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Abstract

Sudden cardiac death (SCD) is a sudden, unexpected death that is caused by the loss of heart function. While SCD
affects many patients suffering from coronary artery diseases (CAD) and heart failure (HF), a considerable number of
SCD events occur in asymptomatic individuals. Certain risk factors for SCD have been identified and incorporated in
different clinical scores, however, risk stratification using such algorithms is only useful for health management
rather than for early detection and prediction of future SCD events in high-risk individuals. In this review, we discuss
different molecular biomarkers that are used for early detection of SCD. This includes genetic biomarkers, where the
majority of them are genomic variants for genes that encode for ion channels. Meanwhile, protein biomarkers often
denote proteins that play roles in pathophysiological processes that lead to CAD and HF, notably (i) atherosclerosis
that involves oxidative stress and inflammation, as well as (ii) cardiac tissue damage that involves neurohormonal
and hemodynamic regulation and myocardial stress. Finally, we outline existing challenges and future directions
including the use of OMICS strategy for biomarker discovery and the multimarker panels.

Keywords: sudden cardiac death (SCD), coronary artery disease (CAD), heart failure (HF), coronary heart disease
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Background
The heart serves as a biological pump that circulates
blood throughout our bodies and thus supplying us with
oxygen and nutrients. Within the heart, a heartbeat is
first initiated by the sinoatrial (SA) node that releases
electrical stimuli. These stimuli traverse the atrioven-
tricular (AV) nodes, the bundle of His, subsequently into
the bundle branches and Purkinje fibres, causing the
contractions of heart cells called cardiomyocytes. How-
ever, these electrical stimuli can sometimes become
disorganized, due to ventricular tachycardia or ventricu-
lar fibrillation [1]. Irregular cardiac activities restrict
blood supply to the brain, causing rapid death of brain
cells and leading to sudden cardiac death (SCD) [2, 3].
Globally, SCD accounts for 4–5 million deaths per year
[4], and is strongly linked to coronary artery diseases
(CAD), especially myocardial infarction (MI) [5]. Other

causes for SCD include cardiomyopathies and inherited
channelopathies [6].

Prevention and treatment of SCD
To prevent SCD, implantable cardioverter defibrillator
(ICD) is used prophylactically in individuals with existing
conditions of cardiomyopathy and inherited arrhythmias.
Upon detecting an abnormal heart rhythm, ICD delivers
an electric shock to restore normal heartbeats. However,
the survival benefits of the ICDs are limited as only 20–
30% of patients with ICD receive appropriate therapy [7].
On the other hand, patients with history of MI are recom-
mended to consume beta-blockers, which reduces recur-
rent MI and angina, but not mortality [8]. Targeting
resistant hyper-triglyceridemia is another option. Current
European and US guidelines target low-density lipoprotein
cholesterol (LDL-C) levels as the primary approach for
treatment [9]. However, it was shown that the risk of car-
diovascular disease (CVD) increase with excess levels of
triglycerides (TG), even in patients with optimally man-
aged LDL-C levels [10].
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Risk factors for SCD
Stratification of clinical risks, including that of SCD, is an
important step in effective health management (Fig. 1).
Since CAD and heart failure (HF) underly a significant
majority of SCD incidence, risk factors for CAD and HF
are accepted as predictors for SCD-related deaths and all-
cause mortality [11]. In fact, these risk factors, including
(i) increased age, (ii) male gender, (iii) cigarette exposure,
(iv) hypertension, (v) obesity, (vi) hypercholesterolemia,
(vii) diabetes mellitus and (viii) family history have been
incorporated into the US-based Framingham Risk Score
and Europe-based HeartScore for estimating cardiovascu-
lar risks [12, 13]. Apart from those mentioned, other
SCD-related risk factors that can be evaluated in clinical
laboratories include (i) left ventricle (LV) dysfunction, (ii)
history of heart failure (HF), (iii) left ventricular hyper-
trophy, (iv) poor heart functional status, (v) elevated heart
rate and (vi) abnormal electrocardiogram (ECG). Among
these, left ventricular ejection fraction (LVEF) measures
the blood volume pumped out of the left ventricle using
echocardiogram, nuclear magnetic imaging (MRI) or nu-
clear medicine scan [14]. LVEF classifies HF into (i) re-
duced (LVEF < 40%), (ii) preserved (LVEF > 50%) and (iii)
intermediate (LVEF ~ 40–49%) categories [15]. Mean-
while, ECG measures the rate and rhythm of heartbeats,
the size and position of the heart chambers, or detect any
injuries to the heart muscle or conduction system. Abnor-
mal ECGs, such as prolonged QT interval, Tpeak–Tend
interval and T-wave alternans have been proposed as risk

markers [16, 17]. Nevertheless, besides the lack of consist-
ent association between QT interval prolongation and
total or cardiovascular mortality in population-based stud-
ies [18], these markers also preclude high-risk individuals
without CAD symptoms [7].

