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Abstract

N-glycosylation and surface targeting.

internalization.

Background: The accumulation of soluble oligomeric amyloid-3 peptide (0AR) proceeding the formation of senile
plagues contributes to synaptic and memory deficits in Alzheimer's disease. Our previous studies have indentified
scavenger receptor A (SR-A), especially SR-A type | (SR-Al), as prominent scavenger receptors on mediating oA
clearance by microglia while glycan moiety and scavenger receptor cysteine-rich (SRCR) domain may play the
critical role. Macrophage receptor with collagenous structure (MARCO), another member of class A superfamily
with a highly conserved SRCR domain, may also play the similar role on oA internalization. However, the role

of N-glycosylation and SRCR domain of SR-Al and MARCO on oA internalization remains unclear.

Result: We found that oA internalization was diminished in the cells expressing SR-Al harboring mutations of
dual N-glycosylation sites (i.e. N120Q-N143Q and N143Q-N184Q) while they were normally surface targeted.
Normal oA internalization was observed in 10 SR-AI-SRCR and 4 MARCO-SRCR surface targeted mutants.
Alternatively, the SRCR mutants at 3-sheet and a-helix and on disulfide bone formation obstructed receptor’s

Conclusion: Our study reveals that N-glycan moiety is more critical than SRCR domain for SR-A-mediated oAR

Keywords: Scavenger receptor A, MARCO, SRCR domain, N-glycosylation, Alzheimer’s disease, oligomeric 3-amyloid

Background

Activated scavenger receptor A (SR-A) promotes glial in-
ternalization of Amyloid-B peptide (AP), which is a key
histopathological characteristic of Alzheimer’s disease (AD)
[1, 2]. Previously, we identified SR-A as the prominent sub-
type of scavenger receptor mediating oligomeric AP (0Ap)
internalization in microglia, and revealed that the cysteine-
rich (SRCR) domain of SR-A type I (SR-AI) may be the
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critical domain on modulating the efficacy of surface tar-
geting and mediating oA internalization [3, 4].

SR-AI contains six domains: a cytoplasmic domain, a
transmembrane domain, a spacer region, an a-helical
coiled-coil domain, a collagenous domain, and a C-
terminal SRCR domain [5]. The cytoplasmic domain of
SR-A has been identified to involve in cell adhesion
and receptor internalization [6]. The critical amino
acids in cytoplasmic domain involving SR-A surface
targeting and interaction with signaling molecules have
been identified [7, 8]. Seven residues in the a-helical
coiled-coil domain mediate the formation of the tri-
meric coiled-coil structure [9]. The collagenous domain
mediates binding to the extracellular matrix [10], and
point mutations in the positively charged lysine clusters
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in the SR-A type II collagenous domain have been
shown to decrease acetylated-LDL (AcLDL) binding ac-
tivity [11]. Macrophage receptor with collagenous
structure (MARCO), another SRCR-containing group A
receptor, shows the same overall domain structure as
the SR-AI but differs in having a longer extracellular
domain and completely lacking an a-helical coiled-coil
domain [12]. The schematic representation of human
SR-AI and MARCO were shown in Fig. 1a. The mod-
eled structures and surface electrostatic potential of the
SRCR domain of human SR-AI and MARCO were
shown in Fig. 1b. The sequence of the SRCR domain is
highly conserved between human SR-AI and human
MARCO ([13], Fig. 1c). Examination of the crystal
structure of the mouse MARCO SRCR domain revealed
that the monomeric recombinant SRCR domain possess
a compact and globular conformation, which was iden-
tified as the binding domain for bacteria, AcLDL, and
the extracellular matrix [14, 15].

Protein glycosylation have important biological func-
tions in protein folding and stability, cell adhesion, re-
ceptor targeting and ligand binding [16]. Previous study
of SR-A showed that murine SR-A-mediated AcLDL
uptake was not significantly affected even though the
N-linked glycosylation of SR-A is prevented [17]. The
surface-targeted SR-A remains at high mannose status,
suggested that the absence of complex N-glycan does
not impair the trafficking and AcLDL uptake of SR-A.
However, the molecular mechanisms underlying SR-AI
activity and the relationship of the structure of SR-AI
to its functions are not well-understood. Previous stud-
ies have conducted several studies involving the gener-
ation and characterization of SR-BI mutants [18]. Some
of these studies have shown that the large, extracellular
loop of SR-BI, which is glycosylated, plays a critical role
in mediating not only ligand binding but also the se-
lective lipid uptake step [18]. The functional role of the
extensive N-linked glycosylation of SR-BI has also been
explored [19].

