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Abstract
Objective  To screen out core genes potentially prognostic for sepsis and construct a competing endogenous RNA 
(ceRNA) regulatory network.

Methods  Subjects included in this project were 23 sepsis patients and 10 healthy people. RNA-seq for lncRNA, 
miRNA and mRNA was performed in the peripheral blood samples. Differentially expressed RNAs (DER) were screened 
out for further analysis. GO annotation and GSEA functional clustering were performed to view the functional 
enrichment of DEmRNAs. Core genes of prognostic significance were screened out with the weighted correlation 
network analysis (WGCNA). Meta-analysis and Survival analysis was devised in different microarray datasets. RT-qPCR 
was conducted to validate these core genes. A ceRNA network was accordingly constructed according to the 
correlation analysis and molecular interaction prediction.

Results  RNA-seq and differential analysis screened out 1,044 DEmRNAs, 66 DEmiRNAs and 155 DElncRNAs. The 
GO and GSEA analysis revealed that DEmRNAs are mainly involved in inflammatory response, immune regulation, 
neutrophil activation. WGCNA revealed 4 potential core genes, including CD247, IL-2Rβ, TGF-βR3 and IL-1R2. In vitro 
cellular experiment showed up-regulated expression of IL-1R2 while down-regulated of CD247, IL-2Rβ, TGF-βR3 
in sepsis patients. Correspondingly, a ceRNA regulatory network was build based on the core genes, and multiple 
lncRNAs and miRNAs were identified to have a potential regulatory role in sepsis.

Conclusion  This study identified four core genes, including CD247, IL-1R2, IL-2Rβ and TGF-βR3, with potential to be 
novel biomarkers for the prognosis of sepsis. In the meantime, a ceRNA network was constructed aiming to guide 
further study on prognostic mechanism in sepsis.
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Introduction
Sepsis is a type of life-threatening organ dysfunction 
caused by a dysregulated host response to infection, 
and it is one of the most critical issues in the Modern 
Medicine [1, 2]. According to statistics, approximately 
31.5 million patients are admitted for sepsis annually in 
the world, including 5.3  million deaths [3]. Increasing 
anti-inflammatory drugs are being available in treatment 
for sepsis, but the efficacy remains limited [4]. Besides, 
the lack of diagnostic specificity of the disease results in 
a slow progress of relevant clinical study and low diag-
nostic accuracy without a gold standard for diagnosis [5]. 
Given that sepsis is defined as a medical emergency that 
poses a threat to life, early diagnosis and timely treatment 
are critically important in susceptible persons [6], and 
potential biomarkers and molecular therapeutic targets 
specific to sepsis require to be identified.

Ideally, biomarkers are capable of differentiating 
between bacterial infection and other non-infectious sys-
temic inflammation, which could be fast and reliable. In 
that way, sepsis could be recognized in early stages, and 
it may help for risk stratification, prognostic assessment 
and decision-making for use of antibiotics [7]. Identifica-
tion of molecular targets prognostic for sepsis might be 
key for development of new treatment strategies [8].

A variety of transcription factors have shown a key part 
in the pathophysiological processes after sepsis, such as 
nuclear factor kappa-B (NF-κB) and activator protein-1 
(AP-1), through induction of the expression of multiple 
related genes and products. Under this background, sep-
sis is also regarded as a genic disorder and gene therapy 
is emerging as a novel treatment approach [8]. Upon sep-
sis onset, high- and low-inflammatory responses occur 
simultaneously in repose to dysregulated gene expres-
sion. Reprogramming for pro- and anti-inflammatory 
genes, and the immune response genes involved in sys-
temic acute inflammation, therefore, is also an approach 
that can prevent organ failure and improve outcome in 
sepsis [9]. Messenger RNA (mRNA) and non-coding 
RNA (ncRNA) are the involved transcripts, and mRNA 
expression profiling has been prevalently studied. Other 
RNAs, such as microRNA (miRNA), long non-coding 
RNA (lncRNA), circular RNA (circRNA), have also been 
extensively researched for the past few years [10]. Com-
peting endogenous RNA (ceRNA) is receiving increas-
ing attention with the development of the mechanism 
of post-transcriptional regulation. ceRNA is a pattern of 
regulating gene expression via competitively binding to 
a common miRNA response element with target mRNA 
at the post-transcriptional level [11, 12]. Recent research 
suggested that ceRNA is highly implicated in tumorigen-
esis and development [13]. However, the specific ceRNA 
regulatory mechanism in sepsis remains to be fully 
understood.