Detecting and screening SCD with molecular biomarkers
The flow of genetic information from genes to RNAs,
proteins and metabolites together form the molecular
layers that interact with the environment to contribute
to biological traits including disease phenotypes [19].
Naturally, these biomolecules are appropriate candidates
for “biomarkers”. Biomarkers are objective indicators of
normal biological processes, pathogenic processes or
pharmacological responses [20]. Ideally, a biomarker
should be: (i) sensitive, (ii) specific, (iii) cost-effective,
(iv) easily obtainable and (v) non-invasive [21]. Import-
antly, it should also be (vi) quantifiable, correlate well
with the severity of disease conditions and (vii) able to
offer early detection.

Genetic biomarkers
Since many SCD cases are heritable, early genetic studies
apply the candidate gene approach to identify potentially
meaningful genomic variants that are involved in various
predisposing cardiac conditions, such as the long QT
syndrome, Brugada syndrome, or cardiomyopathies. Gen-
etic markers are effective for screening high-penetrance
genome variants that predispose otherwise asymptomatic

Fig. 1 Methods to evaluate and diagnose SCD clinical risks. SCD risks can be evaluated using Framingham risk score or Heartscore, that stratify
SCD risks according to the listed criteria. More commonly, diagnosis is performed in the clinics using tests that can detect cardiac symptoms such
as abnormal heart rates, electrocardiogram (ECG), or Left Ventricle Ejection Fraction (LVEF). With the advent in molecular medicine, clinical tests
are moving towards molecular biomarkers. Genetic biomarkers are effective for screening high-penetrance genome variants that predispose
asymptomatic individuals to SCD, for example genes that encode ion channels. On the other hand, protein biomarkers for SCD often depict
pathophysiology for coronary artery diseases (CAD) or heart failure (HF). These protein biomarkers are often involved in oxidative stress,
inflammation, neurohormonal regulation, hemodynamic properties and myocardial stress. Besides, molecular biomarkers also encompass other
biomolecules such as fatty acids and other metabolites
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individuals to SCD. Early genetic studies had identified
such variants by applying the candidate gene approach,
whereby candidate genes are first selected based on the
functions of wild-type gene products or the biochemical
pathway involved in diseases. Association studies are then

performed to evaluate variation in the sequences of se-
lected genes predicted to be involved in pathogenesis.
One biomarker that was discovered with this approach

is SCN5A, which encodes the alpha subunit of the
voltage-gated sodium channel Nav1.5 [22–24]. Nav1.5

Table 1 List of genetic biomarkers associated with SCD

Gene Putative gene function Association with SCD SNP/mutation Strength
of
evidencea

Ref

SCN5A Encodes α subunit of the cardiac voltage-gated sodium channel
(Nav1.5)

Variants were associated with SCD rs7626962
(p.Ser1103Tyr)

++ [25]

rs11720524 [22]

rs41312391 [26]

KCNH2 Encodes the Kv11.1 channel that regulates the rapid component
of the delayed rectifier potassium current

Variants were associated with SCD rs199472830
(p.Phe29Leu)

+ [30]

rs199472882
(p.Pro297Ser)

[30]

Variants were associated with
probable SCD cases

rs199472918
(p.Leu552Ser)

+ [31]

rs36210422
(p.Arg176Trp)

[31]

KCNQ1 Encodes the Kv7.1 channel that regulates the slow delayed
rectifier current

Variant was associated with SCD rs120074178
(p.Arg190Trp)

+ [30]

Variant was associated with an
increased risk of SCD

rs2283222 + [32]

RYR2 Encodes calcium channel involved in the regulation of calcium
ion release from the sarcoplasmic reticulum