Previous studies have demonstrated that microglia
take up and degrade soluble and fibrillar Af in different
ways. Soluble A is internalized into microglia through
constitutive, non-saturable, and fluid phase macropino-
cytosis, and the internalized soluble A is rapidly deliv-
ered to the lysosomes by the late endolytic pathway
[20]. Fibrillar AP interacts with the cell surface innate
immune receptor complex and then stimulates phago-
cytosis and degradation by microglia [21-26]. The
putative role of MARCO has been discussed for intern-
alization and AP1-42-mediated microglia activation [22,
27]. As some studies have failed to confirm the ability of
MARCO to mediate the proinflammatory activity of AB1-
42 in mononuclear phagocytes further studies must clarify
such interaction [28].
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In the present study, we reveal that N-glycan moiety is
more critical than SRCR domain for oAp internalization
mediated by SR-AL Our results provide insight into the
critical role of N-glycosylation of SR-AI, which is a pre-
requisite for the uptake of 0AB by microglia in the initi-
ation stage of AD.

Methods

Reagents

Fluorescein amidite (FAM)-labeled Ap 1-42 were pur-
chased from Biopeptide (San Diego, CA). Antibodies
against MARCO were purchased from Santa Cruz
Biotechnology, Inc. (Santa Cruz, CA). Rabbit anti-
transferrin receptor (TfR) antibody and Lipofectamine
2000 were purchased from Invitrogen (Carlsbad, CA).
Mouse anti-B-actin antibody was purchased from
Sigma-Aldrich (St. Louis, MO). Sulfo-NHS-SS-biotin
and NeutrAvidin were purchased from Pierce (Rockford,
IL). Peptide N-glycosidase (PNGase F) and endoglycosi-
dase (Endo H) were purchased from New England
BioLabs (Ipswich, MA).

Modeling

The crystal structure of mouse MARCO (Protein Data
Bank entry 20y3) [15] was used as a template. A homology
modeling method was used to construct the tertiary struc-
ture of the SRCR domain of SR-AI [29]. The modeled
structure was then optimized, followed by molecular dy-
namics simulations using the GROMACS (GROningen
MAchine for Chemical Simulations) program version
4.5.1 with the AMBER99SB force field [30].

Cell culture

COS-7 (African green monkey kidney fibroblast-like
cell line) cells were maintained in DMEM containing
10 % heat-inactivated fetal bovine serum (FBS), 100 U/
mL penicillin, 100 pg/mL streptomycin, and 2 mM L-
glutamine at 37 °C in a 5 % CO, humidified atmos-
phere. The human embryonic kidney cell line 293 T
(HEK293T) were cultured in DMEM supplemented
with 10 % FBS, 100 U/ml penicillin, 100 pg/ml strepto-
mycin, and 2 mM L-glutamine in a humidified 5 %
CO2 atmosphere at 37 °C.

Plasmid construction and transfection

Human SR-AI ¢cDNA was provided by Dr. Qi Chen
(Nanjing Medical University, Nanjing, China). The vector,
pcDNA 3.1(+) (Invitrogen, USA) was used to insert full
length cDNAs of human SR-AI [4] and MARCO. The se-
quences of primers and ligation sites used to construct
SR-AI variants are shown in Additional file 1: Table S1.
Site-directed mutagenesis was performed by using Quick-
Change II Site-Directed Mutagenesis Kit (Stratagene, La
Jolla, CA) according to the manufacturer’s instructions.
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Fig. 1 Modeled structure of the SRCR domain of human SR-Al and MACRO. a Schematic illustration of human MCRCO and SR-Al. The MARCO
domains: cytoplamic domain (cyto), transmembrane domain (TM), spacer domain (Spa), coiled coil domain (coiled coil), triple-helical collagenous
domain (collagenous), and cysteine-rich C-terminal domain (SRCR). The predicted N-glycosylation sides and amino acid sequence number was
marked above and below the schematic illustration, respectively. b The structure of the SRCR domain of SR-Al and MACRO is composed of six
B-strands (31-6, yellow), one a-helix (a1, red), two 3¢ helices (01, n2, blue), turns (indigo), and loops (gray). Disulfide bonds are shown in
orange. The conformation folds with three B-strands (31, 32, 33) at the N-terminal region followed by a short turn, a-helix (a1), and 34. Then,
there are three long loops, located between (34 and (35, between 35 and n1, and between n1 and n2, ending with 6. Surface electrostatic
potential representation of the SRCR domain of SR-Al and MACRO with basic (blue) and acidic (red) clusters. ¢ Sequence alignment of human
SR-Al'and MACRO were displayed using ClustalW2 and ESPrip. The 3-sheets are shown as arrows, and helixes are shown as a saw tooth pattern. Turns
are marked as TT. The three pairs of disulfide bonds are labeled as numbers in green
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COS-7 cells (3 x 10°) were transfected with 2 ug SR-AI or
variants per well in 6-well plates using Lipofectamine
2000 according to manufacturer instructions. After 24 h,
cells were subjected to ligand binding, surface protein bio-
tinylation, and immunocytochemical analyses. The full-
length of human MARCO was provide by Genomic Re-
search Center, National Yang-Ming University (Taipei,
Taiwan). The sequences of primers and PCR condition
used to construct MARCO variants including deletion
and point mutants were listed in Additional file 1:
Table S2. Site-directed mutagenesis was performed by
using QuickChange II Site-Directed Mutagenesis Kit
(Stratagene, La Jolla, CA) according to the manufac-
turer’s instructions. HEK293T cells (3 x 10°) were
transfected with 2 pg MARCO or variants per well in
6-well plates using Lipofectamine 2000 according to
manufacturer instructions. After 24 to 48 h, cells were
subjected to ligand binding, surface protein biotinyl-
ation, and immunocytochemical analyses.

