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Abstract
Background  Avian influenza viruses (AIV), particularly H5N6, have risen in infection frequency, prompting major 
concerns. Single-cell RNA sequencing (scRNA-seq) can illustrate the immune cell landscape present in the peripheral 
circulation of influenza H5N6-infected individuals at the single-cell level. This study attempted to employ scRNA-seq 
technology to map the potentially hidden single cell landscape of influenza H5N6.

Methods  High-quality transcriptomes were generated from scRNA-seq data of peripheral blood mononuclear 
cells (PBMCs), which were taken from a critically-ill child diagnosed with H5N6 avian influenza infection and one 
healthy control donor. Cluster analysis was then performed on the scRNA-seq data to identify the different cell 
types. The pathways, pseudotime developmental trajectories and gene regulatory networks involved in different cell 
subpopulations were also explored.

Results  In total, 3,248 single cell transcriptomes were captured by scRNA-seq from PBMC of the child infected with 
H5N6 avian influenza and the healthy control donor and further identified seven immune microenvironment cell 
types. In addition, a subsequent subpopulation analysis of innate lymphoid cells (ILC) and CD4+ T cells revealed 
that subpopulations of ILC and CD4+ T cells were involved in cytokine and inflammation-related pathways and had 
significant involvement in the biological processes of oxidative stress and cell death.

Conclusion  In conclusion, characterizing the overall immune cell composition of H5N6-infected individuals by 
assessing the immune cell landscape in the peripheral circulation of H5N6 avian influenza-infected and healthy 
control donors at single-cell resolution provides key information for understanding H5N6 pathogenesis.
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Introduction
Avian influenza virus (AIV) is highly infectious and poses 
a major public health risk due to its high mortality rate, 
especially since live bird trade has led to the persistence 
of many AIV subtypes [1–3]. Recently, the AIV H5Ny 
spectrum (i.e., H5N1, H5N2, H5N6, and H5N8) has gar-
nered widespread attention due to its transmission abil-
ity and genomic rearrangement capabilities between 
humans and other animal species, which could lead to 
cross-species infection [4, 5].

In May 2014, the first human became infected with the 
highly pathogenic H5N6 subtype (evolutionary branch 
2.3.4.4), which was reported in China and was the first 
known human case of H5N6 subtype in the world [6, 
7]. This specific H5N6 subtype could bind avian- and 
human-derived sialic acid receptors and attach to human 
tracheal epithelium and alveolar tissue, suggesting that it 
may be a significant public health risk [8, 9]. As of Feb-
ruary 18, 2022, a total of 72 human H5N6 cases and 30 
deaths have been reported to the World Health Orga-
nization in the Western Pacific (WHO Avian Influenza 
Weekly Update Number 832), with a mortality rate of 
approximately 42%. However, only a few number of 
infections have been reported in the pediatric popula-
tion [10]. The complications of human infection with 
AIV are mainly respiratory in nature, including respira-
tory failure, acute respiratory distress syndrome, severe 
pneumonia, and pulmonary fibrosis during recovery [11, 
12]. Once the AIV enters the respiratory epithelium, the 
innate immune sensor detects the virus, which rapidly 
initiates a downstream antiviral signaling cascade that 
leads to the production of multiple cytokines by infected 
epithelial cells and specific innate immune cells that help 
limit virus replication and spread. In turn, this leads to 
the recruitment of activated CD8+ T cells, natural killer 
T (NKT) cells, innate lymphoid cell 2 (ILC2), regulatory 
T cells (Treg), and T helper cell 2 (Th2) effector cells to 
move from the capillaries to the site of inflammation [13–
16]. Determining the functions and roles among immune 
cells can identify strategies that may help improve out-
comes following H5N6 infection in order to coordinate 
the immune response.

To this end, this study explores the potential ecologi-
cal panorama of H5N6-infected individuals via single-cell 
RNA sequencing (scRNA-seq) of peripheral blood mono-
nuclear cells (PBMCs) from a critically ill child infected 
with H5N6 avian influenza and a healthy control donor, 
providing the first single-cell-level insights of H5N6.