Variant was associated with an
increased risk of SCD

rs3766871
(p.Gly1886Ser)

++ [23]

MYBPC3 Encodes cardiac myosin binding protein C required for normal
cardiac function

Variant was associated with an
increased risk of SCD

p.F305Pfsa27 + [34]

ACE Encodes angiotensin converting enzyme that catalyzes the
conversion of angiotensin I to angiotensin II and the inactivation
of bradykinin via the kallikrein-kininogen system

Variant was associated with an
increased risk of SCD

DD genotype or
D allele

+ [35]

PKP2 Encodes plakophilin 2 which is responsible for linking cadherins
to intermediate filaments in the cytoskeleton

Variants were associated with
arrhythmia disorder and risk of SCD

Q59L + [31]

Q62K

N613K

DSP Encodes desmoplakin that functions to maintain structure
integrity

Variants were associated with sudden
unexplained nocturnal death
syndrome (SUNDS)

rs188516326
(p.Q90R)

+ [36]

rs116888866
(p.R2639Q)

rs200476515
(p.R315C)

rs569786610
(p.E1357D)

rs185367490
(p.N1234S)

rs184154918
(p.R1308Q)

rs181378432
(p.T2267S)

novel
(p.D2579H)
(p.I125F)
(p.D521A)

aStrength of evidence was rated as “+”: weak, “++”: medium and “+++”: strong based on number of published findings supporting significant correlation of a
particular biomarker with SCD, sample size and clinical validity
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regulates the influx of sodium ion, and thus the initiation
and propagation of action potentials of the heart. Any var-
iations or mutations in SCN5A that affect the structure,
function or expression of the sodium channel cause a de-
layed or persistent entry of sodium ions across the cell
membrane, leading to arrhythmogenic syndromes and
SCD. Among the SCD-related genetic variations that have
been identified in the SCN5A gene include: (i) rs7626962
(p.Ser1103Tyr), which causes an amino acid substitution
in a conserved sequence between domains II and III of
Nav1.5 [25]; (ii) rs11720524, which has been predicted to
disrupt a transcription factor binding site of the gene [22];
and (iii) rs41312391, that modulates the expression of an
adjacent gene that is implicated in the regulation of his-
tone deubiquitinating complexes [26].
Potassium channels play a role in the repolarization of

the cardiac action potential [27, 28], and anomalies in
the rate of cardiac repolarization can lead to SCD [29].
Notably, KCNH2 which encodes the Kv11.1 channel that
regulates the rapid component of the delayed rectifier
potassium current; and KCNQ1 which encodes the Kv7.1
channel that regulates the slow delayed rectifier current

are important targets. Several KCNH2 and KCNQ1
mutations tare present in long QT syndrome and
were documented in SCD [30]. These mutations in-
clude the rs199472830 (p.Phe29Leu) and rs199472882
(p.Pro297Ser) mutations of KCNH2, as well as the
rs120074178 (p.Arg190Trp) mutation of KCNQ1. Be-
sides, a study in the Finnish population reveals the
occurrence of KCNH2 rs199472918 (p.Leu552Ser) and
rs36210422 (p.Arg176Trp) mutations among three
probable SCD cases, although statistical analysis sug-
gested a lack of significant association between the
mutations and SCD risk [31]. In addition, Albert et
al. showed that the rs2283222 variant of KNCQ1 gene
was significantly associated with an increased risk of
SCD [32].
Calcium channels are involved in the excitation-

contraction coupling (ECC) process. The cardiac ryano-
dine receptor (RyR2) is a calcium channel that regulates
calcium ion release from the sarcoplasmic reticulum.
Activation of RyR2 facilitates binding of calcium ions to
contractile proteins of the heart muscle, which activates
systolic contraction of the cardiac myocytes [33]. To