This study adopted high-throughput sequencing tech-
nique to perform RNA-seq analysis in peripheral blood 
samples from sepsis patients (n = 23) and healthy people 
(n = 10). Additionally, bioinformatics analysis was con-
ducted to identify potential molecular targets of survival 
significance, combining differential expression analy-
sis, functional annotation and co-expression analysis. A 
ceRNA regulatory network was accordingly constructed, 
aiming to guide further research on prognosis of sep-
sis and provide a new thought for clinical diagnosis and 
treatment in the future. Workflow of the project is dis-
played in Fig. 1.

Materials and methods
Subjects and blood sampling
Consecutive cases of sepsis admitted to the Emergency 
Intensive Care Unit (EICU) of the Affiliated Hospital of 
Southwest Medical University between January 2019 
and December 2019 were initially enrolled. Inclusion 
criteria: (1) In accordance with the Sepsis 3.0 Criteria 
(Infection + ΔSOFA score ≥ 2) jointly released by Soci-
ety of Critical Care Medicine (SCCM) and European 
Society Intensive Care Medicine (ESICM) in 2016; (2) 
16 ≤ age ≤ 65; (3) Written informed consent. Patients 
would be excluded if they previously had organ failure, 
immune system disease, or hematologic disease. Preg-
nant or lactating women were also excluded. Eventually, 
a total of 23 cases of sepsis were selected. Control healthy 
subjects (n = 10) were recruited at the same hospital, 
who underwent routine medical check-ups during the 
same period. Peripheral blood sampling was performed 
within 24 h after admission in sepsis patients, and control 
blood samples were obtained from the healthy subjects. 
All subjects signed informed consent. The study proto-
col was reviewed and approved by the ethics committee 
of the Affiliated Hospital of Southwest Medical Univer-
sity (Ethical Approval No. ky2018029). The Registration 
Number was ChiCTR1900021261.

RNA-seq analysis
Peripheral blood cells were extracted and digested with 
Trizol to obtain total RNA. The total RNA was quali-
tatively and quantitatively analyzed using the Nano 
Drop and Agilennt 2100 bioanalyzer, respectively. Raw 
Reads(lncRNA/mRNA,miRNA) were filtered by the 
SOAPnuke (https://github.com/BGI-flexlab/SOAP-
nuke) [14], and the Clean Reads obtained were saved in 
the FASTQ format. Subsequently, the Clean Reads were 
aligned to the reference genome by HISAT2 software 
(v2.0.4) [15]. Fusion genes and differentially spliced genes 
(DSGs) were tested using the Ericscript (v0.5.5) [16] and 
rMATS (V3.2.5) [17], respectively. Finally, the Clean 
Reads were aligned to the genome assembly by Bowtie2 
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software (v2.2.5) [18]. RSEM (v1.2.12) [19] was used to 
calculate gene expression level.

Screening of differentially expressed RNAs (DERs)
Data filtering and normalization were completed using 
the online iDEP93 platform (http://bioinformatics.
sdstate.edu/idep/) [20, 21], followed by principal com-
ponent analysis (PCA). PCA is a quantitatively rigorous 
method that clusters large amount of gene expression 
data into several principal components orthogonal to 
each other via dimensionality reduction, which helps 
find out the outliers and identify samples of high similar-
ity. Differential expression analysis and statistical testing 
were performed using DESeq2 software. Differentially 
expressed mRNAs, miRNAs and lncRNAs (DEmRNA, 
DEmiRNA, DElncRNA) meeting |Fold Change [FC]| ≥4 
and False Discovery Rate (FDR) < 0.01 were screened out.

GO annotation and GSEA functional clustering
Gene Ontology (GO) annotations are statements about 
the function of a particular gene that describe Biological 
Process (BP), Cellular Component (CC) and Molecular 
Function (MF) [22]. Here, GO annotation was performed 
using the R4.0.5 (p < 0.05) to view the functional enrich-
ment of the DEmRNAs. Gene Set Enrichment Analy-
sis (GSEA) aims at showing the distribution of a given 
gene set in a prior defined set of genes correlated with 
the phenotypic class distinction to judge on their con-
tribution to the phenotypes. Here, GSEA was performed 
using the R3.6.3, and the significance threshold was set as 
FDR < 0.25 and p.adjust < 0.05.

