFβ sign-
aling (scheme shown in Fig.  1). TXNDC5 promotes 
tissue fibrosis through activation of canonical (SMAD3-
dependent) or non-canonical (MAP kinases, such as 
JNK, ERK and pro-survival protein STAT3) TGFβ signal-
ing. TGFβ induces TXNDC5 upregulation via increased 
ER stress level and activating transcription factor 6 
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(ATF6)-mediated transcriptional control. In addition, 
TRX domains of TXNDC5 contribute to the proper fold-
ing and stabilization of pro-fibrotic proteins. This TGFβ-
ATF6-TXNDC5 signaling axis highlights the crucial role 
of TXNDC5 in fibrogenesis, although its downstream 

signaling mediators are slightly different in individual 
organs (shown in Table  1). In the following sections, 
we will describe the detailed mechanisms by which 
TXNDC5 mediates the development of organ fibrosis in 
heart, lung, kidney and liver.

Fig. 1  TXNDC5 contributes critically to the development of organ fibrosis through its PDI activity mediated by TRX domains. Global or targeted 
deletion of Txndc5 prevents or halts fibrosis progression, as reflected by a reduction of fibrillar collagen deposition in internal organs including heart, 
lung, kidney and liver

Table 1  TGFβ-ATF6-TXNDC5 signaling axis triggers various downstream fibrogenic signaling pathways in different organs

Organ fibrosis TXNDC5 downstream signaling pathway

Cardiac fibrosis [25] 1. Non-canonical TGFβ pathway: JNK signaling

2. Facilitating folding of ECM protein, such as collagen and fibronectin

Pulmonary fibrosis [26] 1. Canonical TGFβ pathway: SMAD3 signaling

2. Non-canonical TGFβ pathway: JNK and ERK signaling

3. Post-translationally stabilizing TGFβR1 protein

Renal fibrosis [27] 1. Canonical TGFβ pathway: SMAD3 signaling

2. Post-translationally stabilizing TGFβR1 protein

Liver fibrosis [28] 1. Non-canonical TGFβ pathway: JNK and STAT3 signaling
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The role of TXNDC5 in cardiac fibrosis (CF)
Heart failure (HF) is one of the major public health prob-
lems globally, with a rising prevalence and high mortal-
ity rate [29, 30]. Although medical advances reduce the 
mortality rates of cardiovascular diseases (CVD), includ-
ing hypertensive heart disease, acute coronary syndrome, 
congenital and valvular heart diseases, it remains critical 
to develop novel treatment strategies for HF to reduce 
mortality rate [31, 32]. In addition to abnormalities in 
cardiomyocytes, CF contributes to cardiac remodeling 
and plays an important role in the progression of HF 
[33, 34]. Replacement of cardiac muscles by fibrotic tis-
sues reduces systolic function following cardiac injury 
[33, 34]. Excessive ECM accumulation causes wall stiff-
ness and results in diastolic as well as systolic dysfunc-
tion [33–35]. In addition to cardiac function, increased 
production of cardiac fibrotic tissues leads to enhanced 
cardiac automaticity and triggered activity, which can 
foster life-threatening arrhythmias [36, 37]. Targeting CF, 
therefore, may provide a novel therapeutic venue against 
contractile dysfunction, arrhythmias and death in HF.

During CF progression, renin–angiotensin–aldoster-
one system (RAAS), endothelin-1 (ET-1) and TGFβ1 
expression levels are increased to trigger the activation 
and proliferation of fibroblasts [1–3]. Activated cardiac 
fibroblasts transdifferentiate into α-SMA-expressing 
myofibroblasts, secreting fibrillar collagen and multiple 
ECM proteins at the fibrotic foci [4]. Myofibroblasts also 
modulate ECM turnover through matrix metalloprotein-
ases (MMPs) and tissue inhibitor of MMPs (TIMPs) to 
promote ECM accumulation during CF progression [38].

