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Abstract
Background Although genome-wide association studies (GWAS) have identified multiple regions conferring 
genetic risk for juvenile idiopathic arthritis (JIA), we are still faced with the task of identifying the single nucleotide 
polymorphisms (SNPs) on the disease haplotypes that exert the biological effects that confer risk. Until we identify the 
risk-driving variants, identifying the genes influenced by these variants, and therefore translating genetic information 
to improved clinical care, will remain an insurmountable task. We used a function-based approach for identifying 
causal variant candidates and the target genes on JIA risk haplotypes.

Methods We used a massively parallel reporter assay (MPRA) in myeloid K562 cells to query the effects of 5,226 SNPs 
in non-coding regions on JIA risk haplotypes for their ability to alter gene expression when compared to the common 
allele. The assay relies on 180 bp oligonucleotide reporters (“oligos”) in which the allele of interest is flanked by its 
cognate genomic sequence. Barcodes were added randomly by PCR to each oligo to achieve > 20 barcodes per oligo 
to provide a quantitative read-out of gene expression for each allele. Assays were performed in both unstimulated 
K562 cells and cells stimulated overnight with interferon gamma (IFNg). As proof of concept, we then used CRISPRi to 
demonstrate the feasibility of identifying the genes regulated by enhancers harboring expression-altering SNPs.

Results We identified 553 expression-altering SNPs in unstimulated K562 cells and an additional 490 in cells 
stimulated with IFNg. We further filtered the SNPs to identify those plausibly situated within functional chromatin, 
using open chromatin and H3K27ac ChIPseq peaks in unstimulated cells and open chromatin plus H3K4me1 in 
stimulated cells. These procedures yielded 42 unique SNPs (total = 84) for each set. Using CRISPRi, we demonstrated 
that enhancers harboring MPRA-screened variants in the TRAF1 and LNPEP/ERAP2 loci regulated multiple genes, 
suggesting complex influences of disease-driving variants.

Conclusion Using MPRA and CRISPRi, JIA risk haplotypes can be queried to identify plausible candidates for disease-
driving variants. Once these candidate variants are identified, target genes can be identified using CRISPRi informed 
by the 3D chromatin structures that encompass the risk haplotypes.
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Introduction
Juvenile idiopathic arthritis (JIA) is a term used to 
describe a group of childhood illnesses characterized 
by chronic inflammation and hypertrophy of synovial 
membranes. Although more rare than the adult disease 
it resembles, i.e., rheumatoid arthritis (RA), JIA is one of 
the most common chronic disease conditions in children 
[1, 2]. Like RA, JIA has long been recognized as a com-
plex genetic trait, in which multiple genetic loci contrib-
ute to disease risk [3]. Although the contribution of any 
single genetic locus is small, genetic influences on JIA are 
still quite strong. For example, in a study using the Utah 
Population Database [4], Sampath et al. found that the 
relative risk for JIA in siblings was nearly 12-fold that of 
the broader population (11.6; confidence intervals 4.9–
27.5; p < 3 × 10− 8), and that for first cousins was nearly 
6-fold (5.8; confidence intervals 2.5–13.8; p < 6 × 10− 5).

To date more than 30 different risk loci have been 
shown to contribute to JIA [5–7]; the statistical associa-
tions are particularly strong for those published in the 
Hinks Immunochip study [6] and the more recent McIn-
tosh meta-analysis [7]. However, the field still faces sev-
eral challenges in elucidating the mechanism(s) through 
which genetic variants confer risk, the most formidable 
of which is to identify the variants that exert the relevant 
biological effects that contribute to risk. The standard 
approach – fine mapping, re-sequencing, imputation, 
bioinformatic annotation, and laboratory testing – is 
inherently laborious and low throughput due to linkage 
disequilibrium (LD), which renders causal variants sta-
tistically indistinguishable from neutral variants on risk 
haplotypes. Not knowing the causal variants complicates 
the task of identifying the target genes, i.e., those genes 
whose function or expression levels are influenced by 
the risk-driving (causal) SNPs. Until the actual causal 
variants are known, it will be impossible to clarify the 
mechanisms through which genetic variants alter normal 
function and contribute to disease risk.

It is becoming increasingly clear that genetic risk for 
multiple complex traits is more likely exerted through 
alterations in genomic regulatory functions that influ-
ence the efficiency of transcription rather than through 
the alterations in the coding sequences of disease-rele-
vant genes [8, 9]. We have published several papers that 
support this concept for JIA [10–12]. For example, we 
have shown that the JIA risk loci are highly enriched, 
compared to genome background, for H3K27me1 and 
H3K27ac chromatin immunoprecipitation-sequencing 
(ChIPseq) peaks, epigenetic features typically associ-
ated with enhancer function [10]. Furthermore, we 
have shown that, in vitro, risk variants on the JIA risk 

haplotypes alter the efficiency of enhancers in the IL2RA 
and IL6R risk loci [12]. However, the locus-by-locus 
approach that we and others have used is time-consum-
ing and inefficient. What the field requires is a rapid 
method for screening thousands of variants for their 
effects on gene expression in a single assay [13].

The purpose of this study was to Identify single 
nucleotide polymorphisms on JIA risk haplotypes that 
show intrinsic ability to alter gene expression in a mas-
sively parallel reporter assay (MPRA). We demonstrate 
the efficacy of this unbiased approach and its capacity 
for uncovering previously unsuspected mechanisms of 
genetic risk. Furthermore, we demonstrate how MPRA 
information and three dimensional chromatin data can 
then be used to identify the likely target genes, i.e., the 
genes regulated by the enhancers harboring the variants 
identified on MPRA. This systematic approach provides 
an efficient and effective method for resolving the most 
vexing aspects of autoimmune disease genetics.