Immunocyochemistry and live immunostaining

Live cells were incubated with rabbit anti-human SR-A
antibody at 1:500 dilution (catalog number sc-20660,
Santa Cruz Biotechnology) without permeabilization.
Cells were incubated with secondary antibody conju-
gated to Alexa Fluor 488 to detect surface-targeted SR-
A. To detect cytosolic SR-A, permeabilized mouse pri-
mary microglia were then incubated with rat anti-mouse
SR-A (catalog number MCAI1322EL, AbD Serotec).
Permeabilized human macrophage and transfected COS-
7 cells were incubated with rabbit anti-human SR-A,
followed by incubation with secondary antibody conju-
gated to Alexa Fluor 594. Coverslips were mounted with
Vitashield (catalog number H-1200, Vector Laboratories)
and images were taken using a confocal microscope
(Olympus, FV-1000 and FV-10i). The experiments were
repeated at least three times.

To detect the surface-targeted MARCO, live cells
were incubated with anti-MARCO antibody (H190,
1:100) at 4 °C. Cells were then fixed and followed by incu-
bation with secondary antibody conjugated to AlexaFluor
488 or 594 secondary antibodies. The coverslips were
mounted in Vitashield (Vector Laboratories, Burlingame,
CA) and observed using a Zeiss confocal microscope
(LSM780). The experiments were repeated at least three
times.

Western blot analysis

Cells were lysed in lysis buffer (50 mM Tris, pH 7.4,
150 mM NaCl, 1 % NP-40, 0.25 % Sodium deoxycholate
and protease inhibitor cocktail. After electrophoresis,
proteins were transferred onto PVDF membranes (NEN
Life Science Products, Boston, MA). After blocking, the
membranes were incubated overnight at 4 °C with
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primary antibodies for MARCO at a 1:1,000 dilution
and B-actin at a 1:5,000 dilution. After incubation with
secondary antibody (goat anti-mouse antibody or goat
anti-rabbit antibody conjugated to horseradish peroxid-
ase), the immune complexes were detected using an
enhanced chemiluminescence kit (NEN Life Science
Products, Boston, MA). The band intensities were
quantified by densitometry. More than three independ-
ent experiments were performed.

Surface biotinylation assay

Surface proteins were labeled with Sulfo-NHS-SS-biotin
in PBS-MC according to the manufacturer’s instructions
(Pierce, Rockford, IL). Briefly, cells were incubated with
0.5 mg/ml of membrane-impermeable Sulfo-NHS-SS-
biotin in PBS-MC on ice for 30 min. Unbound biotin
was quenched by Tris buffer (25 mM Tris-HCI [pH 8.0],
133 mM NaCl, and 10 mM KCI) for 10 min on ice. Cells
were lysed with lysis buffer (50 mM Tris, pH 7.4,
150 mM NacCl, 1 % NP-40, 0.25 % Sodium deoxycholate
and protease inhibitor cocktail. Biotinylated proteins
(400 mg) were precipitated using 50 ml Neutravidin
beads and eluted by boiling in lysis buffer followed by
immunoblotting for individual proteins.

Deglycosylation

Cleavage of the N-glycan was performed using PNGase
Fand Endo H as described [4]. Briefly, total cell lysates and
biotinylated surface proteins were denatured in denaturing
buffer at 95 °C for 10 min. The protein mixtures were in-
cubated with PNGase F (500 units) or Endo H (1000
units) for 18 hr at 37 °C. The protein was boiled for
10 min at 95 °C subjected to Western blot analysis after
adding an equal volume of 2x laemmli SDS sample buffer
(BioRad).

Internalization of oligomeric AB

FAM-labeled oligomeric AP (0AP) was prepared from
monomer Af; 45, synthesized by Biopeptide, as previ-
ously described [3, 4]. The oligomeric AB42 preparation
preformed in our laboratory has been characterized by
atomic force microscope and Sedimentation velocity
analysis [3]. The composition of oligomeric Ap42 in the
grown medium remains stable as analyzed by Western
blot analysis. SR-A cells were incubated with 1 puM
FAM-0Ap in serum-free DMEM at 37 °C for 1 h. Then,
cells were immunostained with the anti-SR-A antibody.
Images were taken using a confocal microscope (Olympus,
FV-1000 and FV-10i). The experiments were repeated at
least three times. The fluorescence intensities of more
than 100 SR-A-positive cells in five random fields were
analyzed using the MetaMorph software (ver. 7.1; Molecu-
lar Devices).
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Statistical analysis

Data were expressed as mean + SEM and the differences
between groups were considered significant when the
values of p <0.05. The comparison between groups was
analyzed by one-way analysis of variance (ANOVA)
followed by Tukeys Honestly Significant Differences
Multiple Comparison Test as post-hoc analysis using
GraphPad Prism 4 (GraphPad Software Inc., San Diego,
CA, USA).