To date, therapeutic strategies against CF remain sub-
optimal. Using inhibitors targeting RAAS, including 
angiotensin converting enzyme inhibitors (ACEI), angio-
tensin receptor blockers (ARB) and mineralocorticoid 
receptor antagonist, has shown benefits in improving 
ventricular function and slow CF progression [39–41]. 
Nevertheless, these treatments cause a hypotensive effect 
which limited their capability to slow CF progression. 
Meanwhile, treatment using non-selective TGFβ inhibi-
tors reduces fibrosis progression by attenuating fibroblast 
activation and ECM deposition in animal models [42–
44]. However, these non-selective TGFβ inhibitors cause 
undesired side effects such as liver toxicity, limiting their 
clinical application [45]. Besides RAAS and TGFβ, thera-
peutic strategies targeting other fibrogenic molecules 
such as TGFβ activated kinase 1, p38, endothelin recep-
tors, G protein-coupled receptor kinase 2 and miR21 
have been investigated in preclinical studies [25, 46–50].

Recently, PDI family proteins have been implicated in 
multiple CVD [51]. Multiple studies have delineated the 
mechanisms by which PDIs contribute to the patho-
genesis of CVD and shown the feasibility to treat these 

conditions by targeting PDIs [25, 52, 53]. Recently, Shih 
et al. reported that TXNDC5, or PDI15, regulates ECM 
accumulation and fibrosis progression [25]. TXNDC5 
expression is upregulated in cardiac fibroblasts in human 
and mouse failing hearts with pathological cardiac hyper-
trophy. TXNDC5, a resident protein in the ER, facilitates 
ECM protein folding and activates cardiac fibroblasts via 
redox-sensitive JNK signaling pathway through its PDI 
activity. Deletion of TXNDC5 protects against isoproter-
enol-induced myocardial fibrosis, hypertrophy and con-
tractile dysfunction in mice [25]. Because upregulation 
of TXNDC5 expression is restricted in activated cardiac 
fibroblasts, targeting TXNDC5, therefore, could inhibit 
CF with fewer undesired side effects than targeting TGFβ 
and RAAS.

The role of TXNDC5 in pulmonary fibrosis (PF)
PF is a progressive clinical condition in which excessive 
buildup of fibrotic or scarring in the lung leads to the 
distorted pulmonary/alveolar structure, impaired lung 
function and gas exchange. Consequently, PF results 
in dyspnea, hypoxemia, exercise intolerance and ulti-
mately death. Idiopathic PF (IPF), characterized by vary-
ing degrees of inflammation and scarring in the lung, is 
the most common type of interstitial lung diseases of 
unknown etiology. In Asia–Pacific countries, the adjusted 
incidence and prevalence of IPF ranged from 3.5 to 13 
and 5.7 to 45.1 cases per 100,000 population, respec-
tively [54]. Exploiting large population-based database of 
the Taiwan National Health Insurance, the accumulative 
prevalence rates increased steadily from 3.1 to 6.4 cases 
per 100,000 people per year during 2006–2011 based on 
a narrow case definition. More importantly, the mean 
survival time after IPF diagnosis is 6.9 year [55]. PF has 
become a huge economic and clinical burden globally. 
The therapeutic approaches for PF remain suboptimal 
to improve the quality of life and even increase survival 
due to insufficient understanding of pathogenetic mech-
anisms of PF [56]. Therefore, there is an urgent need to 
develop the novel therapies to improve the outcomes of 
PF patients.

The complex pathophysiological mechanisms includ-
ing genetic predisposition and injury types may account 
for the initiation and progression of PF. In general, fibro-
sis is resulted from repetitive injury in alveolar epithelial 
cells by exogenous (e.g., infection, toxin and radiation) 
or endogenous (e.g., inflammation, oxidative stress and 
aberrant immune responses) stimuli. Increased profi-
brotic and inflammatory cytokines, including TGFβ, 
TNFα, CTGF, PDGF, etc., induce a series of signaling 
cascades to initiate the activation and proliferation of 
lung fibroblasts [57]. Activated fibroblasts are transdif-
ferentiated into collagen-secreting myofibroblasts, which 
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promote the production of fibrogenic ECM proteins 
and cause an imbalance between MMPs and its inhibi-
tors, TIMPs, leading to excessive ECM accumulation 
at fibrotic foci and resulting in abnormal lung structure 
[58]. In addition, ER stress increases in response to lung 
injury, triggering myofibroblast transdifferentiation and 
epithelial–mesenchymal transition, both of which can 
contribute to PF [59, 60].