Methods
Sample source
PBMC samples were obtained from a critically-ill child 
diagnosed with H5N6 avian influenza infection and a 
healthy control donor. This study was approved by the 
Ethics Committee of the Fourth People’s Hospital of Nan-
ning ([2022]03). All procedures involving human partici-
pants complied with the ethical standards of the research 
committee. Informed consent was obtained from par-
ticipants or their guardians for all study procedures and 
sequencing protocols.

scRNA-seq library construction and sequencing
scRNA-seq library construction and sequencing ref-
erenced to Liang Y et al [17]. scRNA-seq libraries were 
prepared using the SeekOne® MM Single Cell 3’ library 
preparation kit (SeekGene). Briefly, an appropriate num-
ber of cells were loaded into the flow channel of the 
SeekOne® MM chip that contained 170,000 microwells, 
which was then allowed to settle in the microwells by 
gravity. After removing the unsettled cells, a sufficient 
amount of Cell Barcoded Magnetic Beads (CBBs) was 
pipetted into the flow channel and was also allowed to 
settle in the microwells with the help of a magnetic field. 
Next, excess CBBs were rinsed out, and cells in the MM 
chip were lysed in order to release RNA, which was then 
captured by the CBB in the same microwell. Then, all 
CBBs were collected, and reverse transcription was per-
formed at 37℃ for 30 min to label cDNA with cell bar-
codes on the beads. Further Exonuclease I treatment was 
performed so as to remove unused primer on the CBBs. 
Subsequently, barcoded cDNA on the CBBs was hybrid-
ized with a random primer that had reads 2 SeqPrimer 
sequence on the 5’ end and could extend to form the 
second strand DNA with a cell barcode on the 3’ end. 
The resulting second strand DNA was denatured off 
the CBBs, purified and amplified in a Polymerase Chain 
Reaction (PCR) reaction. The amplified cDNA product 
was then cleaned to remove unwanted fragments, after 
which it was added to a full-length sequencing adapter 
and sample index by indexed PCR. The indexed sequenc-
ing libraries were then cleaned with SPRI beads, quanti-
fied by quantitative PCR (KAPA Biosystems KK4824) 
and sequenced on Illumina NovaSeq 6000 with a PE150 
read length or DNBSEQ-T7 platform with a PE100 read 
length. All unique gene names of the transcripts were 
recorded, the cells were labeled by the barcode, and the 
transcripts were labeled by unique molecular identifers 
(UMIs) to quantify the number of cells and genes after 
comparison with the reference. All reads that mapped 
to the same gene and had the same UMI sequence were 
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folded and diferent UMIs corresponding to the same 
gene were quantifed, which produced a digital matrix for 
cell gene expression quantifcation. For all downstream 
analyses, we selected cells that have at least 1000 UMIs 
(indicating the number of captured transcripts) mapped 
to at least 200 unique genes and ensured that each gene 
is expressed in more than three cells. We excluded cells 
with poor viability and quality by removing more than 
10% of the cells whose gene counts refected mitochon-
drial genes or ribosomal RNA (Supplementary Fig. 1).

Clustering of scRNA-seq data and construction of atlas
Clustering and visualization were performed using the 
Seurat package in R [18], which annotates clusters using 
known marker genes that overlap in cluster-specific 
genes. The “FindAllMarker” function was used for differ-
ential expression analysis. In terms of Seurat clustering of 
raw expression data from filtered cells, annotations were 
generated using SingleR with the default parameters [19]. 
The clustering results were then uniformly downscaled 
and visualized using the Uniform Manifold Approxima-
tion and Projection (UMAP) algorithm [20]. In addition, 
the identified cells were sub-clustered with the Seurat 
package in order to identify marker genes expressed in 
each cell sub-cluster using the FindAllMarker function. 
Finally, cell subpopulations were classified according to 
the most abundantly expressed marker genes.

Functional enrichment analysis
In order to determine the potential function of the 
molecular pathways present in each cell subpopulation, 
the ClusterProfiler package in R was used for the enrich-
ment analysis [21]. Pathways were considered to be sig-
nificantly associated with marker genes when P < 0.05.

Pseudotime analysis
A pseudotime trajectory analysis of cell subpopulations 
was conducted using the R package Monocle3 [22], 
which shows the pseudotime changes of cell subpopula-
tions via UMAP plots.