Methods
The general workflow for the MPRA is shown in Fig. 1.

We provide further detail in the following sections.

Selection of genetic variants
We queried SNPs within LD blocks where there is 
already-established risk for JIA. We used the SNPs in the 
regions identified by Hinks and Hersh [5, 6], including 
1,016 new SNPs that we identified within the JIA-asso-
ciated LD blocks using deep whole genome sequencing 
[14]. We used a cut-off of r2 = 0.80 to choose those SNPs 
in strong LD with the index SNPs. This procedure identi-
fied 7,312 candidates to test.

Oligonucleotide library preparation
The oligonucleotide library was prepared following pre-
viously published methods [13]. In brief, oligos were 
synthesized (Agilent Technologies) as 230 bp sequences 
containing 200  bp of genomics sequence and 15  bp of 
adapter sequence at either end (5’ A C T G G C C G C T T G A 
C G [200  bp oligo] CACTGCGGCTCCTGC3’). Unique 
20  bp barcodes were added by PCR along with addi-
tional constant sequence for subsequent incorporation 
into a backbone vector by gibson assembly. The oligo 
library was expanded by electroporation into E.coli and 
the resulting plasmid library was sequenced by Illumina 
2 × 150  bp chemistry to acquire barcode/oligo pair-
ings. The library underwent restriction digest and green 
fluorescence protein (GFP) with a minimal TATA pro-
moter was inserted by gibson assembly resulting in the 
230  bp oligo sequence positioned directly upstream 
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of the promoter and the 20  bp barcode falling in the 3′ 
UTR of GFP. After expansion within E.coli the final mas-
sively parallel reporter assay (MPRA) plasmid library was 
sequenced by Illumina 1 × 30  bp chemistry to acquire a 
baseline representation of each oligo within the library.

Transfection of K562 cells
Previous work from our group has shown that JIA risk 
loci are highly enriched for both H3K4me1 and H3K27ac 
peaks in both neutrophils and CD4 + T cells. Further-
more, for many of the regions queried, H3K4me1/
H3k27ac-marked regions were identical in both cell 

types [10, 11], suggesting that these enhancers regulate 
common hematopoietic cell functions. This idea is cor-
roborated by ontology analyses of genes within the topo-
logically associated domains (TADs) that encompass the 
JIA risk haplotypes [12]. Thus, we elected to perform 
our first-step screening using K562 cells, a myeloid cell 
line that is easy to transfect and has been used previ-
ously with this assay [13]. K562 cells were obtained from 
the American Tissue Type Collection (ATTC). Cell line 
authentication was performed using short tandem repeat 
(STR) loci. STR markers are polymorphic DNA loci that 
contain repeated nucleotide sequences, and the number 

Fig. 1 Summary of work flow for MPRA. Once candidate SNPs are identified, they are cloned into the center of 200 bp oligonucleotides (“oligos”) with the 
cognate flanking sequences and a weak upstream minimal promoter along with a downstream reporter (green fluorescence protein-GFP). After quality 
control measures to assure that each SNP is represented by a sufficient number of bar codes, oligo libraries are transfected into cells. After incubation with 
cells, GFP RNA is collected and sequenced. Bar codes allow for the quantification of allele-specific expression levels
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of repeats varies for each individual. Combinations of 
repeats were used to match cell line to their original 
reported profile as provided by ATTC.

Cells were grown in RPMI medium (Life Technologies) 
supplemented with 10% FBS (Life Technologies) main-
taining a cell density of 0.5-8 × 105 cells per mL at 37  °C 
and 5% CO2. Libraries were electroporated into K562 
cells in 100ul volumes using the Amaxa system (Pro-
gram X-001, Nucleofactor kit V, Lonza). We performed 
6 independent replicates with each replicate consisting of 
∼2 × 108 cells. In a separate set of experiments, K562 cells 
were treated with or without IFNγ (250 ng/ml), a biologi-
cally relevant dose of a ligand known to contribute to JIA 
pathobiology [15, 16], 24  h after transfection. The cells 
were collected 48  h post transfection by centrifugation 
and washed three times with PBS. The cell pellets were 
stored at -80 °C.

Preparation of GFP RNA and RNAseq
Total RNA was extracted from cells using Rneasy Midi kit 
(Qiagen) following the manufacturer’s protocol, includ-
ing the on-column Dnase digestion. A second Dnase 
treatment was performed on the purified RNA using 5 µL 
of Turbo Dnase (Life Technologies) in 300 µL of total vol-
ume for 1 h at 37 °C. The digestion was stopped with the 
addition of 3 µL 10% SDS and 30 µL of 0.5 M EDTA fol-
lowed by a 5 min incubation at 70 °C. The total reaction 
was then used for pulldown of GFP mRNA. The Dnase 
digested RNA (300 ul) with 300 µL of 20X SSC (LifeTech-
nologies), 600 µL of Formamide (Life Technologies) and 
10 µL of 10 μm biotin-labeled GFP probes ( C C T C G A T G 
T T G T G G C G G G T C T T G A A G T T C A C C T T G/3BioTEG;  
C C A G G A T G T T G C C G T C C T C C T T G A A G T C G A T G C 
C C/3BioTEG;  C G C C G T A G G T G A A G G T G G T C A C G A 
G G G T G G G C C A G/3BioTEG) was incubated for 2.5 h at 
65 °C. Biotin probes were captured using 125 µL of pre-
washed Streptavidin beads (RNAse clean C1 beads, Life 
Technologies). The hybridized RNA/probe bead mix-
ture was agitated on a rotator at room temperature for 
20 min. Beads were captured by magnet and washed once 
with 1x SSC and twice with 0.1x SSC. Elution of RNA 
was performed by the addition of 25 µL water and heat-
ing of the water/bead mixture for 2 min at 70 °C followed 
by immediate collection of eluent on a magnet. A second 
elution was performed by incubating the beads with an 
additional 25 µL of water 2 min at 80  °C. A final Dnase 
treatment was performed in 50 µL total volume using 1 
µL of Turbo Dnase incubated for 4 h at 37 °C followed by 
inactivation with 1 µL of 10% SDS and purification using 
RNA Ampure XP beads (Beckman Coulter).