Immunosuppressive and immunomodulatory thera-
pies, such as a combination of prednisone, azathioprine 
and N-acetylcysteine, exhibit limited therapeutic effects 
in terms of mortality and hospitalization [61, 62]. In 
addition, targeting pro-fibrotic cytokines and chemoat-
tractants, such as etanercept, a recombinant soluble 
human TNF receptor, and carlumab, a CC-chemokine 
ligand 2 monoclonal antibodies, also fails to improve 
IPF outcomes [63, 64]. Currently, two drugs, pirfenidone 
(5-methyl-1-phenylpyridin-2[1H]-one) and nintedanib, 
are utilized to treat IPF. Pirfenidone, a synthetic com-
pound of phenyl pyridine, inhibits the TGFβ signaling 
and other inflammatory cytokines (e.g., TNFα and IL-1β) 
[65, 66]. Clinical trials revealed that pirfenidone delays 
disease progression and prevents deterioration of pulmo-
nary function in IPF patients [67–69]. Exploring pooled 
analyses and meta-analyses of clinical trials, pirfenidone 
was shown to provide outcome benefits [70]. Nintedanib, 
a tyrosine kinase inhibitor, targets vascular endothelial 
growth factor receptor, FGF receptor and PDGF recep-
tor. By suppressing the kinase activities, nintedanib also 
slows down disease progression of IPF, although mild 
to moderate diarrhea and nausea are observed in most 
cases [71]. Collectively, both agents show the potential to 
attenuate PF through inhibition of inflammation. How-
ever, these two agents are not able to stop the progres-
sion of IPF and there is an urgent need to develop newer 
therapies to improve the outcome of IPF patients.

Recent study by Lee et al. demonstrated that TXNDC5 
is involved in the progression of IPF through modulat-
ing TGFβ signaling [26]. In this study, the transcript 
and protein expression of TXNDC5 are upregulated in 
the lung tissues of human IPF patients and mice with 
BLM-induced lung fibrosis. Mechanistically, TGFβ1 
stimulation induces TXNDC5 upregulation in lung fibro-
blasts via increased ER stress levels and ATF6-mediated 
transcriptional regulation. Consequently, both TGFβ 
canonical- (SMAD3) and non-canonical (JNK and ERK) 
signaling are activated, resulting in the activation, trans-
differentiation, proliferation and ECM production in 
lung fibroblasts. TXNDC5 enhances the protein stabil-
ity of TGFBR1, but not TGFBR2, leading to amplifica-
tion of TGFβ signaling. Importantly, forced expression 
of mutant TXNDC5 (Cys-to-Ala mutations at the both 
ends in the CGHC motif of the three TRX domains) in 

lung fibroblasts inhibits PDI activity, lowers the protein 
expression of TGFBR1 and consequently inactivates its 
downstream signaling pathways. Collectively, TXNDC5 
stabilizes TGFBR1 and augments TGFβ signaling, gener-
ating a positive feedback loop of TGFβ1-ATF6-TXNDC5-
TGFBR1 signaling axis to cause severe scarring in the 
lung [26]. In addition, global deletion of Txndc5 protects 
against BLM-induced PF and impairment of pulmonary 
function without altering inflammatory response to 
BLM. Utilizing inducible fibroblast-specific deletion of 
Txndc5 further confirms the pathogenic requirement of 
fibroblastic TXNDC5 in the development and progres-
sion of lung fibrosis, thereby preventing and even revers-
ing pulmonary dysfunction in BLM-treated animals. 
Taken together, these results show that TXNDC5 mod-
ulates TGFβ signaling activity during the development 
of lung fibrosis and highlight the therapeutic potential 
to treat patients with PF by targeting TXNDC5 in lung 
fibroblasts.