Gene regulatory network
Single-cell regulatory network inference and clustering 
(SCENIC) was used to infer gene regulatory networks 
and identify cellular states based on single-cell expression 
profiles, which provides an important biological perspec-
tive on the mechanisms driving cellular heterogeneity. 
To identify internal transcriptional regulatory drivers in 
adipose tissue of different anatomical site origins, gene 
regulatory networks centered on transcription factors 
(TFs) were analyzed and reconstructed using the Python 
module tool pySCENIC [23, 24].

Data analysis and statistics
All statistical analyses were performed in the Bioinfor-
cloud platform (http://www.bioinforcloud.org.cn), which 
was applied by calling the appropriate R package (R ver-
sion 4.0.5). Comparisons between the two groups were 
made using Student’s t test and correlation coefficients 
were calculated using Spearman analysis. P < 0.05 was 
considered significant.

Results
The immune global landscape of PBMC in H5N6-infected 
patient
In the current study, we sought to gain more insight into 
the immune response to the H5N6 AIV after infection 
of the host. Accordingly, scRNA-seq of PBMC from an 
H5N6-infected patient and healthy control donor was 
performed. The potential ecological panoply of H5N6 
using single-cell genomics was then explored using the 
obtained data.

The workflow of this study is shown in Fig.  1. After 
standardized data processing and quality control, a total 
of 16 different cell clusters through a clustering analysis. 
Further identification of cell clusters yielded seven cell 
types, including B cells, CD8+ T cells, CD4+ T cells, neu-
trophils, innate lymphoid cells (ILC), natural killer T cells 
(NKT) cells and basophils (Fig. 2A), consistent with the 
established phenotypic characteristics of immune cells 
(Fig. 2B). In summary, the PBMC single cell atlas of the 
H5N6-infected and control donors in this study was ini-
tially mapped.

The ILC subpopulation landscape of H5N6
As an intrinsic immune cell, cytokine release, pathogen 
threat and even tissue homeostatic imbalance can rap-
idly activate the ILC cell population to function as an 
early response effector cell in the immune response [25]. 
In addition, ILCs are capable of both resisting patho-
gen infection and exerting a protective effect trigger-
ing on the organism, and they may also trigger chronic 
inflammatory diseases [26–28]. Based on cellular eco-
logical mapping at a single-cell resolution, the sub-
populations of ILC were explored in-depth, for which 
10 subpopulations of ILC were identified (Fig.  3A) that 
were heterogeneous in H5N6 and Control (Fig.  3B) 
while mapping the specific markers of each subpopula-
tion in single-cell mapping (Fig.  3C). Among these ILC 
cell subsets, ILC_CXCR4, ILC_RPS4Y1, ILC_ERAP2, 
and ILC_DUSP1 subpopulations were found to possess 
the highest proportion of H5N6-infected individuals 
(Fig. 3D, Supplementary Table 1). Notably, these subsets 
were significantly enriched in oxidative stress-related and 
immuno-related biological processes (Fig. 3E), as well as 
in coronavirus disease-COVID-19, NOD-like receptor sig-
naling pathway, TNF signaling pathway, IL-17 signaling 
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pathway, Epstein-Barr virus infection and PD − L1 expres-
sion and PD − 1 checkpoint pathway in cancer (Fig. 3F).

As shown by the pseudotime trajectory analysis, the 
ILC_XIST subpopulation was noted to be predominantly 
present in healthy controls, whereas the ILC_RPS4Y1, 
ILC_ERAP2 and ILC_DUSP1 subpopulations were pres-
ent in H5N6 patients (Fig.  4A-B). The pseudotime tra-
jectory of cell development reveals the process of ILC 
subpopulation changes from control donors to H5N6-
infected individuals, with the ILC_DUSP1 subpopulation 
at the end of the pseudotime trajectory. The pseudotime 

trajectory is consistent with the physiological changes 
in cell differentiation. Furthermore, gene regulatory 
networks (GRNs) of ILC cell subpopulations were con-
structed, and the regulatory factors were hierarchically 
clustered according to the connectivity specificity index 
(CSI) in order to rank the importance of regulatory fac-
tors and mitigate the effects of non-specific interactions. 
In doing so, TFs with STAT1, HSF4, JUN, and TCF7L2 
were obtained as hubs and were organized into four 
modules (Fig.  4C). In ILC, cellular reprogramming may 
promote cellular alterations through GRN driven by 