Fig. 2 Protein biomarker candidates for assessing risks of SCD. Surrogate biomarkers that reflect the development of oxidative stress and
inflammation are associated with CAD (coronary artery disease). While biomarkers that reflect the neurohormonal regulation process,
hemodynamic properties and myocardial stress are often associated with HF (heart failure). Both CAD and HF are responsible for sudden cardiac
death (SCD)
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maintain a regular heartbeat, the activity of RyR2 must
be tightly-regulated. Abnormal leak of calcium ions
through dysregulated RyR2 can cause an altered mem-
brane potential, which in turn introduce irregular
contractile and electrical activity, resulting in cardiac
arrhythmia and possibly, SCD [33]. A prominent RYR2
mutation that has been implicated in SCD is rs3766871
(p.Gly1886Ser), which is present in high prevalence in a
molecular autopsy study involving 173 SCD cases,
whereby rs3766871 has been demonstrated to result in
an increased calcium ion oscillation in the cell and has
been postulated to cause diastolic calcium ion leak [23].
As such, it is not surprising that the rs3766871 variant
was found to be associated with an almost 2-fold in-
creased risk of SCD.
Mutations in other cardiac-related genes have also

been implicated in SCD. These include: MYBPC3,
which encodes cardiac myosin binding protein C [34];
ACE, which encodes angiotensin converting enzyme
[35]; PKP2, which encodes plakophilin 2 [31]; DSP,
which encodes desmoplakin [36]. Many of these mu-
tations are rare in the general population, but can
contribute to SCD risk in a highly penetrant manner.
A collection of genetic biomarkers together with the
strength of evidence to indicate their correlation with
SCD is shown in Table 1.
Nowadays, researchers have gradually switched to

genome-wide association studies (GWAS) to validate
these variants, and identify novel ones [24, 37].
Nevertheless, different GWAS studies are often incon-
sistent, which can be due to the heterogeneity in case
definitions [38]. To address this inconsistency, a
meta-analysis was conducted to discover potential
genetic biomarkers of SCD with high statistical power,
and found that the BAZ2B gene locus was associated
with a 1.92-fold increased risk of SCD [37]. Recently,
a gene panel targeting 174 expertly-selected genes im-
plicated in inherited cardiac conditions (ICCs) has be-
come commercially available [39]. As ICCs predispose
healthy individuals to sudden death, screening SCD
cases with this gene panel facilitates high-throughput
identification of deleterious variants that underlie
SCD. This gene panel has been used in conjunction
to another gene panel to perform a molecular autopsy
on 302 idiopathic SCD cases (however, only 77 of the
174 genes were analyzed) [40]. After applying robust
filtering strategies and stringent criteria for variant
classification, it was found that a clinically actionable
pathogenic or likely pathogenic variant was present in
13% of the cases. Interestingly, the majority of the
pathogenic or likely pathogenic variants resided in
SCN5A, KCNH2, KCNQ1 and RYR2 genes as de-
scribed earlier, which further established these genes
as genetic biomarkers of SCD.

Protein biomarkers
Proteins are routinely used as analytes in clinical diag-
nostics. Biofluids, especially plasma and serum are rich
and non-invasive sources of circulating proteins that can
provide quantifiable readout as biomarkers. Protein bio-
markers for cardiac disorders often reflect the under-
lying pathophysiological processes in CAD or HF, two
major causes of SCD (Fig. 2). These pathophysiological
processes include (i) oxidative stress, (ii) inflammation that
subsequently leads to atherosclerosis, (iii) neurohormonal
regulation, (iv) hemodynamic properties, (v) myocardial
stress, (vi) necrosis, (vii) fibrosis and (viii) tissue regener-
ation [41, 42].

Atherosclerosis and CAD
A major cause of CAD is atherosclerosis, whereby the in-
side of an artery becomes narrowed due to build-up of
plaque. Initially, low-density lipoproteins (LDL) drives ath-
erosclerosis by invading the endothelia of blood vessels,
subsequently become trapped in the sub-endothelial space
and oxidized by reactive oxygen species (ROS). Oxidized
LDLs (oxLDLs) initiate a series of events leading to in-
flammatory responses [43], build-up of vulnerable pla-
ques, platelet activation, plaque instability, erosion and
rupture.

Oxidative stress biomarkers
As such, oxidative stress represents an initiating event in
CAD. It can be assessed by quantifying the levels of
plasma aminothiol antioxidants such as cysteine and
glutathione and their oxidized counterparts, i.e. cystine
and glutathione disulfide [44]. High cystine and low
glutathione levels are associated with increased mortality
in subjects with CAD [45]. Heat shock proteins (HSPs)
are upregulated during oxidative stress [46]. Its levels
were demonstrated to be significantly lower in CAD pa-
tients, and inversely proportional to the degree of ath-
erosclerosis [47]. However, in a study of 3415 patients
with suspected or known CAD undergoing cardiac
catheterization, elevated HSP70 levels correlated with in-
creased risk of cardiac death even after adjustment for
clinical variables and hsCRP [48].