The role of TXNDC5 in renal fibrosis (RF)
Chronic kidney disease (CKD) is caused by chronic and 
progressive injuries to kidney tissue. The rising preva-
lence of metabolic diseases, inflammation, hypertension 
and obesity, as well as aging increases the risk of kidney 
injury [72]. CKD affects more than 10% of the popula-
tion worldwide, with an estimated prevalence of 11.7 
to 15.1%. Advanced CKD can turn into end-stage renal 
disease (ESRD). Patients with ESRD requiring dialysis 
or kidney transplantation are estimated to be between 
4.902 and 7.083 million, representing a substantial clini-
cal and socioeconomic burden [73]. Moreover, Taiwan 
has the highest incidence of CKD (estimated prevalence 
of 15.46%) in Asia [74]. In order to repairing the dam-
aged tissues by wound healing, fibrogenic proteins are 
produced in response to kidney injury, resulting in exces-
sive accumulation of fibrogenic proteins at fibrotic area 
and consequently RF. Glomerulosclerosis and tubuloint-
erstitial fibrosis are the most common types of fibrosis 
observed in CKD.

Dysregulation of RAAS plays a major pathological role 
in CKD-induced fibrosis [75]. Angiotensin II triggers the 
release of pro-fibrotic factors, leading to renal inflam-
mation and fibrosis [76, 77]. The standard therapy to 
delay the progression of CKD is blockade of RAAS using 
ACEIs, ARBs, or direct renin blockers. Among antihy-
pertensive agents, both ACEIs and ARBs are considered 
as the feasible approaches against RF, including lower-
ing blood pressure, reducing proteinuria, ameliorating 
RF and delaying the progression of CKD [77–79]. RAAS 
blockade, however, is not sufficient to halt the progres-
sion of CKD in many cases. In addition, the endothelins, 
especially ET-1, promote RF through increasing renal 
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vasoconstriction and glomerular pressure [80]. In a pre-
clinical study, ET-1 receptor A (ETA) antagonist, ABT-
627, has shown to prevent glomerulosclerosis, attenuate 
vascular fibrosis and collagen deposition in hypertensive 
rats [81, 82]. However, two clinical trials raised the safety 
concerns using ETA antagonists, including significant 
fluid overload and congestive HF, in patients with renal 
diseases [83, 84].

TGFβ, as shown in the previous sections, is known to 
promote fibrosis in most, if not all, organs, and thereby 
numerous therapeutic are designed to target TGFβ or its 
downstream signaling. The humanized anti-TGFβ anti-
body, LY2382770, is designed to neutralize TGFβ, failed 
to show therapeutic efficacy against CKD [85]. Pentoxi-
fylline, a nonspecific phosphodiesterase inhibitor, atten-
uates tubulointerstitial fibrosis in CKD animal model 
(unilateral ureteral obstruction [UUO]) by interfering 
with the transcription of SMAD3/4 to suppresses CTGF 
[86]. Pentoxifylline was shown to improve renal function 
in high-risk patients, however, this study lacks its power 
due to small sample size and incomplete follow-up [87]. 
Directly targeting fibrogenic proteins such as CTGF is an 
alternative approach. Indeed, reducing CTGF expression 
levels by antisense oligonucleotide (ASO) significantly 
attenuates the progression of CKD and fibrosis in mice 
subjected to UUO surgery [88]. Even though intravenous 
administration of CTGF antibody (FG-3019) in patients 
with diabetic kidney disease significantly decreases albu-
minuria without obvious adverse effects, the safety con-
cerns, such as the interference with CTGF-dependent 
skeletogenesis, still exist as CTGF is involved in more 
complex biological processes, such as angiogenesis, 
chondrogenesis and osteogenesis. [89, 90]. Finally, pirfe-
nidone, approved by US Food and Drug Administration 
(FDA) to treat IPF, also exhibits anti-fibrotic effects in the 
RF animal models by suppressing the mesangial matrix 
expansion [91]. However, the therapeutic effects of pir-
fenidone in RF patients are inconsistent, requiring more 
clinical trials to prove its efficacy [92, 93].

A recent study by Chen et  al. [27] demonstrated that 
TXNDC5 modulates TGFβ/ATF6/TGFβR1 signaling axis 
in RF, similar to that observed in PF [26]. The transcript 
and protein expressions of TXNDC5 are upregulated in 
the kidneys of CKD patients and mice, especially in col-
lagen-secreting kidney fibroblasts. The ATF6-dependent 
ER stress pathway transcriptionally regulates TXNDC5 
in fibroblasts following TGFβ stimulation. Depletion of 
TXNDC5 attenuates in human kidney fibroblasts acti-
vation, proliferation and ECM production induced by 
TGFβ1. Forced TXNDC5 expression not only triggers 
human kidney fibroblasts activation, proliferation and 
ECM production but also augments TGFβR1 protein sta-
bilization to activate TGFβ canonical signaling pathway, 