Fig. 2  Global single-cell atlas of H5N6-infected individuals and healthy controls. (A) Single-cell atlas showing the global single-cell landscape of 
H5N6-infected individuals and healthy controls. (B) Bubble plots showing cell-specific markers guiding cell annotation. UMAP, Uniform Manifold Approxi-
mation and Projection; ILC, Innate lymphoid cell; NKT, Natural killer T; LogFC, log fold-change

 

Fig. 1  Workflow of the study. Single-cell RNA sequencing of PBMCs from an H5N6-infected patient and a healthy control donor captured 16 cell 
populations that could be used for subsequent analysis. The correlation between cell populations is shown in the heatmap; in addition, differential gene 
expression analysis was performed to obtain differentially expressed markers for different cell populations. PBMCs, Peripheral blood mononuclear cells; 
UMAP, Uniform Manifold Approximation and Projection; ILC, Innate lymphoid cell; NKT, Natural killer T
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these active TFs, which may serve as key TFs involved in 
the altered cellular state of ILC. In turn, these modules 
had a significant impact on the regulation of specific gene 
expression of ILC in H5N6 (Fig. 4D). These findings dem-
onstrate the existence of multiple ILC subpopulations in 
non-H5N6-infected individuals as well as their hetero-
geneity. Furthermore, this shows that the inflammatory 
response pathways involved in ILC subpopulations war-
rant attention.

CD4+ T cell subpopulation landscape in H5N6 infected 
patient
AIV infection can lead to higher mortality, which has 
been shown to be closely associated with an excessive 
inflammatory response [29, 30]. Meanwhile, Th17 differ-
entiation of CD4+ T cells has been shown to be involved 
in mediating inflammatory cell infiltration, leading to 
severe pathological tissue damage and dysfunction of 

the host [31, 32]. Eight CD4+ T cell subpopulations 
were identified by subpopulation analysis in this study 
(Fig. 5A), and these subpopulations were heterogeneous 
in H5N6 and Control (Fig.  5B), with specific markers 
being mapped in the single-cell profiles (Fig. 5C). Nota-
bly, among these subpopulations of CD4+ T cells, CD4+ 
T_RPS4Y1, CD4+ T_TRBC2, CD4+ T_DUSP1 and 
CD4+ T_HLA-DRB5 subpopulations were found to be 
significantly abundant among H5N6-infected individu-
als (Fig.  5D, Supplementary Table  2). These subpopula-
tions were also observed to be significantly enriched in 
biological processes associated with oxidative stress and 
cell death (Fig. 5E). Specifically, the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) signaling pathway analy-
sis showed that coronavirus disease-COVID-19, chemo-
kine signaling pathway, TNF signaling pathway, IL-17 
signaling pathway, influenza A and PD − L1 expression 

Fig. 3  H5N6-associated ILC subpopulations. (A) Single-cell atlas depicting the ILC subpopulations. (B) Single-cell atlas showing the distribution of 
ILC subpopulations in control-H5N6-infected individuals. (C) Series of single-cell atlases illustrating the markers specific to ILC subpopulations. (D) The 
differences in abundance of ILC subpopulations in control and H5N6-infected individuals. (E) Biological processes enriched by ILC subpopulations. (F) 
Signaling pathways enriched by ILC subpopulations. UMAP, Uniform Manifold Approximation and Projection; ILC, Innate lymphoid cell; Exp, Expression; 
FDR, FalseDiscovery Rate
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and PD − 1 checkpoint pathway in cancer were enriched 
(Fig. 5F) [33–35].