First-strand cDNA was synthesized from half of the 
Dnase-treated GFP mRNA with SuperScript III and a 
primer specific to the 3’ UTR ( C C G A C T A G C T T G G C C 
G C) using the manufacturer’s recommended protocol.

To minimize amplification bias during the creation 
of cDNA tag sequencing libraries, samples were ampli-
fied by qPCR to estimate relative concentrations of GFP 
cDNA using 2 µL of sample in a 20 µL PCR reaction 
containing 10 µL Q5 NEBNext master mix, 2 µL SYBR 
green I diluted 1:10,000 (Life Technologies) and 0.5 μm of 
TruSeq_Universal_Adapter ( A A T G A T A C G G C G A C C A 
C C G A G A T C T A C A C T C T T T C C C T A C A C G A C G C T C T 
T C C G A T C T) and MPRA_Illumina_GFP_F primers ( G T 
G A C T G G A G T T C A G A C G T G T G C T C T T C C G A T C T C G 
C C C T G A G C A A A G A C C). Samples were amplified with 
the following conditions: 95 °C for 20 s, 40 cycles (95 °C 
for 20 s, 65 °C for 20 s, 72 °C for 30 s), 72 °C for 2 min.

To add Illumina sequencing adapters, cDNA samples 
and 4 mpra: gfp plasmid controls were diluted to match 
the replicate with the lowest concentration and 20 µL of 
normalized sample was amplified using the reaction con-
ditions from the qPCR scaled to 50 ul. Amplified cDNA 
was purified using MinElute PCR Kit (Qiagen) and eluted 
in 30 µL of EB. Individual sequencing barcodes were 
added to each sample by amplifying the 20 µL elution in 
a 50 µL Q5 NEBNext reaction with 0.5  μm of TruSeq_
Universal_Adapter primer and a reverse primer contain-
ing a unique 8 bp index (Illumina_Multiplex) for sample 
demultiplexing post-sequencing. Samples were amplified 
at 95 °C for 20 s, 6 cycles (95 °C for 20 s, 64 °C for 30 s, 
72  °C for 30  s), 72  °C for 2  min. Indexed libraries were 
purified using MinElute PCR Kit (Qiagen) and pooled 
according to molar estimates from Agilent TapeStation 
quantifications. Samples were sequenced using 1 × 30 bp 
chemistry on an Illumina HiSeq through the Jackson lab-
oratory in Maine.

Data analysis: identification of SNPs with significant 
influences on gene expression
We followed the same analysis used previously [13] on 
our MPRA data from K562 cells. For each of the repli-
cates, we extracted the first 20bps from the sequenced 
reads and used them to assign the reads to either refer-
ence or alternative allele for variants based on our bar-
code library. We then generated a count-table for each 
variant, including the names of variants, as well as the 
counts of the reference and alternative alleles for each 
replicate. After merging replicates, we generated a mas-
ter count-table for each of the variant alleles for each of 
the replicate of DNA (plasmid library), RNA expression 
in K562 cells, and RNA expression in K562 cells with 
IFNγ treatment. We used a customized R script based on 
that described by Tewhey [13] to process the count-table 
and identify the DNA elements, defined as a region on 
chromosome that is investigated in MPRA, with active 
regulatory activities and the variants that can alter the 
regulatory activities. We used DESeq2 [17], to normal-
ize the counts and fit the dispersion using ‘local fit’. The 
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distribution of the log2 fold changes between RNA and 
DNA were investigated. Since we found the distribu-
tion was not centered at 0, we adjusted the size factors 
for DNA and RNA samples according to the offset, then 
performed the normalization again. The oligos showing 
differential RNA expression relative to the plasmid DNA 
were then identified by the nbinomWaldTest function 
in DESeq2 (a Wald Test for the coefficients in a nega-
tive binomial generalized linear model) and applying 
a threshold of 0.01 for the False Discovery Rate and a 
minimum fold change of 1.5. For DNA elements that dis-
played significant regulatory activity, we applied a t-test 
on the log2-transformed RNA/plasmid ratios for each 
paired replicate (e.g. alternative alleles of K562 replicate 
1 vs. reference alleles of K562 replicate 1) to test whether 
the reference and alternate allele had a similar activity. 
The p-values from t-test were adjusted through the Ben-
jamini-Hochberg process into FDR values and we applied 
a cutoff of FDR 0.01 to call those variants showing altered 
regulatory activities between alleles.

Raw data from the MPRA sequencing has been depos-
ited in the National Library of Medicine’s Sequence 
Read Archive (SRA), BioProject accession number 
PRJNA818294.