WGCNA and identification of core genes
Weighted correlation network analysis (WGCNA) can be 
used to find clusters (modules) of genes highly correlated 

Fig. 1  Whole ceRNA network framework based on RNA-seq data of patients with sepsis and normal control
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in expression pattern during the same physiological pro-
cess or in different tissues, and the genes in the same 
cluster (module) are believed to be functionally similar or 
correlated. This method can help predict the function of 
a new gene or RNA [23, 24]. Here, we used iDEP93 online 
platform to calculate soft threshold and select modules 
that express consistent trends. Then a WGCNA network 
was constructed with this modules of genes to screen for 
sepsis core genes.

Meta-analysis
Meta-analysis was devised to evaluate the expression pat-
tern of the core genes in various datasets based on multi-
ple microarray datasets from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/), including GSE28750 [25], 
GSE54514 [26], GSE95233 GEO Accession viewer (nih.
gov), GSE6535 [27], GSE63042 [28], GSE74224 [29], 
GSE67652 [30] and GSE12624 GEO Accession viewer 
(nih.gov), using the R4.0.5 package “meta” for Meta-anal-
ysis [31]. All data were analyzed in sepsis versus normal 
and sepsis versus systemic inflammatory response syn-
drome (SIRS).

Survival analysis
Data from a public dataset GSE65682 [32] were down-
loaded to explore the prognostic value of the core genes 
in sepsis. The GSE65682 dataset contains 478 peripheral 
blood samples from sepsis patients, together with gene 
expression profile and clinical prognostic data. Survival 
analysis was performed using Graphpad prism7, and 
p < 0.05 in log-rank test was defined as having statistical 
significance.

Cell culture and sepsis modeling
Human monocytic leukemic cell line THP-1 was selected 
to identify the expression trend of the core genes in sep-
sis and perform further in vitro experiment. THP-1 cells 
were cultured in complete culture medium containing 
10% fetal bovine serum (FBS) in an incubator with 5% 
CO2 at 37 ℃. Cell concentration was adjusted to 50 ng/
ml by addition of phorbol myristate acetate (PMA). The 
monocytes were then induced to convert into adherent 
macrophages. After 48 h, the supernatant was discarded 
and cells were collected. The cells were then cultured for 
24  h with 2 ml 10% FBS-supplemented medium free of 
Penicillin-Streptomycin Solution. Lipopolysaccharide 
(LPS) (100 ng/ml) was subsequently added to induce 
sepsis for 6  h. Culture medium of the control cells was 
changed at the same time point without any other 
treatment.

RT-qPCR
PCR primers were designed by the PrimerBank data-
base (https://pga.mgh.harvard.edu/primerbank/) 

[33]. Detailed primer sequences were as below: 
CD247 Forward GCCAGAACCAGCTCTATAACG, 
Reverse GGCCACGTCTCTTGTCCAA; IL1R2 For-
ward ATGTTGCGCTTGTACGTGTTG, Reverse 
CCCGCTTGTAATGCCTCCC; IL2RB Forward 
CTGCTTCACCAACCAGGGTTA, Reverse GGGGTC-
GTAAGTAAAGTACACCT; TGFBR3 Forward 
TGGGGTCTCCAGACTGTTTTT, Reverse CTGCTC-
CATACTCTTTTCGGG. Total RNA in cells was 
extracted using the RNA extraction kit (Tiangen, China, 
DP419), and the concentration and purity were measured 
with a spectrophotometer. Complementary DNA (cDNA) 
of the RNA was synthesized using a RT kit (TOYOBO, 
China, FSQ-201). RT-qPCR was then performed with the 
SYBR Green kit (TOYOBO, China, QPK-201), and melt-
ing curves were generated. The results were analyzed in 
2^-∆∆Ct.

Statistical analysis
Statistical analysis and figure processing were conducted 
using the R3.6.3 software. Continuous data of normal dis-
tribution were expressed at mean ± standard deviation, 
and the data that did not conform to normal distribution 
were in the form of median and quartiles. Comparison 
between sepsis and control groups was completed with 
independent-sample t test upon data meeting normal 
distribution and homogeneity of variance.