The pseudotime trajectory of CD4+ T cell subpopu-
lations were analyzed, in which CD4+ T_CCR7 sub-
population was mainly in control donors, while CD4+ 
T_RPS4Y1, CD4+ T_DUSP1 and CD4+ T_HLA-DRB5 
subpopulations were significantly enriched in H5N6 
(Fig.  6A-B). The pseudotime trajectories of CD4+ T cell 
subpopulations were analyzed, in which the CD4+ T_
CCR7 subpopulation was mainly in control donors, while 
the CD4+ T_RPS4Y1, CD4+ T_DUSP1 and CD4+ T_
HLA-DRB5 subpopulations were significantly enriched 
in H5N6 (Fig.  6A-B). The pseudotime trajectory of cell 
development revealed the process of CD4+ T subpopu-
lation changes from control donors to H5N6-infected 
individuals, with CD4+ T_RPS4Y1, CD4+ T_DUSP1 and 
CD4+ T_HLA-DRB5 subpopulations subpopulations at 
the end of the pseudotime trajectory, and the pseudotime 
trajectory was consistent with the physiological changes 
in cell differentiation, making them specific subpopula-
tions in H5N6. According to GRN, CD4+ T_IFI6, CD4+ 
T_DUSP1, CD4+ T_FHIT, CD4+ T_RPS4Y1 and CD4+ 
T_TRBC2 subpopulations were regulated by NFIL3, 
THAP1, NR2C2 and MEOX1, respectively (Fig.  6C-D). 
According to GRN, CD4+ T cell subpopulations were 
regulated by NFIL3, THAP1, NR2C2 and MEOX1, 

respectively (Fig. 6C-D). In CD4+ T, cellular reprogram-
ming may promote cellular alterations through GRN 
driven by these active TFs, which may serve as key TFs 
involved in the altered cellular state of CD4+ T. In con-
clusion, by identifying subpopulations of CD4+ T cells, 
a subpopulation of CD4+ T cells in H5N6 involved in 
immune and inflammation-related pathways that may 
contribute to the excessive inflammatory response in 
H5N6 were identified.

Discussion
Previous studies have shown that AIV emerge through 
multiple genetic rearrangements of different subtypes of 
viruses within populations of resident poultry and wild 
birds, which may also persist in poultry populations, 
thereby leading to widespread transmission with pan-
demic potential [36–38]. In addition, the H5N6 subtype 
of the AIV can pose a serious threat to human health 
[39]. Due to its potentially high pathogenicity and cross-
species transmissibility, this study attempted to present a 
comprehensive profile of cell types and subpopulations 
in PBMC samples from both H5N6-infected and healthy 
control donors at a single-cell resolution. By assessing 
the ecological changes and different signaling profiles of 
subpopulations of different cell types and analyzing the 
developmental trajectories and transcriptional regulators 

Fig. 4  Cellular developmental trajectories and gene regulatory networks of H5N6-associated ILC subpopulations. (A) Pseudotime analysis 
showing pseudotime values and pseudotime trajectories of ILC subpopulations from control to disease progression. (B) Overlayed pie charts represent-
ing the proportion of control and H5N6-infected individuals in each subpopulation. (C) Co-expression modules of transcription factors in ILC subpopula-
tions. Left: Identification of regulator modules based on the connection specificity index matrix of regulators. Middle: representative transcription factors 
and their binding patterns in the modules. Right panel: cell subpopulations in which transcription factors are located. (D) Series of scatter plots showing 
transcription factors regulating ILC subpopulations. UMAP, Uniform Manifold Approximation and Projection; ILC, Innate lymphoid cell
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of different cell subpopulations, the corresponding find-
ings could provide novel insight into transcriptional 
differences between cells of different origins in H5N6-
infected individuals.

Seven independent cell types were initially identified 
in this analysis, including certain immune cells. Each cell 
type showed different pathway characteristics and activ-
ity between PBMC from H5N6-infected and healthy con-
trol donors.

As an important effector cell, ILC has an important 
role in maintaining tissue homeostasis and its response 
to tissue injury [40]. As tissue-resident innate immune 
cells, ILCs can be divided into multiple subpopulations 
according to their specific functions [41], which may both 
participate in immunity and cause associated inflamma-
tion [42–45]. In addition, ILCs have been shown to be 

involved in the regulation of immune responses and tis-
sue homeostasis [46]. Despite recent advances in study-
ing ILCs, the cellular heterogeneity, developmental 
trajectory and functional role of ILC cells in H5N6 have 
yet to be understood. Accordingly, this study demon-
strated the presence of ILC subpopulations in H5N6 and 
highlighted the developmental stages and pathways of 
different ILC subpopulations in H5N6. Previous studies 
have offered insight into the novel functions of murine 
lung ILCs in regulating airway epithelial barrier integrity 
and tissue homeostasis following influenza virus-induced 
lung injury [47]. The present study suggested that ILC 
subpopulations are significantly heterogeneous, and 
these cell subpopulations exhibit different developmental 
requirements and patterns of cellular transcription factor 
expression. In another study on H5N6, Bi et al. found that 