Development of K562 cells that express dCas-KRAB
We developed K562 cells expressing a deactivated for 
of the Cas9 RNA-guided endonuclease (dCas) fused to 
the Kruppel-associated box protein (KRAB), which de-
acetylates histones and thus is capable of altering chro-
matin accessibility and repressing enhancer function. 
The inducible dCas9-KRAB construct was generated as 
described previously [18–20]. The dCas9-KRAB were co-
transfected with SB100X into K562. The dCas9-KRAB 
was integrated into genome of K562 cells by SB100X, a 
hypersensitive transposon [21]. Cells were selected using 
blasticidin for 10 days. These cells express dCas9-KRAB 
in a doxycycline-dependent manner (Supplementary 
Fig. 1).

Identification of genes regulated by enhancers harboring 
SNPs that screen positive on MPRA
Because most enhancers regulate genes within the same 
chromatin loop or topologically associated domain 
(TAD) [22], we used publicly available HiC data [12] to 
identify the likely target genes regulated by the enhanc-
ers harboring the SNPs identified by MPRA. As proof-
of-concept, we chose to test genes from 2 loci. We chose 
TRAF1, which is of special interest because of its specific 
association with a polyarticular disease course [23], and 
ERAP2/LNPEP, which are downstream effectors of inter-
feron responses [24], which are known to be enhanced in 
JIA [15].

Single guide RNAs (sgRNAs) were designed by using a 
web service from IDT Integrated DNA Technologies, Inc. 
(www.idtdna.com/site/order/designtool/index/CRISPR_
CUSTOM). We designed four gRNAs for each enhancer 
(Fig. 2). The sgRNA sequence for the HS2 enhancer (HS 
Cr4, gaaggttacacagaaccaga) was from [25]. The gRNA 
expression vectors were generated as described previ-
ously [18–20]. The sequence information of all constructs 
was verified by Sanger sequencing.

Next, a pool of gRNAs (4 gRNAs) was transfected 
into the dCas9-KRAB K562 cells using hypBase plas-
mid [26], which inserts the gRNA into the genome of the 
dCas9-KRAB-expressing K562 cells. Cells were selected 
with puromycin for 10 days to get stably expressed 
gRNAs- dCas9-KRAB K562 cells. To induce dCas9-
KRAB expression, the cells were treated with 1 ug/ml of 
doxycycline for 48 h before RNA isolation.

RT-qPCR
Total RNA was purified using RNeasy Plus mini kit (Qia-
gen), and cDNA was synthesized by with iScript™ cDNA 
synthesis kit according to the directions of the manufac-
turer (Bio-Rad, Hercules, CA, USA). Quantitative PCR 
was performed using Power SYBR™ Green PCR Master 
Mix kit on a StepOne Plus real time PCR system (Applied 
Biosystems, Foster City, CA, USA). The relative expres-
sion level of a gene was normalized by that of GAPDH. 
The primer sequences were, PHF19: forward-  T G G A C A 
G A T G G C C T G T A C T A and reverse-  C C T T C C A T A G G A 
C C C A G T A T T T; C5: forward-  C T C C T C A G G C C A T G T 
T C A T T T A and reverse-  T T G T C C T C C A G G C A A T T G 
T T; LNPE: forward-  T G A G C A A T A C A C C G C T T T A T C 
A, reverse-  G T G C T C A T C T T C A C A C T C T C A G; ERAP2: 
forward-  G A C C T C T T C T G C T T C C G A T A A A, reverse-  
G C C A A A T A T C A T T C C A C C A T T C C; CAST: forward-  T 
G A C C G G T C T G A A T G T A A A G A G, reverse-  T A T A C T A 
C A C A T G G A G G T C C G A; HBE1: forward-  T C A C T A G C 
A A G C T C T C A G G C, reverse-  A A C A A C G A G G A G T C T 
G C C C.

Results
Quality control results
We first sought to determine whether there were signifi-
cant differences in the number of reads from each oligo 
for each of the three conditions: Plasmid alone, K562 
cells, and K562 cells incubated with IFN gamma (K562 
IFN). Sequencing reads were scanned for all barcodes, 
then mapped and counted for each matched oligo. The 
Plasmid condition provides the control of MPRA read 
counts. The raw counts of reads mapped for each oligo 
are shown in the heatmap shown in Supplementary 
Fig.  2. (each row represents a separate oligo; values are 
log2 counts).

http://www.idtdna.com/site/order/designtool/index/CRISPR_CUSTOM
http://www.idtdna.com/site/order/designtool/index/CRISPR_CUSTOM
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MPRA screening identifies multiple variants with 
transcriptional effects
We transfected K562 cells with oligonucleotide probes 
representing 7,312 SNPs on the JIA risk haplotypes iden-
tified from GWAS and candidate gene studies [5, 27] as 
well as the Immunochip [6]. After final quality control 
measures, there were 5,226 sequences with sufficient 
representation in the MPRA library to undertake down-
stream analyses. Of these, 1,482 (28%) showed regulatory 
activity. Of these, 530 (19.8%) showed a significant differ-
ence from the common allele in unstimulated K562 cells, 
and 490 (18%) showed differential expression in IFNg-
stimulated cells, using FC > 2 and FDR = 0.01 as a cut-off. 
After excluding SNPs within the HLA class I and class II 
loci (n = 406), where coding functions are believed to be 
the most important disease drivers, we further filtered 
SNPs to identify those that were in open chromatin and 
within H3K27ac ChIPseq peaks (unstimulated cells) or 
open chromatin and H3me1, but not H3K27ac-marked 
regions for SNPs identified in exclusively in stimulated 
cells. Using these procedures, we identified n = 42 SNPs 
in unstimulated K562 cells (Table  1). After stimulation 

with IFNγ (250 ng/ml), we identified an additional 42 
SNPs that showed significant effects on gene expression 
that were not identified in unstimulated cells (Table  2). 
These findings are consistent with previously published 
studies that suggest that many disease-relevant alleles 
may exert their effects on immune cells only after those 
cells are activated [28].