Inflammation biomarkers
During atherosclerotic development, following oxidative
stress, accumulating oxLDLs recruit monocytes to its
residing sub-endothelial space. These transmigrated
monocytes subsequently differentiate into macrophages,
proliferate locally and ingest oxLDLs, turning into “foam
cells” slowly [49]. These macrophages and endothelial
cells then release pro-inflammatory cytokines such as
interleukin-1 (IL-1), IL-6, IL-8, IL-10 and IL-18 that are
involved in T-cell activation [50]. Among these interleu-
kins, IL-6 and IL-18 are established as inflammatory
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biomarkers that are associated with CAD. In the PRIME
study that involved 10,000 asymptomatic European
middle-aged men, IL-6 was associated with an increased
risk of SCD [51]. Zhao et al. evaluated the relationship
of IL-6 with the extent and severity of CAD using cor-
onary computed tomography angiography (CCTA) and
detected the association of high IL-6 levels with major
adverse cardiac events (MACE) and higher atheroscler-
otic burden [52]. Cainzos-Achirica et al. explored the
prognostic value of IL-6 for the prediction of athero-
sclerotic cardiovascular disease (ASCVD) events, HF,
and other chronic diseases in 6617 participants and con-
cluded that IL-6 is strongly and independently associated
with ASCVD events, HF, and all-cause mortality, par-
ticularly among statin users [53]. IL-18 is another prom-
ising prognostic marker for CAD [54]. Opstad at al.
investigated 1001 patients with angiographically verified
stable CAD by measuring their circulating IL-18 and IL-
12 with ELISA methods [55]. After a 2-year follow-up,
100 cardiovascular endpoints were recorded whereby
subjects with simultaneous levels in upper tertiles of
both markers were at higher risk of cardiovascular
events.
C-reactive protein (CRP) is an acute-phase protein

that is secreted by the liver in response to circulating
levels of IL-6, IL-1 and TNF-α during the atherosclerotic
process [56]. CRP is capable of activating the comple-
ment system by binding to phosphocholine molecules
on the surface of dead or dying cells [57]. It is also a bio-
marker for CAD and SCD and can be measured with a
high sensitivity CRP (hs-CRP) assay at sub-clinical levels
(0.5 to 10mg/L). The Physicians’ Health Study showed
that CRP levels were an independent risk factor for SCD
in males after correcting for potential confounders in
the general population [58]. In the JUPITER study, ran-
domized statin therapy was given to asymptomatic indi-
viduals who manifested elevated levels of hsCRP and
LDL, and these individuals experienced 47% reduction
in the risk of non-fatal MI, stroke, and cardiovascular
death [59]. The BARI-2D trial also discovered a correl-
ation between elevated CRP levels and cardiovascular
events [60]. However, there were no observed associa-
tions between CRP levels and SCD in the female-based
Nurses Health Study and the male-based PRIME study
[51, 61].
Lipoprotein-associated phospholipase A2 (Lp-PLA2) is

an enzyme that co-travels with circulating LDL, and hy-
drolyzes oxidized phospholipids in LDL. Lp-PLA2 pro-
duces lysophosphatidylcholine and oxidized non-esterified
fatty acids, both being bioactive lipid mediators that elicit
inflammatory responses [62]. Lp-PLA2 levels were found
to independently predict the presence of CAD in the gen-
eral population, after adjusting for hs-CRP and B-type
natriuretic peptide (BNP) [63, 64]. Another oxidaive-

stress-related enzyme, myeloperoxidase (MPO), a heme
peroxidase, participates in LDL oxidation mediated by
radical 1e-oxidation and non-radical 2e-oxidation [65].
Detection, quantification and imaging of MPO mass and
activity are useful in cardiac risk stratification [66]. Mean-
while, urokinase-type plasminogen activator receptor
(uPAR) is a GPI-anchored membrane protein that, during
inflammation, becomes shedded from cell membrane and
forms soluble uPAR (suPAR) [67]. The levels of plasma
suPAR were shown to correlate with pro-inflammatory
markers and even outperform CRP at prognosticating
CVD [68, 69]. Another protein, pentraxin-3 (PTX3) is re-
leased upon primary inflammatory signals [70] and has
been implicated as an inflammatory biomarker for CAD
[71]. In two independent clinical trials (CORONA and
GISSI-HF) enrolling patients with chronic HF, PTX3 was
consistently associated with adverse outcomes [72]. Fi-
nally, matrix metalloproteinases (MMP) are implicated in
plaque formation and rupture, leading to coronary occlu-
sion [73]. Individuals with acute coronary syndrome and
CAD were shown to possess elevated levels of MMP-1, −
2, − 8 and − 9 in their plasma [74, 75].