Construction of a ceRNA regulatory network
Between-group correlation was analyzed using the 
OmicShare cloud platform (https://www.omicshare.
com/). DEmiRNAs and DElncRNAs which are signifi-
cantly negatively and positively associated with the DEm-
RNAs (p < 0.05) were screened out, respectively. miRNAs 
having binding sites on the 3’UTR of the core mRNAs 
were predicted using the miRWalk database (http://mir-
walk.umm.uni-heidelberg.de/) [34, 35], and then inter-
sected with the DEmiRNAs of significantly negative 
correlation. Similarly, miRNAs having binding sites on 
the DElncRNAs of significantly positive correlation with 
the key mRNAs were predicted using the miRDB data-
base (http://mirdb.org/custom.html) [36], and then inter-
sected with the overlapped miRNAs. The final mRNAs, 
miRNAs and lncRNAs screened out were projected on 
the OmicShare cloud platform to establish a ceRNA reg-
ulatory network.

Results
Demographic and clinical characteristics
There were 23 sepsis patients and 10 healthy people 
included in this project. Demographic and clinical char-
acteristics of the subjects included gender, age, Sequen-
tial Organ Failure Assessment (SOFA) score, Glasgow 
Coma Scale (GCS) score, total white blood cell (WBC) 
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count, neutrophil count, total bilirubin, urea, and serum 
creatinine (Table 1). Comparatively, the SOFA score, total 
WBC and neutrophil count, urea level were higher while 
the GCS score was lower in the sepsis group versus con-
trol group, which were statistically significant (p < 0.05).

Screening of DERs
Sequencing data of mRNA, miRNA and lncRNA were 
subjected to PCA and two PCs were obtained, it indicates 
that the data were comparable between sepsis group 
and normal group (Fig.  2A-C). Differential analysis was 
conducted in the PCs, and DEGs that met |FC| ≥4 and 
FDR < 0.01 were selected, including 1,044 DEmRNAs 
(688 up-regulated and 356 down-regulated), 66 DEmiR-
NAs (29 up-regulated and 37 down-regulated) and 155 
DElncRNAs (61 up-regulated and 94 down-regulated) 
(Fig. 2D-F).

GO annotation and GSEA functional enrichment
GO function enrichment analysis was performed and 
revealed the most enriched GO terms of the DEmRNAs, 
including neutrophil activation involved in immune 
response, neutrophil degranulation, axonogenesis, 
response to molecule of bacterial origin, extracellular 
matrix organization, extracellular structure organization, 
response to lipopolysaccharide, cell kllig (Fig. 3A). By the 
GSEA clustering analysis, the differentially up-regulated 
genes were significantly enriched in pathways involved 
in response to biotic stimulus, immune effector process, 
defense response, leukocyte mediated immunity, cell 
activation involved in immune response, and the differ-
entially down-regulated genes were highly activated in 
pathways associated with neuron recognition, presyn-
aptic membrane, intrinsic component of postsynaptic 
membrane, outflow track morphogenesis, anterior pos-
terior pattern specification (Fig.  3B-C). Collectively, the 
DEmRNAs are mainly involved in biological processes 
associated with inflammatory response and immune 
regulation.

WGCNA
Modules at a soft threshold of 12 and size > 50 were 
obtained by WGCNA and the Blue and Green modules 
were found to be highly associated with clinical phe-
notypes in sepsis (Fig.  4A-B). S1PR5, GNLY, CD247, 
KLRG1, IL-1R2, AUTS2, IL-2Rβ, ARG1, TGFBR3, TLR5 
and PRF1 in the top 80 genes in the two modules were 
located toward the center of the co-expression network, 
and CD247, IL-2Rβ, TGF-βR3 and IL-1R2 were identified 
as core genes in sepsis (Fig. 4C-D).

Meta-analysis
Expression of CD247, IL-2Rβ, TGF-βR3 and IL-1R2 was 
analyzed in multiple microarray datasets by a meta-anal-
ysis. When comparing the sepsis patients with normal 
individuals, IL-1R2 was up-regulated while IL-2Rβ and 
TGF-βR3 were down-regulated. No statistically signifi-
cant difference in CD247 expression was noted between 
the two groups (Fig. 5A-D). When comparing the sepsis 
patients with SIRS cases, CD247, IL-2Rβ and TGF-βR3 
were down-regulated significantly but IL-1R2 marginally 
varied (Fig. 5E-H).

Survival analysis
Survival significance of CD247, IL-2Rβ, TGF-βR3 and 
IL-1R2 was assessed in the GSE65682 dataset. As shown 
in Fig. 6A-D, expression of CD247, IL-2Rβ and TGF-βR3 
was positively associated with the survival in patients 
with sepsis, and expression of IL-1R2 was negatively 
associated (p < 0.05). The four genes were prognostic for 
the survival in sepsis and might be new research targets. 
The GSE datasets used for Meta-analysis and Survival 
analysis are presented in Table 2.