Results

Identification of N-linked glycosylation sites on SR-Al and
MARCO by mutagenesis

Seven potential N-linked glycosylation sites were pre-
dicted in human SR-AI as those predicted by Asn-X-Ser/
Thr sequence in extracellular domain of SR-BI [17, 19];
these include the asparagines at positions: 82, 102, 143,
184, 221, 249, and 267. To determine their roles in struc-
ture and function of SR-AI, we mutated these sites indi-
vidually or in combination by replacing asparagine (N)
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with glutamine (Q) (Fig. 1a and Additional file 1: Table
S1). Their glycosylation and surface targeting of the mu-
tants were then analyzed (Fig. 2). The results showed that
the largest molecular weight of the SR-AI mutated at
N102Q, N143Q, and N184Q were lower (~80 kDa) than
that of wild-type SR-AI (~95 kDa) in both total cell lysates
(Fig. 2a) and membrane portion (Fig. 2c), but not in the
PNGase F cleaved total cell lysates (Fig. 2b). To go a step
further, the effects of double mutations at N102Q,
N143Q), and N184Q were examined. Western blot analysis
showed that the largest molecular weight of the SR-AI
mutated at N102Q-N143Q, N102Q-N184Q and N143Q-
N184Q were smaller (~72 kDa) than single mutant
(~80 kDa) and wild-type (~95 kDa) in total cell lysates
(Fig. 2d). After PNGase F cleavage, the largest molecular
weight of N102Q-N143Q, N102Q-N184Q, N143Q-
N184Q and wild type were equally reduced to 55 kDa
(Fig. 2e). After Endo H cleavage, the molecular weight
range of wild type SR-AI falls into two parts with 50-
60 kDa and 72-95 kDa, respectively. However, SR-A with

e e —

E SR-Al N102Q-N143Q
Endo H - + - - + -
PNGase F  — - + - - +

-4

N102Q-N184Q N143Q-N184Q

EndoH — + - - + -
PNGase F — - + - - +

kDa g,
T2
5! <

Fig. 2 Identification of the potential N-glycosylation sites of SR-Al. a and b COS 7 cells were transfected with human SR-Al, the single mutation of
asparagine to glutamine at residues 82, 102, 143, 184, 221, 249 and 267. Western blot analysis was performed on the total cell lysates before (a)
and after (b) treated by PNGase F, and avidin pull-down of biotinylated cell lysates (c). d and e COS-7 cells were transfected with hSR-Al and the
double mutation of asparagine (N) to glutamine (Q) residues at 102-143, 102-184 and 143-184. Western blot analysis was performed on the total
cell lysates (d) and the PNGase F or Endo H treated cell lysates (e). The result was repeated for three times (N = 3) and the representative blot
was shown
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higher molecular weight was absent in the mutant at
N102Q-N143Q, N102Q-N184Q and N143Q-N184Q, sug-
gesting that the N-glycan at 102, 143 and 184 are larger
than the other N-glycosylation sites (Fig. 2d).

oA internalization was down-regulated in the cells
expressing SR-Al mutated at N102Q-N143Q and
N143Q-N184Q

To determine the surface targeting and oA internaliza-
tion, live immunostaining of SR-AI and internalization of
FAM-labeled oA was performed (Fig. 3). The live immu-
nostaining showed that all mutated SR-AI were surface
targeted (Figs. 2b and 3a). We also found that the oAp in-
ternalization was significantly reduced in the cells express-
ing SR-AI mutated at N102Q-N143Q and N143Q-N184Q
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(Fig. 3b), suggesting that the N-glycosylation at N102-
N143 and N143-N184 sites are critical for SR-AI to inter-
nalized oAp (Table 1).