Heart failure (HF) and SCD events
Besides CAD, another heart condition that can poten-
tially lead to SCD is heart failure (HF). HF occurs when
the heart is unable to pump sufficient blood to supply
nutrients and oxygen. In HF, the reduction in cardiac
output can be attributed to a cardiac acute injury, a
long-standing haemodynamic overload; or genetic varia-
tions that disrupt contractile function [76]. The reduc-
tion in blood circulation is sensed by peripheral arterial
baroreceptors that activate compensatory mechanisms
to maintain cardiovascular homeostasis. These compen-
satory mechanisms include (i) the renin–angiotensin–al-
dosterone system (RAAS), which maintain cardiac
output through increased retention of salt and water,
peripheral arterial vasoconstriction and increased con-
tractility; (ii) activation of the adrenergic (sympathetic)
nervous system (ANS) to increase heart rate, cardiac
contractility and accelerate cardiac relaxation; (iii) secre-
tion of inflammatory mediators and (iv) cardiac repair
and remodelling. Certain proteins that are involved in
these compensatory mechanisms have been demon-
strated to be predictive of SCD.

Neurohormonal biomarkers
Elevated renin and aldosterone levels were found to be
associated with HF and SCD in the LURIC study [77,
78]. Besides, increased aldosterone levels were associated
with a higher risk of cardiac arrest in the post–ST-seg-
ment elevation MI population [79]. The adrenergic ner-
vous system (ANS) system can also become dysregulated
in HF. For example, adrenomedullin (ADM) is a peptide
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Table 2 Summary of protein biomarkers related to various pathophysiological processes that are associated with cardiovascular
disease (CVD)

Process Biomarkers Association with CVD Strength
of
evidencea

Ref

Oxidative stress Reduced (cysteine and glutathione) and
oxidized (cystine and glutathione disulphide)
aminothiols

High cystine (oxidized) and low glutathione (reduced)
levels were associated with higher mortality in patients
with CAD

++ [45]

Heat shock protein 70 (HSP70) High levels of HSP70 were associated with low CAD risk + [47]

High HSP70 levels were associated with increased risk of
cardiac death

[48]

Inflammation Interleukin (IL) such as IL-6 and IL-18 Higher IL-6 levels were associated with SCD and was an
independent predictor of sudden death

+++ [51]

High levels of IL-6 were associated with increased burden
of atherosclerosis and higher risk of major adverse cardiac
events (MACE) risk

[52]

Higher IL-6 levels were associated with atherosclerotic car
diovascular disease (ASCVD) events, heart failure (HF) and
mortality

[53]

[55]

Higher levels of IL-18 and IL-12 were associated with in
creased risk of cardiovascular events

C-reactive protein (CRP) High CRP levels were associated with greater mortality
and risk of cardiovascular disease

++ [60]

CRP levels were not significantly associated with sudden
death and SCD risk

[51,
61]

Lipoprotein-associated phospholipase A2 (Lp-
PLA2)

Higher Lp-PLA2 levels were associated with increased risk
of coronary heart disease and was an independent pre
dictor of CHD events

+ [63,
64]

Myeloperoxidase (MPO) MPO levels were associated with the incidence and
severity of CAD

+ [66]

Urokinase-type plasminogen activator
receptor (uPAR)

High suPAR levels were associated with increased risk of
CVD

++ [68,
69]

Matrix metalloproteinases (MMP) Higher levels of MMP-1, − 2, − 8 and − 9 were associated
with acute coronary syndromes and CAD

+ [74,
75]

Pentraxin-3 (PTX3) PTX3 was associated with higher risk of mortality in
patients with chronic heart failure

+ [72]