RT-qPCR
In vitro experiment was performed to test expres-
sion of CD247, IL-2Rβ, TGF-βR3 and IL-1R2 in human 
THP-1 cells of sepsis. By independent-sample t test, 
CD247 (-0.805 [-1.323 - -0.288]; t = -4.323, p = 0.012), 
IL-2Rβ (-0.514 [-0.862 - -0.166]; t = -4.102, p = 0.015) and 
TGF-βR3 (-0.835 [-1.288 - -0.382]; t = -5.120, p = 0.007) 
were significantly down-regulated in sepsis cells versus 
normal cells, while IL-1R2 (4.028 [2.904–5.153]; t = 9.950, 
p = 0.001) was reversely up-regulated. All the differences 
were statistically significant (p < 0.05) (Fig. 6E).

ceRNA regulatory network construction
Following correlational analysis and molecular interac-
tion prediction, 10 miRNAs and 23 lncRNAs highly cor-
related with the 4 core genes (CD247, IL-2Rβ, TGF-βR3 
and IL-1R2) were obtained. Heatmaps of the mRNAs, 
miRNAs and lncRNAs were made as shown in Fig.  7A-
C. A ceRNA regulatory network based on the lncRNA-
miRNA-mRNA pairs was established. Sankey diagram 

Table 1  Demographic and clinical data of subjects (m ± sd). 
Gender, age, SOFA score, Glasgow Coma Scale (GCS) score, total 
white blood cell (WBC) count, neutrophil count, total bilirubin, 
urea, and serum creatinine
Clinic items Sepsis(n = 23) NC(n = 10) P
Gender(F/M) 9/14 4/6 -

Age(years) 58.09 ± 2.365 51.7 ± 3.685 0.1503

SOFA 5.87 ± 0.6328 0 ± 0 <0.0001

GCS 11.3 ± 0.8303 15 ± 0 0.0067

WBC(×109) 13.57 ± 2.004 6.364 ± 0.5525 0.0262

NEU(×109) 11.82 ± 1.812 3,819 ± 0.4262 0.0073

TBIL 51 ± 21.47 14.3 ± 1.433 0.2729

Urea 9.654 ± 1.342 5.304 ± 0.4908 0.0446

Cre 123.9 ± 32.78 67.67 ± 3.844 0.2718
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Fig. 2  Screening of differentially expressed RNAs. (A-C) PCA analysis in mRNA (A), miRNA (B) and lncRNA (C). Red for normal control and blue for sepsis. 
(D-F) Volcano Plots of DEmRNA (D), DEmiRNA (E) and DElncRNA (F). Red for up-regulated genes, blue for down-regulated genes, and black for genes with 
no differential expression. The X-axis represents fold change (FC) and the Y-axis represents false discovery rate (FDR)
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and directed network graph were accordingly plot-
ted (Fig.  7D-E) (Table  3). LncRNAs (LOC105376878, 
LOC727751, LOC105370660, LINC00987, 
LOC102724851, LOC105369816, LOC105378218, 
LOC105379185, LOC105375724, LOC105376032, 
LOC102725121, LOC112268261, LINC00944, 
LINC01801, LOC107984898, LOC107985448, 
LOC105377499, LOC105376544, LINC02207, 
LOC102723739, LOC105376505, LOC105375634, 
LOC107986087) and miRNAs (hsa-miR-330-5p, 
hsa-miR-3909, hsa-miR-4772-3p, hsa-miR-618, hsa-
miR-199b-5p, hsa-miR-29c-5p, hsa-miR-18b-5p, hsa-
miR-20a-5p, hsa-miR-454-3p, hsa-miR-548k) were found 
to be potentially involved in regulation of prognosis in 
sepsis.