Critical residues in SRCR domain of SR-Al for the surface
targeting and N-glycosylation were identified by point
mutation

To determine the critical residues of the SR-AI SRCR do-
main for N-glycosylation and surface targeting of SR-Al,
and SR-Al-mediated oA internalization, the positively
charged (R), negatively charged (E), polar uncharged (Q
and S) and hydrophobic (G, V, W and F) amino acids in -
sheet 1 (R351), B-sheet 2 (E360, R362 and E364), 3-sheet 3
(W371), a-helix (Q385), B-sheet 4 (V399), B-sheet 5
(W413), disulfide bond (C419), 31 helix n2 to B-sheet 6

Vector SR-Al N82Q N102Q

FAM-0Ap >

Merged SR-Al

o)

Vector SR-Al

FAM-0A

SR-AIl

Merged

N143Q

N102Q-N143 N102Q-N184Q N143Q-N184Q C

3 > O O
o O
& ha “
& g & & &
& & &
S §
< 3 &

N184Q N221Q N249Q N267Q

*kk

100 sk
# #
80 Fkk sk
40
20
, 1N

Relative intensity of internalized o AP
(% of SR-Al)
g

Fig. 3 The glycosylation at N102-N143 and N143-N184 of SR-Al were important for oAR internalization. COS-7 cells were transfected with human
SR-Al, the single mutation of asparagine residues at 82, 102, 143, 184, 221, 249 and 267 to glutamine or the double mutation of asparagine residues at
102-143, 102-184 and 143-184 to glutamine. Cells were incubated with FAM-labeled 0AR. a and b Representative confocal images of surface-targeted
SR-Al (red) and internalized FAM-0A (green) of the cells tranfected with SR-Al-single mutant (a) and double mutant (b). Nuclei were stained with
Hoechst 33258 (blue). Scale bar, 10 um. The result was repeated for three times (N = 3). ¢ Relative fluorescence intensities of internalized oAR were
quantified in more than 100 SR-A-positive cells using MetaMorph software. Bars indicate mean + SEM of at least three independent experiments. The
data are presented as the percentage relative to the wild type SR-Al transfected cells. Significant differences between vector and wild type SR-Al
transfected cells are indicated by ***, P < 0.001. Significant differences between wild type SR-Al transfected cells and the mutant transfected cells are
indicated by #, P < 0.05
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Table 1 Summary of the surface targeting and oA internalization
of mutants in N-glycosylation sites of human SR-Al

Mutants Complex glycan Surface oAB
structure targeting internalization

N82Q + + +
N102Q l + +
N143Q l + +
N184Q l + +
N221Q + + +
N249Q + + +
N267Q + + +
N102Q- - + !
N143Q

N102Q- - + +
N184Q

N143Q- - + !
N184Q

Complex glycan structure is able to be cleavage by PNGase F but not by Endo
H; Hybrid and high mannose type glycans is able to be cleavage by both
PNGase F and Endo H

+, mutants are glycosylated in complex structure, surface-targeted or
internalize normal amount of oA

—, mutants are not glycosylated in complex structure

|, mutants are less glycosylated in complex structure or internalize less
amount oAB

(D444) and loop (L391, G395-Q397, F418, F420, S424-
S425, R432 and R437) were site-directed mutated to
hydrophobic alanine (A) (Fig. 4 and Additional file 1:
Table S2). Moreover, amino acid residuals in p-sheet 2
(G361), turn (G369) and 3¢ helix n2 (H441) were also
site-directed mutated to P, S, and R, respectively (Fig. 4
and Additional file 1: Table S2).

The immunocytochemistry analysis showed that the SR-
Al mutated at G361P, E364A, H441R, G385A, W413A,
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C419A, H441A and D444A were expressed in cyto-
plasm only (red) and the SR-AI mutated at G369S,
L391A, F418A, F420A, R432A, R437A, G395A-Q397A,
S424A-S425A and R432A-R437A were expressed in
both cytoplasm and cell surface (green and yellow)
(Fig. 5a). For detecting the effect of mutation on oA
internalization, the cells expressing the SR-AI mutated
at G369S, L391A, F418A, F420A, R432A, R437A,
G395A-Q397A, S424A-S425A and R432A-R437A were
incubated with FAM-0Ap and internalization were de-
tected. The result showed that the green punta signals
were detected in all of detected cells (Fig. 5b).

Two out of 11 surface targeted mutants (i.e. R432A
and R437A) and 4 out of 10 intracellular retained mu-
tants (i.e. G361P, E364A, H441R, and D444A) were se-
lected for Western blots analysis. The result showed that
the electrophoretic mobility range of the mutant at
R432A and R437A were similar to wild type SR-AI (from
45 to 100 kDa), suggesting that they were glycosylated to
a similar extent. Alternatively, the range of electrophor-
etic mobility of the mutant at G361P, E364A, H441R,
and D444A were narrow down (from 55 to 72 kDa),
suggesting that the N-glycosylation of these mutants
may be held at a premature stage (Fig. 6a). Furthermore,
the surface biotinylation assay showed that only R432A
and R437A were surface-targeted (Fig. 6b).