Fig. 5  H5N6-associated CD4+T cell subpopulations. (A) Single-cell atlas showing CD4+ T cell subpopulations. (B) Single-cell atlas illustrating the dis-
tribution of CD4+ T cell subpopulations in control and H5N6-infected individuals. (C) Series of single-cell atlases depicting the markers specific for CD4+ 
T cell subpopulations. (D) The difference in abundance of CD4+ T cell subpopulations in control and H5N6-infected individuals. (E) Biological processes 
enriched by CD4+ T cell subpopulations. (F) Signaling pathways enriched by CD4+ T cell subpopulations. UMAP, Uniform Manifold Approximation and 
Projection; Exp, Expression; FDR, FalseDiscovery Rate
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humoral and cellular responses were detectable in survi-
vors of H5N6 infection, which were not present among 
non-survivors. In addition, survivors had lower concen-
trations of pro- and anti-inflammatory cytokines/che-
mokines compared to those of non-survivors [48]. These 
findings were consistent with those of the present study, 
where the enrichment analysis of ILC subpopulations 
revealed that ILC subpopulations with specificity were 
significantly involved in a number of cytokine interac-
tions as well as inflammation-related pathways. In addi-
tion, cells in the innate immune system produce ROS, 
and long-term inflammatory processes can increase ROS 
production, causing oxidative stress, which was verified 
in this study as well [49].

Survival and recovery from AIV infection depends on 
the development of strong T-cell immunity in the host, 
leading to memory responses, which has been previously 
observed in H7N9 and pH1N1 infections [50–52]. Inter-
estingly, no reports on CD4+ T cell immunity in patients 
with H5N6 virus infection currently exist. The presence 
of H5N6 virus-specific T cells observed in this single-cell 
resolution may play a role in controlling disease progres-
sion and viral clearance, thus contributing to survival. 
In addition, avian influenza vaccines have demonstrated 
poor immunogenicity and efficacy in humans [53, 54]. 
One study suggested that the poor antibody response to 

avian influenza vaccine was due to insufficient help from 
CD4+ T cells [55]. In addition, enriched oxidative stress-
related signaling pathways warrant further attention. 
Inflammation and oxidative stress can adversely affect T 
cells, and CD4+ T cells are important mediators of oxi-
dative stress [56]. Thus, the scRNA-seq data from this 
study can provide further context for the lack of cellular 
immune analyses in H5N6.

In conclusion, our study is the first to examine H5N6 
avian influenza at single-cell resolution, filling a gap in 
the understanding of H5N6 avian influenza. scRNA-seq 
of PBMC samples from H5N6-infected individuals iden-
tified immune pathways corresponding to differences in 
host gene expression throughout infection, thus deepen-
ing the understanding of immune processes that occur 
during infection, which may later help in the develop-
ment of therapeutic approaches for infected patients. The 
present study has some limitations. First, the sample size 
of this study was small, and the results of this study need 
to be validated with a larger sample of patients, which we 
will continue to collect in the future to enrich the study. 
Second, the conclusions obtained from this study are 
based on bioinformatics analysis, and future cellular and 
molecular experiments will be needed to validate them.
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Fig. 6  Cellular developmental trajectories and gene regulatory networks of H5N6-associated CD4+T cell subpopulations. (A) Pseudotime analy-
sis demonstrating pseudotime values and pseudotime trajectories of CD4+ T cell subpopulations from control to disease progression. (B) Overlayed pie 
charts representing the proportion of control and H5N6-infected individuals in each subpopulation. (C) Co-expression modules of transcription factors in 
CD4+ T cell subpopulations. Left: identification of regulator modules based on the connection specificity index matrix of regulators. Middle: representa-
tive transcription factors and their binding patterns in the modules. Right panel: cell subpopulations where transcription factors are located. (D) Series of 
scatter plots showing transcription factors regulating CD4+ T cell subpopulations. UMAP, Uniform Manifold Approximation and Projection
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