resulting in a “positive feedback loop”. However, such 
phenotypes are abolished in overexpressing catalytically 
dead TXNDC5 with mutant TRX domains. In addition, 
targeting TXNDC5 in kidney fibroblast attenuates the 
extent of scarring in multiple RF mouse models, includ-
ing UUO, unilateral ischemia–reperfusion injury and 
folic acid-induced RF. Deletion of Txndc5 in other kid-
ney cell types, including renal tubular epithelial cells, 
podocytes and ECs, however, has no obvious impact on 
fibrosis progression. More importantly, inducing deletion 
of Txndc5 in kidney fibroblasts in animals with existing 
UUO-induced RF completely halted the progression of 
fibrosis and preserves kidney function. Taken together, 
these results illustrate that targeting TXNDC5 in renal 
fibroblasts attenuates the progression of RF by breaking 
down the positive feedback loop of TGFβ/ATF6/TGFβR1 
signaling axis.

The role of TXNDC5 in liver fibrosis (LF)
LF is caused by chronic liver injuries [94], including 
viral infection, alcohol use, non-alcoholic steatohepatitis 
(NASH) and obstructive biliary diseases including pri-
mary biliary cholangitis, primary sclerosing cholangitis 
and biliary atresia [95, 96]. Chronic hepatocellular injury 
leads to damage of epithelial/endothelial barrier, release 
of inflammatory cytokines and recruitment of inflam-
matory cells, followed by the secretion of pro-fibrotic 
cytokines. Hepatic myofibroblasts are then activated to 
produce excessive ECM proteins for the formation of 
fibrous septae and regeneration nodules [96, 97]. Myofi-
broblasts originate from hepatic resident cells, includ-
ing hepatic stellate cells (HSCs) and portal fibroblasts, 
or bone marrow-derived cells, including fibrocytes and 
mesenchymal stem cells [98–101]. Although multiple 
cell types contribute to ECM production, HSC is a major 
source of ECM and contributes to the pathogenesis of 
almost all types of LF [102].

In normal liver, quiescent HSCs reside in the space of 
Disse between hepatocytes and liver sinusoidal endothe-
lial cells, function as pericytes and are the major storage 
sites of vitamin A [103–105]. These HSCs contribute 
to one-third of non-parenchymal cells in the liver and 
exhibit a non-proliferative, quiescent phenotype in nor-
mal liver [103, 106, 107]. In response to liver injury, 
damaged hepatocytes and inflammatory cells secret 
fibrogenic cytokines, including TGFβ, TNFα, CTGF, 
etc., and reactive oxidants, which activate and transform 
quiescent HSCs into highly proliferative myofibroblasts 
[103].

LF can be reversible if the underlying causes of liver 
injury are removed in its early stages [108]. For example, 
antiviral therapy is associated with reduced Child–Pugh 
scores in viral hepatitis caused by hepatitis B virus or 
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hepatitis C virus [109, 110]. Abstinence from alcohol also 
shows great efficacy of restoring liver function in alcohol-
related liver disease [111]. For NASH induced by over-
weight and obesity, reducing body weight through dietary 
and lifestyle modification is effective to treat NASH 
[112–114]. If liver damage reaches irreversible stages 
and end-stage cirrhosis ensues, liver transplantation 
remains the only curative treatment. To date, therapies 
directly targeting LF remain unavailable. Importantly, 
therapies targeting underlying sources of liver injury, 
such as antiviral therapy against hepatitis B virus infec-
tion, are expensive and may require lifelong medication. 
Moreover, there is no approved medication for NASH so 
far [108, 113]. Therefore, therapies to reduce HSC acti-
vation and ECM accumulation directly emerge as a new 
approach to treat LF and liver cirrhosis.