Neurohormonal
regulation

Renin and aldosterone Higher plasma renin and aldosterone levels were
associated with increased risk of cardiovascular mortality
and adverse outcome in ST-elevation myocardial infarction
(STEMI)

+++ [77–
79]

Adrenomedullin (ADM) High ADM levels were associated with heart failure ++ [81,
82]

Mid-regional pro–atrial natriuretic peptide (MR-proANP)
demonstrated diagnostic and prognostic utility in patients
with acute heart failure (AHF)

[80,
84]

Copeptin High copeptin levels were associated with increased
mortality, readmissions, and emergency department visits
in patients with acute heart failure as well as excess
mortality in patients with chronic HF

+ [86,
87]

Hemodynamic
properties

Natriuretic peptides (NP), i.e. (B-type natriuretic
peptide) BNP or (N-terminal pro B-type natri-
uretic peptide) NT-proBNP

Higher NT-proBNP levels were associated with increased
risk of SCD

+++ [61,
89]

High BNP levels were an independent predictor of sudden
death in patient with chronic heart failure

[90]

High BNP levels were associated with higher risk of death/
mortality in patients with acute myocardial infarction

[91]

Myocardial stress,
necrosis, fibrosis and
tissue regeneration

Cardiac troponins (cTn) High levels of cTn were associated with the risk of death
from cardiovascular causes, myocardial infarction, stroke or
heart failure

+++ [92–
96]

Osman et al. Journal of Biomedical Science           (2019) 26:39 Page 7 of 12



hormone with natriuretic, vasodilatory and hypotensive
effects [80] and its concentrations were shown to be-
come elevated in chronic HF [81, 82]. However, since
ADM is unstable in vitro, MR-proADM (mid-regional
proadrenomedullin), the precursor of ADM is quantified
instead in clinical laboratories [83]. In the BACH trial on
1641 patients, MR-proADM identifies patients with high
90-day mortality risks [80, 84]. Another emerging HF bio-
marker is copeptin. Copeptin is a propeptide fragment of
arginine vasopressin (AVP), which mediates vasoconstric-
tion and cardiac hypertrophy. Elevated copeptin is signifi-
cantly linked to 90-day mortality, readmissions, and
emergency department visits, especially in those with
hyponatremia [85, 86]. Copeptin was also found to be su-
perior to BNP or N-terminal pro B-type natriuretic pep-
tide (NT-proBNP) as a biomarker for HF; and its
increased levels was linked to excess mortality in patients
with chronic HF, irrespective of clinical severity [87].

Hemodynamic biomarkers
During cardiac hemodynamic stress, natriuretic peptides
(NP), i.e. BNP or NT-proBNP are secreted. Besides being
capable of lowering blood pressure, NPs carry natriuretic,
diuretic and kaliuretic properties [88]. NT-proBNP has
been reported as an independent risk marker for SCD
[61]. This is consistent with another finding that reported
an association between higher baseline levels of NT-
proBNP and SCD over a 16-year follow-up period [89].
BNP was also independently associated with an elevated
risk for SCD in patients with chronic HF in the Vienna
Heart Failure Cohort [90] and in survivors of acute MI in
the Multiple Risk Factor Analysis Trial [91].

Myocardial stress biomarkers
Tropomyosin interacts with cardiac troponin (cTnC,
cTnI and cTnT), forming the troponin-tropomyosin com-
plex that is responsible for cardiac muscle contraction.
During myocardial stress, degeneration of the actin and
myosin filaments results in the release of cTn into

plasma. Therefore, cTnT and cTnI, being unique to the
heart, are specific markers for myocardial damage. Both
cTn and high sensitivity cTn (hs-cTn) assays have been
used as predictors of mortality in both CAD and HF.
For instance, elevated levels of hs-cTn have been associ-
ated with CAD [92]. In a community-based study, ele-
vated cTn was shown to predict death and first CHD
event in 1203 elderly men free from CVD at baseline
[93]. Whereas, De Lemos et al. demonstrated that ele-
vated levels of hs-cTn were linked with higher adjusted
all-cause mortality in the general population [94]. In the
PEACE trial, a graded increase in the cumulative inci-
dence of cardiovascular death in those with higher hs-
cTnT levels was observed [95]. On the other hand, as
demonstrated by Latini et al., detectable cTnT predicts
increased mortality in 4053 patients with chronic HF
[96]. Masson et al. also discovered that serial measure-
ments of hs-cTnT concentrations are robust predictors
of cardiovascular events in patients with chronic HF
[97]. Other noteworthy protein biomarkers that are asso-
ciated with myocardial stress, necrosis, fibrosis and
tissue regeneration are osteopontin (OPN) [98], soluble
ST2 receptor [99], and growth differentiator 15 (GDF15)
[100]. A list of protein biomarkers and the strength of
evidence showing their association with SCD is available
in Table 2.