The N-glycosylation status of wild type SR-AI and
mutant G361P, E364A, R432A, R437A, H441R, D444A,
G395A-Q397A and R432A-R437A were assessed by
Western blotting after the cell extracts were incubated
with Endo H and PNGase F (Fig. 6¢). The result showed
that Wild type SR-AI and mutant R432A, R437A, G395A-
Q397A and R432A-R437A were sensitive to PNGase F
but not to Endo H, indicating the N-linked complex gly-
cans. Alternatively, mutant G361P, E364A, H441R and

SR-Al

MARCO

R432

N

R425 G433 wass 0;?.01 460

R434
£436 F459

Fig. 4 Schematic representation shows the SRCR mutations in SR-Al and MARCO. The mutations sites at loop structure are shown in blue and
those at a-helix, B-sheet, n-helix and disulfide structure are shown in red. The black line indicates the sequence of SRCR; a-helix is indicated as red
spring, and disulfide bonds are shown as green line
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G369s

SR-AIl

F420A G395A-Q397A

representative image was shown

L391A

Fig. 5 Critical residues in SRCR domain of human SR-Al for the surface targeting and N-glycosylation were identified by point mutation. COS-7
cells were transfected with wild type SR-Al and SR-Al variants. a Surface-targeted SR-Al and its variants were detected by live immunostaining
(green). Cytosolic SR-A and its variants were detected by immunocytochemistry (red). Nuclei were counterstained with Hoechst 33258 (blue). b Cells
were incubated with FAM-labeled oAB. Representative merged confocal images of surface-targeted SR-Al (red) and internalized FAM-labeled 0AB
(green) were shown. Nuclei were counterstained with Hoechst 33258 (blue). Scale bar, 10 um. The result was repeated for four times (N =4) and the

F418A F420A

L391A F418A

R424A-R425A R432A-R437A

D444A were sensitive to both PNGase F and Endo H, sug-
gesting the high mannose- or hybrid-type glycans (Fig. 6c¢).
These results showed that all mutation in the domains
with secondary structure retain receptor intracellularly
and abolished N-glycosylation of SR-AI (Table 2).

Next, we assessed the role of SRCR domain in the pro-
tein trafficking of MARCO, another member of class I
SRCR domain superfamily by expressing deletion variants

with serial truncations of the SRCR domain in HEK293T
cells. The truncated MARCO mutants 499, 476, 442, 431,
and 420 contain 79, 56, 22, 11, and 0 residues of SRCR
domain, respectively (Additional file 1: Figure S1A;
Additional file 1: Table S4). The comparable enzymatic ac-
tivities of co-transfected [-galactosidase across variants
suggest that their transfection efficiencies were similar
(data not shown). All of the truncated MARCO mutants
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the representative blot was shown

Fig. 6 Critical residues in the SRCR domain for the surface targeting and N-glycosylation of SR-Al and MARCO. a-c SR-Al variant G361P, E364A,
S369S, L391A, F418A, F420A, G395A-Q397A, S424A-S425A, R432A, R437A, R4321A-R437A, H441R, and D444A were created by site-directed
mutagenesis. Total cell lysates (A) and avidin pull-down of biotinylated lysates (B) were subjected to Western blot analysis. Western blot
analysis of total cell lysates after PNGase F or Endo H cleavage (C). d-e, HEK293 cells were transfected with MARCO and variant R425A, R432A,
G433A, R434A, E436A, W443A, V458A, F459A, C463A, L471A, V486A, H510A and D513A were created by site-directed mutagenesis. Total cell
lysates (D) and avidin pull-down of biotinylated lysates (E) were subjected to Western blot analysis. The result was repeated for four times (N =4) and

were able to be expressed in HEK293T cells with the
major molecular weight at approximately 60 to 50 kDa
(Additional file 1: Figure S1B). However, only the mutant
442, 431 and 420 were surface-targeted (Additional file 1:
Figure S1C).

To determine the critical residues of the MARCO
SRCR domain for N-glycosylation and surface targeting
of MARCO, and MARCO-mediated oA internalization,
amino acid side chain inp-sheet 1 (R425), B-sheet 2
(R432, G433, G434 and G436), B-sheet 3 (W443), a-
helix (1475, V458, F459), disulfide bond (C460), pB-sheet

Table 2 Summary of the surface targeting and oA
internalization of mutants in SRCR domain of human SR-Al

Mutants Mutation Surface oAR
position targeting internalization

R351A R1 — —
E360A B2 — -
G361P B2 - -
R362A 2 — —
E364D B2 — -
G369S Turn + +
W371A p3 — —
Q385A al — —
[391A Loop + +
G395A- loop-B34 + +
Q397A

V399A R4 — —
W413A B5 — —
F418A loop + +
C419A disulfide bond — —
F420A loop + +
S424A-S425A  loop + +
R432A loop + +
R437A loop + +
R432A-R437A  loop + +
H441R n2 — —
D444A n2-B6 — —

4 (L471), n2 (H510A) and loop (L463, V486, D513) were
site-directed mutated to hydrophobic alanine (A) (Fig. 4
and Additional file 1: Table S3). Western blot showed
that all of the point mutants were able to be expressed
in HEK293T cells with molecular weight at approximately
60 kDa (Fig. 6d). The expression levels of SRCR point
mutants G433A, W443A, V458A, and F459A were lower
than wild-type MARCO (Fig. 6d) although the transfec-
tion efficiency of all point mutants were similar (Data not
shown) . The surface biotinylation assay and live immuno-
staining showed that R432A, L463A, L471A and D513A
were surface-targeted (Fig. 6e and Table 3), and the oAP
internalization mediate by these mutants were not signifi-
cantly changed (data not shown).