In many cases, we identified multiple alleles on the 
same haplotype, although these alleles were not necessar-
ily within the same functional element. For example, in 
the TRAF1, LNPEP/LNPEP/ERAP2, and IL6R/ATP8B2 
loci, we identified variants within both intergenic and 
intronic enhancers in unstimulated K562 cells. In IFNγ-
stimulated cells, we identified variants in both intergenic 
and intronic enhancers in the IL6R/ATP8B2, TYK2/
ICAM3, and LNPEP/ERAP2 loci. In stimulated K562 
cells, we also identified expression-enhancing variants 
that are situated within the promoter and within an exon 
within the ATXN2 locus. This finding may reflect that 
these regions have enhancer as well as promoter/cod-
ing functions, as has been described for other genomic 
regions [29, 30].

Fig. 2 Screen shots from the UCSC Genome Browser indicating the positions of gRNAs (black rectangles) used for CRISPR1 attenuation of enhancers in 
the TRAF1 (top panel) and ERAP2/LNPEP loci (bottom panel) in K562 cells. H3K27ac ChIPseq peaks (purple) and DNase1 hypersensitive site (red) are also 
shown
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SNPs within H3K27ac-marked intronic region in TRAF 1 (chr9:120,921,603 − 120,923,567)
rs1014529
rs10818485
rs7021206
SNPs within an H3K27ac-marked intergenic region in TRAF 1 (chr9:120,929,875 − 120,936,755)
rs10739578
rs2109896
rs7859805
rs10985080
SNP within H3K27ac-marked intergenic region in TNFSF1 (chr13:42,476,952 − 42,480,776)
rs2062305
SNPs within H3K27ac-marked intergenic region in IRF1 chr5:132,491,627 − 132,499,135)
rs2549004
rs2549007
rs2549009
rs2706385
rs2706386
rs41525648
SNPs within H3K27ac-marked intronic region in IL2RA (chr10:6,047,090 − 6,055,660)
rs1924138
rs791587
rs10795763
SNP within H3K27ac marked intronic region in LTBR chr12:6,384,706-6,385,089
rs10849448
SNP within H3K27ac-marked intergenic region in IL6R-ATP8B2 (chr1:154,312,218 − 154,401,421)
rs11581043
rs4845614
rs1194591
SNP within H3K27ac marked intronic region in STAT4. chr2:191,037,761 − 191,039,047
rs1400653
SNPs within H3K27ac-marked intronic region in RMI2 (chr16:11,348,423 − 11,351,691)
rs11643024
rs2032929
rs2032931
rs2032933
rs8050084
rs9302459
rs9922058
rs9922935
SNP within H3K27ac marked intergenic region in ERAP2/LNPEP (chr5:96,929,602 − 96,933,14)
rs1216565
SNPs within H3K27ac-marked intronic region in ERAP2/LNPEP (chr5:96,967,226 − 96,969,507)
rs1559267
rs1820149
SNP within H3K27ac marked intronic region in IL10. (chr1:206,769,578 − 206,772,118)
rs1518111
SNP within H3K27ac marked intronic region in ZFPl36F1. chr14:68,793,403 − 68,794,934
rs17106304
rs2236263
SNP within H3K27ac marked intergenic region in TYK2 (chr19:10,345,527 − 10,347,710)
rs4611572
SNP within H3K27ac-marked intergenic region in CCR2 (chr3:46,321,182 − 46,323,267)
rs35675823
SNP within H3K27ac marked intronic region in TIMMDC1 (chr3:119,506,272 − 119,508,916)

Table 1 SNPs screening positive in unstimulated K562 cells (n = 42)
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Identification of target genes
The identification of risk-enhancing alleles of JIA haplo-
types may facilitate the identification of target genes, i.e., 
the genes whose expression levels are influenced by the 
risk-driving SNPs. To test this concept, we relied on the 
fact that most enhancers regulate genes within the same 
TAD [22] and that the 3D chromatin structures are iden-
tifiable from publicly available chromatin conformation 
data.

We tested the intergenic enhancer harboring 
rs10985080, located at chr9:120,896,106–120,897,428 
(GRCh38/hg38) on the TRAF1 haplotype, as well as the 
intergenic enhancer on the LNPEP/ERAP2 harboring 
rs1216565 as described in the Methods section. Using 
publicly available HiC data from the 3D Genome Browser 
(http://3dgenome.fsm.northwestern.edu) [31], we visual-
ized heat maps defining TAD structures in K562 cells and 
reported by Rao et al. [32]. We identified genes within the 
same chromatin loops that were likely targets of these 
enhancers. We show HiC data derived from K562 cells in 
Fig. 3. For TRAF1, we identified TRAF1, PHF19 and C5 
as the most likely candidate targets for this enhancer.