Other molecular biomarkers
Apart from genes and proteins, metabolites and other
small molecules have also been used as molecular
biomarkers for SCD. One good example is reported by
Jouven et al., who discovered that non-esterified free
fatty acids (NEFAs) could be an independent risk factor
for SCD [101]. Meanwhile, elevated levels of trans-18:2
fatty acids were associated with higher risk for SCD in
an elderly cohort, whereas higher trans-18:1 with lower
risk [102]. F2 isoprostanes are prostaglandin compounds
that have shown potential as in vivo markers of oxidant
injury in cardiovascular pathologies such as

Table 2 Summary of protein biomarkers related to various pathophysiological processes that are associated with cardiovascular
disease (CVD) (Continued)

Process Biomarkers Association with CVD Strength
of
evidencea

Ref

High levels of cTn were associated with the severity and
progression of chronic heart failure

[97]

Osteopontin High osteopontin levels were associated with left
ventricular dysfunction and reduced levels were correlated
with good response to heart failure therapies

+ [98]

ST2 receptor High ST2 levels were associated with cardiovascular
mortality in chronic heart failure patients

+ [99]

Growth differentiator 15 (GDF-15) High GDF-15 levels were associated with risk of developing
CVD and mortality

+ [100]

atab
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atherosclerosis and acute coronary syndrome (ACS)
[103, 104]. Asymmetric Dimethylarginine (ADMA) is an
endogenous inhibitor of nitric oxide (NO) production
and is significantly associated with risk factors for CVD;
showing an independent, strong prognostic value for
mortality and future cardiovascular events [105].

Challenges and future outlook
Development of diagnostics for early detection faces
immense challenges. For example, although many candi-
date biomarkers for SCD have been discovered, so far,
early biomarkers remain scarce for the relatively concealed
group of high-risk individuals who are asymptomatic and
this warrants attention. Besides, SCD has very complex
pathophysiology and etiology. Therefore, every candidate
biomarker needs to be evaluated in larger cohorts, so that
SCD risks can be predicted down to specific clinical sub-
groups [1]. Additionally, most cohort studies have used
baseline samples that may be irrelevant to events that oc-
curred years later. Hence, repeat measurements through-
out the follow-up period are necessary. For omic-scale
studies, extensive statistics assessment is necessary. Even
so, mere statistical correlations do not automatically imply
clinical usefulness. Therefore, candidates obtained from
omic studies should be extensively verified with respect to
disease pathophysiology and causality. It is also note-
worthy that GWAS results may only explain a small frac-
tion of risks and are often inconsistent. As for proteomics,
the analysis of biofluids is still plagued by the high com-
plexity and wide dynamic range of protein concentrations
in these sample types. Consequently, depletion, enrich-
ment or fractionation techniques are needed to increase
the detection of proteins at low abundances. Despite these
hurdles, multimarker panels are increasinlgly applied to
provide better discrimination of risks of mortality associ-
ated with CAD. Beside the afore-mentioned gene panel
that targets 174 expertly-selected genes, it was also dem-
onstrated that the combination of plasma levels of multi-
markers such as hs-CRP, HSP70, and fibrin degradation
products (FDPs) as a biomarker risk score (BRS) can reli-
ably predict CVD events with elevated levels of all three
biomarkers [106].

Conclusion
SCD is a fatal disease that has a very complex etiology. Al-
though a number of risk factors and biomarkers have been
used for diagnostics, prognostics and risk stratification for
SCD, these biomarkers need to be further evaluated with
larger and better-defined cohorts. With omic technologies,
the discovery process for biomarkers can be accelerated
considerably, especially by using the multi-omics strategy
that combines genomics, transcriptomics, proteomics and
metabolomics [107]. In addition, since SCD manifests
complex phenotypes and pathophysiology, the multimarker

panel strategy, with the follow-up in other biophysical tests
can be a good combination.
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