The role of ER protein TXNDC5 has been recently 
studied in the progression of LF [28]. Hung et  al. dem-
onstrated TXNDC5 is considerably expressed in acti-
vated HSCs and at fibrotic foci of the livers from human 
patients and mice with liver fibrosis/cirrhosis. TXNDC5 
induces HSC activation through reactive oxygen species 
(ROS)-dependent JNK signaling; TXNDC5 also renders 
HSCs resistant to apoptosis via STAT3 signaling, lead-
ing to accumulation of activated HSCs and excessive 
fibrotic scar in the liver. Inhibiting the catalytic function 
of TXNDC5 abolishes JNK and STAT3 activation and 
the downstream fibrotic responses. Intriguingly, targeted 
ablation of Txndc5 in HSCs, but not hepatocytes, signifi-
cantly protects against the development and progression 
of LF in mice with hepatotoxic (CCl4 treatment) or chole-
static (bile duct ligation) injury, as evidenced by a lower 
fibrillar collagen deposition and preservation of liver 
function. Taken together, targeting TXNDC5 may build 
a new avenue for liver fibrosis/cirrhosis treatments via 
blocking HSC activation, proliferation, ECM production, 
as well as depriving anti-apoptotic capacity of HSCs.

Upon acute or chronic liver injury, pro-fibrotic 
cytokine TGFβ triggers activation of ER stress pathway. 
ATF6-p50, an active form of ATF6, translocates into the 
nucleus from the cytoplasm to physically interact with 
the promoter of TXNDC5, leading toTXNDC5 upregu-
lation. Increased TXNDC5 expression leads to transdif-
ferentiation of HSCs into myofibroblasts, resulting in 
considerable myofibroblast proliferation and ECM pro-
duction. These responses depend on the redox-activity of 
TXNDC5 to trigger TGFβ canonical and non-canonical 
signaling and stabilize ECM and TGFβR1 proteins, lead-
ing to a positive feedback loop of TGFβ/ATF6/TGFβR1 
signaling.

Taken together, these studies suggest that TXNDC5 is 
a critical yet previously unrecognized mediator of organ 
fibrosis. TXNDC5 mediates organ fibrosis through 4 

distinct, context-dependent mechanisms: (1) facilitating 
ECM protein folding, including collagen and fibronectin; 
(2) stabilizing TGFBR1 protein; (3) triggering TGFβ non-
canonical JNK signaling to induce fibroblast activation 
and proliferation; (4) activating phosphorylated STAT3 
to render fibroblasts resistant to apoptosis. Figure 2 sum-
marizes the detailed mechanisms by which TXNDC5 
promotes organ fibrosis.

The role of TXNDC5 in other fibrosis‑related 
diseases
Because fibroblasts are a major cellular constituent in 
almost all tissues, fibrosis can be involved in the dysfunc-
tion of multiple organs. RA, for example, is a chronic 
inflammatory disease characterized by hyperplasia of 
synovial fibroblasts, causing progressive joint destruc-
tion, chronic synovitis and consequently functional dis-
ability [115]. Clinical studies indicated that treatment 
begins early with medications that remises symptoms. In 
general, medications for RA includes anti-inflammatory 
drugs, such as nonsteroidal anti-inflammatory drugs 
(NSAIDs) and steroids, and relieves symptoms drugs, 
such as methotrexate, leflunomide, hydroxychloroquine, 
etc. Previously, Wang et  al. reported that TXNDC5 is 
detected in synovial tissues and blood from RA patients 
[116]. Increased TXNDC5 results in abnormal prolif-
eration and migration of synovial fibroblasts, which are 
detected in the joints of the toe, knee and the ankle, in 
TXNDC5 transgenic mice following collagen-induced 
arthritis. Moreover, hypoxia induces synovial fibro-
blasts proliferation, migration and TXNDC5 expression, 
whereas reducing TXNDC5 inhibits these responses. 
Additionally, TXNDC5 has been reported to synergize 
with HSC70 to exacerbate the inflammatory phenotype 
of synovial fibroblasts via activating NF-κB signaling by 
destabilizing IκBβ protein [19]. Collectively, targeting 
TXNDC5 might be a potential therapy to reduce joint 
destruction and synovitis in RA patients.

Therapy approaches and clinical applications 
to target TXNDC5
Currently, pirfenidone, is the only anti-fibrotic agent 
approved by FDA for treating IPF via, at least partially, 
suppressing TGFβ signaling [117]. However, TGFβ is 
an important growth factor that controls many cellular 
responses, including proliferation, differentiation, etc., 
and implicates in the development and homeostasis of 
most human tissues. Therefore, inhibition of TGFβ could 
result in unexpected and harmful side effects. Leveraging 
the abovementioned pathological mechanism, targeting 
ER stress and PDI, particularly TXNDC5, offers a new 
way to design anti-fibrotic drugs. We will discuss some 
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potential strategies to target TXNDC5 as the treatment 
of organ fibrosis.