Within the TAD encompassing the intergenic enhancer 
in the TRAF1 locus we identified 2 expressed genes, 
PHF1 and C5. Note that TRAF1 itself was not expressed. 
We therefore used CRISPRi to attenuate the function of 
this enhancer; sequences of the gRNAs used for this pur-
pose are provided in Fig. 4A. Attenuation of the TRAF1 
intergenic enhancer by CRISPRi resulted in a significant 
(p < 0.01) reduction in expression of the PHF19 gene, 
but not C5. These results are shown in Fig. 4B. We next 
examined the intergenic enhancer harboring rs1216565, 
located at chr5:96,929,854 − 96,931,091 (GRCh38/hg38) 
in the LNPEP/ERAP2 locus.

Once again, we used publicly available 3D chromatin 
data to identify likely targets, which included LNPEP, 
ERAP2, and CAST. Sequences for the gRNAs for this 
experiment are shown in 4 A. As shown in Fig. 4C, atten-
uation of this enhancer resulted in significant reductions 
in the expression of both LNPEP and ERAP2, but not the 
adjacent gene, CAST. This finding is consistent with the 
known capacity of enhancers to regulate multiple genes 
within the same topologically-associated domain [22].

Corroboration of MPRA data with human genotyping-
expression data
Finally, we sought to gain additional information that 
MPRA-identified SNPs located in the enhancers in the 
TRAF1 and LNPEP/ERAP2 locus influence gene expres-
sion of the candidate target genes in humans. We used 
the Genotype-Tissue Expression (GTEx) project’s [33] 
expression quantitative trait locus (eQTL) calculator 
and querying whole blood expression data for this pur-
pose (https://www.gtexportal.org/home/testyourown) to 
determine whether individuals harboring these SNPs do, 
in fact, show differential expression of the CRISPRi-iden-
tified target genes. Results of these analysis are shown in 
Table  3, below. SNPs highlighted in bold indicate those 
with greater-than-by chance likelihood that the SNP has 
an influence on the expression of the listed gene.

In each case, then, GTEx whole blood expression 
data further strengthens the predictions from the 
MPRA + CRISPRi analysis, as individuals carrying these 
alleles show the predicted alterations in the CRISPRi-
identified targets when compared to individuals carrying 
the common allele. At the same time, these analyses dem-
onstrate the utility of our approach in clarifying GTEx 
data where multiple SNPs in strong LD appear to influ-
ence the expression of a gene. Furthermore, when multi-
ple expression-altering alleles are adjacent (and therefore 
in strong LD), the GTEx analysis may clarify the specific 
SNP(s) that exert the strongest influence on the candidate 
target genes. Note that for rs10985080 and rs1216565, 
despite significant differences from the common allele, 
the effect sizes are relatively small. This finding is consis-
tent with the observations of Gasperini et al. [20], who 
have shown that the effect sizes for most enhancers on 
the genes they regulate is in the range of 15–30%.

Discussion
The field of genetics as applied to complex traits has 
started to move beyond the identification of genetic asso-
ciations and toward the elucidation of the mechanisms 
through which genetic variants confer risk [34, 35]. How-
ever, a significant impediment to accomplishing this task 
is the fact that a strength GWAS studies, which leverage 
LD to identify regions conferring genetic risk, is also a 
weakness, in that the SNPs that tag genetic risk loci are 
in LD with dozens, sometimes hundreds, of other SNPs, 

rs4688012
SNPs within H3K27ac-marked intronic region in JAZF1 (chr7:28,124,680 − 28,152,184
rs757730
rs1635853
SNP within H3K27ac marked intronic region in IL6 (chr7:22,725,624 − 22,727,193)
rs1800797
* ENCODE ChIPseq data and human neutrophil ChIPseq data [10]

Table 1 (continued) 

http://3dgenome.fsm.northwestern.edu
https://www.gtexportal.org/home/testyourown
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SNP in H3K4me1 intronic region in PTPN22 (chr1:113,800,033–113,807,167)
rs1217378
SNPs in H3K4me1 intronic region in IL6R/ATP8B2 (chr1:154,312,194 − 154,313,462)
rs11581043
rs1194608
SNP in H3K4me1 intergenic region in IL6R/ATP8B2 (chr1:154,351,989 − 154,356,495)
rs4845369
SNPs in H3K4me1 intronic region in IL10 (chr1:206,768,609 − 206,772,399)
rs1518111
rs2945417
SNP within H3K4me1 intronic region in STAT4 (chr2:191,041,359 − 191,043,004)
rs1996400
SNPs in H3K4me1 intergenic region in CCR2 (chr3:46,297,890 − 46,306,532)
rs7374671
rs4683215
rs35053103
rs2888523
rs2888524
rs34997146
rs62242985
rs6441972
SNPs in H3K4me1 intronic region in TIMMDC1 (chr3:119,394,863 − 119,412,040)
rs4687853
rs2177812
rs7610049
SNP in H3K4me1 intergenic region in LNPEP/ERAP2 (chr5:96,920,167 − 96,924,958)
rs193994
rs1216565
SNP in H3K4me1 intronic region in LNPEP/ERAP2 (chr5:96,995,366 − 96,995,917)
rs430827
SNPs in H3K4me1 intergenic region in IRF1 (chr5:132,490,541 − 132,492,289
rs41525648
rs2706385
rs2706386
SNPs in H3K4me1 intergenic region in TRAF1 (chr9:120,941,159 − 120,947,188)
rs10818481
rs2900180
SNP in H3K4me1 intronic region in IL2RA (chr10:6,040,089 − 6,040,684)
rs791592
SNPs in ATXN2
rs10849962 (Appears to be in the promoter; H3K27ac-marked region spans
chr12:111,598,660 − 111,600,586)
rs6416335 (Appears to be an exonic enhancer in BRAP (chr12:111,643,075–111,643,762)
SNP in ZFP36L1 intronic region (chr14:68,794,471 − 68,796,262)
rs3742887
SNPs in H3K4me1 intergenic region in ZFP36L1 (chr14:68,800,391 − 68,801,105)
rs1595260
rs4899258
SNP in H3K4me1 intronic region in RMI2 (chr16:11,283,902 − 11,284,672)
rs34764020
rs7205578
rs6498184
SNPs in H3K4me1 intergenic region in PTPN2 (chr18:12,775,801 − 12,776,691)
rs4327116