Discussion

In the present study, we use live immunostaining, surface
biotinylation assay and FAM-labeled oA internalization
to assess the function of N-glycosylation and the critical

Table 3 Summary of the surface targeting of mutants in SRCR
domain of human MARCO

Mutants Mutation position Surface targeting
R425A B1 —
R432A Loop-B2 +
G433A B2 -
R434A B2 —
R436A B2 —
W443A B3 —
1457A al +
VA58A al -
FA59A al -
C460A disulfide bond —
L463A loop +
L471A B4-loop +
V486A loop -
H510A n2 —
D513A loop +

Mutation position represents the location of mutated residues in the
simulated-structure of SRCR domain

+, mutants are surface-targeted and do not internalize oAB

—, mutants are not surface-targeted and do not internalize oAB

Mutation position represents the location of mutated residues in the
simulated-structure of SRCR domain

+, mutants are surface-targeted

—, mutants are not surface-targeted
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residuals of SRCR domain of Human SR-AI and MARCO.
Human SR-AI is a transmembrane glycoprotein with
seven predicted N-glycosylation sites [4]. However,
utilization of the predicted N-glycosylation sites and their
roles in surface targeting and functions of SR-AI remained
unclear. The previous study has found that preventing N-
glycosylation of SR-AI by inhibiting a-glucosidases I and
IT leads to retention of immature N-glycans on SR-AIL but
the abilities of SR-AI surface targeting and ligand up-
take are abolished [17]. In present study, we identified
three N-glycosylation sites critical for the formation of
complex-type N-glycans. The mutation of receptor’s N-
glycosylation sites at N102Q, N143Q, N184Q, N102Q-
N143Q, N102Q-N184Q and N143Q-N184Q significantly
reduced receptor’s N-glycosylation without affecting its
surface targeting. The level of 0Ap internalization was di-
minished only as the mutation occurred at two successive
N-glycosylation sites (ie. N102Q-N143Q and N143Q-
N184Q). Until now, the role of glycosylation status of
scavenger receptor was only reported in two class B recep-
tors. The structure and ligand binding of CD36 and SR-BI
are modulated by the status of N-glycan. All 11 potential
N-linked glycosylation sites were glycosylated in the mur-
ine SR-BI [31]. Mutations at two of these sites at positions
108 and 173 induced fully Endo H-sensitive forms of SR-
BI and might have interfered with exit of the receptors
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from the ER, substantially reducing Golgi-mediated
processing. Consequently, these two sites are critical
for normal surface expression and efficient lipid uptake.
Alternatively, site-directed mutagenesis of human class
B scavenger receptor CD36 showed that mature N-
linked glycosylation is not necessary for surface expres-
sion and ligand binding [32]. CD36 mutants with fewer
glycosylation sites can fold, target to cell surface, and
bind ligand. According to our data, double mutants
N102Q-N184Q showed low expression level in mem-
brane protein but is able to internalize as much ligand
as wild-type SR-AI which was consistent with the study
of CD36. Nevertheless, the N-glycosylation in double
mutant N102Q-N143Q and N143Q-N184Q abrogated
its activity on oA internalization.

The molecular weight of endogenous and surface pro-
tein of MARCO after PNGase F treatment was larger than
the predicted molecular weight of MARCO. It is likely
that MARCO contain other posttranslational modifica-
tion. Because MARCO contains four predicted O-link
glycosylation sites in collagenous structure (T189, T219,
S326, and S329) and average molecular mass of single O-
link polysaccharide is 1-2 kDa, it is possible that the shift
of molecular size cause by O-glycosylation. The smear
band spanning the molecular weight range of 55 to
70 kDa in the cell lysates were PNGase F sensitive,

A

SR-Almutations MARCO mutations bs
ni pe
0 rryyys T ey T >
392 B1 B2 TWO OQ 420 P1 p2 B3 0 O‘Q
al @l
1 2 3 al
B L P T P - TT AN
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MARCO 412 GEKGERG: -ENSVSVIRIVGSS - -NRG 'YYSGTWGT I CDDEWQNSDA I VFCRMLGY SK
1 2
4 5 ni 2 6
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MARCO
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3 3 1 2

Fig. 7 Comparison of the amino acid required for targeting surface and internalizing A between SR-Al and MARCO. a Schematic representation
of SRCR domain of SR-Al and MARCO and the mutation sites are shown. The surface targeted mutations are shown as blue arrows and the intracellular
retained mutantions are shown as red arrows. The black line indicates the sequence of SRCR; a-helix is indicated as red spring, and disulfide bonds are
shown as green line. The secondary structure of the SRCR domain of SR-Al, 3-strands (31-6), a-helix (a) and 3, helices (n1, n2) are indicated.
b Sequence alignment of human MACRO and SR-Al using ClustalW2 and ESPrip. The B-sheets are shown as arrows, and helixes are shown
as a saw tooth pattern. Turns are marked as T. The three pairs of disulfide bonds are labeled as numbers in green. The amino acid in red indicates its
mutation is not surface targetable. The amino acid in blue indicates its mutation is surface targetable and be able to internalize 0AR
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indicating that the MARCO exhibited different extents
of N-link glycans. Moreover, N-glycosylation defected
MARCO (i.e. N83Q-136Q double mutant) was not
expressed on cell surface.