Inhibition of ER stress response to repress TXNDC5 
expression
4-Phenylbutyric acid (4-PBA) is an US FDA-approved 
drug and currently used for the treatment of urea cycle 
disorders. 4-PBA is metabolized through β-oxidation to 
phenylacetate and then conjugated to glutamine to form 
phenylacetylglutamine, which is excreted by the kidneys 
[118, 119]. Mechanistically, it inhibits the aggregation of 
misfolded proteins and mitigates ER stress, suggesting 

its potential to treat fibrosis [120]. Indeed, recent stud-
ies demonstrated that treatment with 4-PBA significantly 
downregulates fibrosis-related genes (TGFβ1, phosphor-
SMAD2 and pro-collagen isoform) induced by pressure 
overload, prevents the activation of UPR and decreases 
collagen deposition, halting the development of CF and 
adverse remodeling [121, 122]. Additionally, blocking 
ER stress by 4-PBA treatment successfully attenuates 
UUO-induced kidney fibrosis in rats, as reflected by the 
lower expression of pro-fibrotic proteins (collagen type 
1α, fibronectin and α-SMA) [123]. In addition to the 
evidence mentioned above, pre-treatment with 4-PBA 

Fig. 2  Summary of the molecular mechanisms by which TXNDC5 promotes organ fibrogenesis. Schematic illustration of the mechanisms by which 
TXNDC5 contributes to organ fibrosis. TGFβ-stimulated ER stress activates the ATF6 branch, which transcriptionally activates TXNDC5 by physically 
interacting with TXNDC5 promoter. Increased TXNDC5 levels promote fibrogenic responses through 4 context-dependent mechanisms including 
(1) facilitating proper folding of fibrogenic ECM proteins, (2) stabilizing TGFβ receptor 1, and activating TGFβ non-canonical (3) JNK and (4) STAT3 
signaling
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reduces TGFβ-induced TXNDC5 expression in the 
human fibroblasts from multiple organs, including the 
heart, lung, kidney, and liver, suggesting its potential use 
to repress TXNDC5 expression caused by TGFβ-induced 
ER stress, thereby attenuating organ fibrosis [25–28].

Tauroursodeoxycholic acid (TUDCA), a hydro-
philic bile acid, is one of the chemical chaperons and is 
approved by FDA for use in biliary cirrhosis and chole-
static liver diseases based on its choleretic effects [124]. 
Recent studies have demonstrated that TUDCA might 
be therapeutic in several diseases, including neurodegen-
erative diseases, osteoarthritis, vascular diseases and dia-
betes [125–128]. Functionally, TUDCA ameliorates ER 
stress and prevents UPR dysfunction in part by improv-
ing protein folding capacity and by supporting the trans-
fer of mutant proteins [129]. A previous study revealed 
that TUDCA serves as an inhibitor of apoptosis by nega-
tively regulating the mitochondrial pathway of cell death, 
reducing ROS production and inhibiting apoptosis asso-
ciated with ER stress [130]. In addition, treatment with 
TUDCA, in human cardiac fibroblasts, leads to a reduc-
tion of TGFβ-induced TXNDC5 expression via block-
ing ER stress, thereby attenuating cardiac fibrogenesis in 
mice [25].

Collectively, blocking ER stress could be an effective 
strategy to inhibit TXNDC5 expression in fibroblasts, 
thereby inhibiting fibrogenesis. However, upregulation 
of ER stress and UPR activation enhances not only the 
capacity of protein folding and maturation but also pro-
tein degradation and transport pathway, thereby allevi-
ating the burden of misfolded protein [131]. Therefore, 
overt suppression of ER stress may result in an imbalance 
of homeostasis, and consequently causing undesired side 
effects.