Table 2 SNPs screening positive in K562 stimulated by interferon gamma (n = 42)
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most of which have no influence at all on disease risk. 
Thus, distinguishing the true causal variants (i.e., those 
that exert the relevant biological effects) from the innoc-
uous ones in which they are in LD, has been a challenge. 
At the same time, the discovery that, for most complex 
traits [8], including autoimmune diseases [9], genetic risk 
is likely to impinge on regulatory functions rather than 
the protein-coding sequences of pathology-driving genes, 
has complicated the search for target genes (i.e., the 
genes influenced by the causal variants).

In this paper, we demonstrate a systematic strategy for 
identifying both causal variants and their target genes 
on JIA risk haplotypes. We find that, by using existing 
chromatin data in combination with MPRA to screen 
for expression-altering variants, we can identify a finite 
number of variants that, based on their functional prop-
erties, are strong candidates as actual causal variants, 
as others have recently shown [36]. Subsequent identi-
fication of target genes can then be accomplished using 

CRISPRi approaches, especially for those variants that 
lie within enhancers, which are likely to be fundamental 
to autoimmune disease pathogenesis [37]. The CRISPRi 
experiments are simplified by the fact that most enhanc-
ers regulate genes within the same TAD [22], and, thus 
experiments can be performed in a targeted fashion 
rather than genome-wide. Finally, one can make a causal 
link between expression levels of genes identified by 
CRISPRi and the variants that screen positive on MPRA 
using GTEx whole blood expression data.

The MPRA screening yielded some surprising results. 
We note, for example, that there were many loci where 
we identified multiple expression-altering alleles within 
the same functional element. For example, rs2549004, 
rs2549007, rs2549009, rs2706385, rs2706386 and 
rs41525648 within a single intergenic enhancer on the 
IRF1 haplotype and rs1559267, rs1820149, and rs1559267 
within a single intronic enhancer on the TRAF1 haplo-
type. This finding suggests that the disease-associated 

Fig. 3 Screen shots from the 3D Genome Browser and the WashU Genome browser visualizing HiC data in K562 cells. Shown are interacting regions 
within the TRAF1 (A, left panel) and LNPEP-ERAP2 (B, right panel) JIA risk loci

 

rs2847279
rs9952753
SNP in H3K4me1 intronic region in PTPN2 (chr18:12,860,578 − 12,861,552)
rs515151
SNPs in H3K4me1 intronic region in TYK2 / ICAM3 (chr19:10,333,403 − 10,334,831)
rs2278442
rs2304240
SNP in H3K4me1 intronic region (chr19:10,347,076 − 10,348,009)
rs510506
** ENCODE ChIPseq data and human neutrophil ChIPseq data [10]

Table 2 (continued) 
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Fig. 4 Results from CRISPRi interrogation of JIA risk loci to identify target genes of intergenic enhancers harboring MPRA-screened SNPs in the TRAF1 
(rs10985080) and LNPEP/ERAP2 (rs1216565) loci. Panel A provides the sequences and positions of the gRNAs used to interrogate these regions. Panel B 
shows results from the interrogation of the TRAF1 locus. Ablation of this intergenic enhancer significantly reduces the expression of PHF1, which encodes 
a polycomb family transcriptional repressor, but not C5, another expressed gene within the same topologically-associated domain as this enhancer. Off-
target effects were assessed by examining the effects of these same gRNAs on the expression of HBE1. The gRNAs showed no effects on HBE1 expression, 
although specifically targeted gRNAs to an HBE1 enhancer reduced expression by 50%. Panel C shows results from interrogation of the intergenic en-
hancer within the LNPEP/ERAP2 locus. Attenuating this enhancer, which is situated between the LNPEP and ERAP2 genes, significantly reduced expression 
of both genes. ** = p < 0.01. *** = p < 0.001
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haplotypes exert risk because they contain multiple 
alleles in strong LD that, together, alter immune regu-
latory functions. Furthermore, many of the risk haplo-
types contain more than one functional element that is 
affected, and these different functional elements may 
exert their effects on different genes. There is no reason 
to assume, for example, that the intergenic and intronic 
enhancers on the TRAF1 haplotype regulate the same 
genes.

Another useful fact that emerges from our data is that 
physical interactions between enhancers and promot-
ers do not necessarily indicate a regulatory relationship. 
For example, HiC and promoter capture HiC data dem-
onstrate physical interactions between the intergenic 
enhancer in LNPEP/ERAP2 and the promoter CAST 
gene. However, attenuating this enhancer had no effect 
on CAST expression. While this finding doesn’t exclude 
the possibility that this enhancer might work in concert 
with others to regulate CAST, it serves as a precautionary 
message in how we use and interpret 3D chromatin data 
and gene expression data from patient cells.