Our previous study has provided evidence that the in-
tact SRCR domain of SR-AI is critical for the protein fold-
ing and N-glycosylation. The level of oA internalization
was diminished in the cells expressing the surface targeted
SRCR truncated variant 371 and 341 [4]. In the present
study, the similar result was confirmed on MARCO. Di-
sulfide bonds are important for protein folding and con-
formational stabilization as well as for protein maturation
and trafficking [33]. The globular fold of SRCR domain of
monomeric MARCO is stabilized by three disulfide bonds:
C447-C508, C459-C517, and C487-C497 [14]. Truncated
mutants 499 and 476 reduced the total MARCO expres-
sion which may be due to the decrease translation effi-
ciency or increase protein degradation. Compared to
truncated mutants 499 and 476, deletion the total cysteine
residues mutants (442, 431, and 420) have higher level of
MARCO. The data suggest that disulfide bonds of SRCR
domain play a structural role for protein folding. Inhib-
ition of disulfide bond formation of ATP-binding cassette
sub-family G member 2 induced protein degradation in
proteasomes [34]. In addition, the surface targeted mutant
442 has lower molecular weight than mutants 431 and
420, suggesting that the glycosylation pattern and polysac-
charide length are variant among the three truncated mu-
tants. It is possible that the process of N-glycosylation in
MARCO was affected in mutant 442, since glycosylation
is important for protein folding and stability, cell adhesion,
and receptor targeting [16].

We also provide the first evidence for that mutation of
SRCR domain of SR-AI and MARCO at the residual in f3
sheets, a-helix and n2 and the cysteine residuals for di-
sulfide bond formation abolished receptor’s trafficking.
The similar clusters of acidic and basic residues in SRCR
domain are similar between SR-AI and MARCO (Fig. 1b
and c). One RRE motif, located at R351-R362-E364 in [3-
sheet 1 and 2 of SR-AI corresponds to R425-R454-E456
of human MARCO (Fig. 7). Three single point muta-
tions at R351A and E364A of human SR-AI and that at
R425A of human MARCO impaired receptor surface
trafficking and N-glycosylation. This suggests that the
SRCR domain of SR-AI may play a predominant role in
protein folding. In a dimmer of the recombinant MARCO
SRCR domain, B-sheet 1, the turn, and B-sheet 2 form a
large P-sheet via B-strand swapping of the two mono-
mers [14]. Our results demonstrated that all mutants at
the region of pB-sheet, a-helix and disulfide bound were
retained intracellularly, suggesting that this region is
critical for the protein folding and trafficking. Alterna-
tively, all 9 mutations of SR-AI and 3 mutant of
MARCO at the residual in turn or loops did not affect
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receptor’s surface trafficking and N-glycosylation. How-
ever, the receptor-mediated oAf internalization was not
significantly affected by those surface targeted muta-
tions of SR-AL

Conclusions

In conclusion, our study identifies the critical motifs of
SRCR domain regulating the proper folding required for
surface trafficking which is prerequisite for exerting diverse
functions of human MARCO and human SR-Al Alterna-
tively, N-glycan moiety is more critical than SRCR domain
for SR-A-mediated 0oAp internalization.

Additional file

Additional file 1: Figure S1. The SRCR domain is critical for the surface
targeting and N-glycosylation of MARCO. HEK293 cells were transfected
with MARCO and variants with truncated SRCR domain. A. Constructs
499, 478, 442, 491 and 420 MARCO variants with truncated SRCR domains
(blue line) and contact collagenous domain (red line). The secondary
structure of the SRCR domain of SR-Al, B-strands (31-6), a-helix (a) and
310 helices (h1, h2) are indicated in red. Disulfide bonds are shown in
green. Total cell lysates (B) and avidin pull-down of biotinylated lysates
(C) were subjected to Western blot analysis. The result was repeated for
three times and the representative blot was shown. Table S1: Primer sets
for expression constructs of SR-AT mutants at spacer and coiled-coil do-
main. Table S2: Primer sets for expression constructs of SR-A1 mutants at
SRCR domain. Table S3: Primer sets for expression constructs of MARCO
point mutants. Table S4: The primer sets for expression construct of
MARCO variants. (ZIP 962 kb)
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