Functional inhibition of TRX domains of TXNDC5
The PDI-activity mediated by the TRX domains is 
essential for TXNDC5 to trigger ROS production and 
stabilizing fibrogenic proteins. Therefore, therapeu-
tic agents that target TRX domains can inhibit PDI 
activity of TXNDC5, leading to attenuated fibrogenic 
responses. An irreversible PDI activity inhibitor, 16F16, 
covalently binds to the active site of cysteines and has 
been shown to prevent oxidation of the targeted pro-
tein, suppress misfolded proteins-induced apopto-
sis and protect against neurodegenerative disorders 
caused by accumulation of misfolded proteins [132, 
133]. In addition, 16F16 inhibits functional activity of 
TXNDC5 via blocking TRX domains, leading to inhibi-
tion of redox-sensitive pro-fibrotic signaling pathways 
of TXNDC5 [25, 28]. However, 16F16 is a non-selective 
PDI inhibitor because it also targets TRX domains in 
other PDI family proteins. Some PDIs are known to 

be essential for normal physiological functions, such 
as regulation of calcium release in muscle [134], and 
the development of the mucus-secreting cement gland 
[135]. Developing a TXNDC5-specific PDI inhibitor 
could be a powerful way to treat fibrosis without the 
risk of disturbing the homeostasis in non-fibroblast 
cells and other organ functions.

Targeted deletion of TXNDC5 by genetic targeting 
therapies
Although the aforementioned in  vitro and in  vivo evi-
dence have shown targeting TXNDC5 in mouse fibro-
blasts successfully halts the progression of fibrosis 
in multiple organs, it remains challenging to design 
applicable therapeutic strategies to specifically tar-
get TXNDC5 in human fibroblasts. Numerous genetic 
targeting therapies, including small interfering RNA 
(siRNA), inhibitory ASO, etc., have currently charted 
into clinical trials and been approved to treat dis-
eases [136]. For example, the first FDA-approved 
double-stranded siRNA therapeutics, patisiran 
(ONPATTRO™), encapsulated in lipid nanoparticles 
for delivery to hepatocyte, is used to treat the polyneu-
ropathy of hereditary transthyretin (TTR)-mediated 
amyloidosis (hATTR) in adults [137]. In addition, Inot-
ersen, an ASO inhibitor of the hepatic production of 
transthyretin protein, is also approved by FDA to treat 
hATTR [138]. Designing TXNDCX5-targeting siRNA 
or specific ASO to target its TRX domain could be use-
ful to treat fibrotic diseases by repressing TXNDC5 
expression and interfering with its PDI activity.

Clustered regularly interspaced short palindromic 
repeats (CRISPR) and CRISPR-associated 9 protein 
(CRISPR/Cas9) system is a revolutionary gene-editing 
technology and has been extensively exploited in bio-
medical research and clinical investigation [139, 140]. 
CRSIPR/Cas9 complex comprised by a single guild RNA 
and Cas9 protein, leading to double-stranded breaks at 
anchored site of the target gene. Yeh et  al. has recently 
utilized nanoparticles carrying an endothelium-specific 
Txndc5-targeting CRISPR/Cas9 vectors to specifically 
delete endothelial TXNDC5, which effectively amelio-
rates disturbed blood flow-induced carotid atherosclero-
sis [22]. CRISPR/Cas9 therapy had also been approved by 
FDA to treat certain genetic diseases in human patients, 
such as correcting the mutation of a β-globin gene in the 
sickle cell disease [141].

Taken together, therapeutic strategies using RNAi, 
ASO and CRISPR/Cas9 system encapsulated by nano-
particles to delete fibroblast-specific TXNDC5 could be 
a potential therapeutic approach against organ fibrosis in 
the future.
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Conclusions
Emerging evidence has demonstrated the essential role 
of TXNDC5 in organ fibrogenesis by inducing fibroblast 
activation, proliferation and ECM production through 
its PDI activity. TXNDC5 forms a complex regulatory 
network to amplify TGFβ-induced fibrogenic response 
via folding/stabilizing ECM and TGFβR1 proteins. More 
importantly, therapeutic strategies to target TXNDC5 
have unique advantages due to its fibroblast-restricted 
expression pattern and the fact that it’s non-essential for 
physiological function. Therefore, novel small molecules, 
gene-editing approaches, siRNA or ASO that target 
TXNDC5 could be a powerful approach to treat or pre-
vent organ fibrosis and preserve organ function.
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