Our work also highlights the utility of using the Sleep-
ing Beauty transposase system and hypBase vectors for 
gRNAs in functional genomics experiments. Genome-
wide CRISPRi screens for enhancer activity have typi-
cally use lentivirus and/or plasmid vectors to attenuate 
enhancer function [22]. However, these assays can be 
vexing to perform and replicate because of the low mul-
tiplicity of infection (MOI) rates seen with such vectors. 
This makes it difficult to interpret different experiments 
or even compare replicates within a single experiment. 
Our approach allows stable and high levels of expression 
of both the epigenome editing enzyme and the gRNAs, 
facilitating both replication and inter-experimental com-
parisons (e.g., between the efficiency of intronic vs. inter-
genic enhancers in regulating a specific gene).

This work has several limitations, the most impor-
tant of which is the use of cell lines rather than primary 
human cells for these assays. There is accumulating data 
that, based on the similarity of their chromatin to the 
cognate primary human cells such as Jurkat and THP-1 
are suitable as models in genetic studies of human auto-
immune diseases [38]. However K562, which were 

derived from a human myelogenous leukemia, are less 
like their primary human counterparts, although the 
TAD structures strongly resemble primary myeloid cells 
[12]. Recent developments, which include using a Rous 
sarcoma virus promoter instead of the minimal promoter 
we used here, suggest that MPRA assays can be per-
formed in primary human cells, provided that a sufficient 
number of replicates are performed to attenuate the dif-
ferences between individual donors [39]. We now have 
such experiments under way in our laboratory.

Another limitation of the findings here was the agnos-
tic nature of the variant selection process. We chose vari-
ants with MAF > 1% on the JIA haplotypes identified in 
several different studies [6], following the approach of 
Tewhey et al [13]. Variants were not selected based on 
their presence within plausible functional chromatin 
or their frequency in genotyped patients with JIA. As 
Lu and colleagues have shown [36] using such selection 
methods can increase the efficiency of the MPRA.

Another important limitation to this approach is the 
fact that MPRA may not detect effects as they would 
occur in native chromatin [35, 40]. This limitation may 
lead to both false positives and false negatives. False 
positives may be reduced by using an additional crite-
rion (or criteria) to filter MPRA-identified variants. For 
example, Ainsworth et al. [41] have shown that applying 
analyses of DNA topology, an important determinant of 
DNA non-coding functions, can improve the predictive 
value of variants screened on MPRA, since these analyses 
detect a feature intrinsic to native chromatin. Thus, the 
addition of a filtering feature that detects effects in native 
chromatin is likely to significantly reduce the number of 
false positives that emerge from MPRA alone. It should 
be noted that false negatives, which DNA topology anal-
yses won’t solve, is much less of a problem for the field. 
The JIA risk haplotypes contain > 13,000 SNPs in LD with 
the SNPs used to identify/tag the risk loci. The urgent 
need is to reduce this number so that further functional 
characterization can proceed in an efficient way.

Even after this process is completed, there will be fur-
ther work to be done. The agnostic nature of GWAS 
and genetic fine mapping studies makes it impossible 
to identify the cells whose functions are affected by 

Table 3 MPRA-identified SNPs located in the enhancers in the TRAF1 and LNPEP/ERAP2 loci associated with gene expression levels of 
the candidate target genes in humans
Locus Gene SNP P-value P-value threshold NES*
TRAF1 PHF19 rs10739578 0.00077 0.00021 0.065

rs2109896 0.084 0.00021 0.036
rs7859805 0.035 0.00021 0.044
rs10985080 0.000068 0.00021 0.078

LNPEP/ERAP2 ERAP2 rs1216565 2.4e-152 0.00020 0.87
LNPEP rs1216565 0.0000064 0.00020 0.072

NES = Normalized effect size
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disease-driving variants. In JIA, there are likely to be 
multiple cells types, in addition to CD4 + T cells and neu-
trophils [10, 11] that are influenced by genetic variants. 
These include B cells [42] and monocytes [43], and possi-
bly other cells that regulate the innate immune response, 
such as hepatocytes [44]. All of these cell types will need 
to be tested separately, and it is likely that different SNPs 
will be found to alter different regulatory regions in each 
cell type. Furthermore, we will need to study specific cell 
subsets (e.g., for CD4 + T cells and B cells) and different 
activation states.

For many of these cell types, there may be serious limi-
tations in using GTEx whole blood expression data to 
make the causal connection between SNPs identified on 
MPRA and expression levels of genes identified on CRIS-
PRi. We note that our MPRA and CRISPRi studies were 
performed in myeloid K562 cells, and that neutrophils 
(derived from myeloid precursors) are the most abundant 
leukocyte in adult peripheral blood. Gene expression pro-
files from whole blood are strongly influenced by neutro-
phil expression signatures [45, 46]. It seems plausible that 
genetic influences that specifically affect gene expression 
in lymphocytes and lymphocyte subsets would be diffi-
cult to corroborate using existing GTEx data, especially 
given the relatively small number of genotyped subjects 
(fewer than 700) currently in the GTEx whole blood data 
set. In these cases, establishing a causal link between a 
given SNP and the expression of candidate target gene 
might require direct interrogation of the cells of interest 
using CRISPR/homology-directed repair strategies.

Conclusion
We describe a systematic approach for identifying both 
causal variants and their target genes on JIA risk haplo-
types. This approach relies on knowledge of the chro-
matin structures that encompass the risk haplotypes 
as well as a massively parallel genomic assay to identify 
functional features that make them strong candidates 
for being disease-driving variants. The use of screen-
ing assays in primary human cells and the adaptation of 
informative cell lines can be expected to rapidly advance 
our understanding of genetic mechanisms that drive JIA 
risk.
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