Discussion
Despite a well understanding of the pathogenesis, mor-
tality of sepsis remains high after treatment both domes-
tically and abroad [37]. Therefore, early diagnosis and 
treatment appear to be vital important [38]. Robust 
diagnostic biomarkers can promote the realization of 
early diagnosis. In the present study, a total of 1,044 
mRNAs were screened out with differential expression 
in sepsis versus normal samples, and enrichment analy-
sis revealed that the DEmRNAs were mainly enriched 
in biological processes associated with inflammatory 
response, immune regulation and neutrophil activa-
tion In the meantime, 66 DEmiRNAs and 155 lncRNAs 
were obtained. A ceRNA regulatory network was accord-
ingly constructed based on 23 lncRNAs, 10 miRNAs and 
4 mRNAs highly correlated, and could be a potential 

Fig. 3  GO annotation and GSEA functional clustering. (A) GO annotations for DEmRNAs from Biological Process (BP), Cellular Component (CC) and Mo-
lecular Function (MF). The colors from blue to red correspond to the q value from highest (blue) to lowest (red). The size of circles represents the number 
of genes enriched in the term. (B-C) GSEA functional clustering analysis. Upper part: Normalized enrichment score (NES), which indicates the enrichment 
of genes in a given gene set toward the up-regulated (positive NES, peak on the left) or down-regulated (negative NES, peak on the right) end of a pre-
defined gene set correlated with phenotypes in sepsis; Middle part: Each gene of the gene set is represented by a vertical line and the lines (genes) before 
the peak belong to the leading edge subset and contribute to the most to the phenotype; Lower part: Gene list rank after normalization
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biomarker to guide clinical diagnosis and prognosis of 
sepsis.

LncRNA is a class of ncRNA molecules composed 
of more than 200 nucleic acids. They can regulate gene 
expression but are incapable of coding proteins. miRNA 
is a short, single-stranded ncRNA at a length of 18–23 
nucleic acids. miRNA could regulate gene expression 
via specifically binding to the 3’UTR of the downstream 
target mRNA. Additionally, it is involved in tumorigen-
esis and development by serving either an oncogene or a 
tumor suppressor gene. LncRNA can serve as a ceRNA to 
competitively bind to miRNA with downstream mRNA 
to promote mRNA expression and activity recovery. 

There are regulatory associations among lncRNA, 
miRNA and mRNA, which are involved in a variety of 
biological processes, such as cell proliferation, apopto-
sis, invasion and cell cycle. Dysregulation of ceRNA net-
work may lead to incidence of multiple diseases, such as 
ovarian cancer [39], colorectal cancer [40], glioblastoma 
[41] and liver fibrosis [42]. Recent research found that 
miRNA could regulate the TLR4/NFκB pathway, a path-
way responsible for the expression of pro-inflammatory 
cytokines in sepsis [43]. This infers that ceRNA may play 
a role in occurrence and development of sepsis.

Cluster of differentiation 247 (CD247) is an adap-
tor important in signal transduction mediated by T cell 

Fig. 4  WGCNA. (A) Soft threshold value = 12. (B) Modules based on the co-expression topological overlap of mRNA in different colors (Module size > 50). 
The Blue and Green modules were found to be highly correlated with clinical traits in sepsis. (C-D) The top 40 genes in the Blue (C) and Green (D) modules
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Fig. 5  Meta-analysis. (A-D) Meta-analysis for expression of CD247, IL-1R2, IL-2Rβ and TGF-βR3 in the sepsis group versus the normal group in GSE28750, 
GSE54514, GSE69528, GSE95233 and GSE67652 datasets. IL-1R2 was up-regulated, while IL-2Rβ and TGF-βR3 were down-regulated in sepsis; CD247 mar-
ginally varied between the two groups. (E-H) Meta-analysis for expression of CD247, IL-1R2, IL-2Rβ and TGF-βR3 in the sepsis group versus the SIRS group 
in GSE28750, GSE6535, GSE63042, GSE74224 and GSE12624 datasets. CD247, IL-2Rβ and TGF-βR3 were down-regulated in sepsis versus SIRS and IL-1R2 
marginally varied between the two groups. A random-effects model was used when the heterogeneity P value was < 0.05, otherwise, a fixed-effects 
model was used
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Fig. 6  Survival analysis and RT-qPCR. (A-D) Survival analysis of CD247 (A), IL-1R2 (B), IL-2Rβ (C) and TGF-βR3 (D) for 28-day survival in patients with sepsis. 
CD247, IL-2Rβ and TGF-βR3 were positively correlated with survival while IL-1R2 was negatively correlated (p < 0.05). (E) RT-qPCR performed to measure 
the expression of the four core genes in a cellular model of sepsis. Blue for control and red for sepsis. *, p < 0.05; **, p < 0.01; ***, p < 0.001
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antigen-receptor complex and it plays a vital part in lym-
phocyte signaling. The non-coding sequence polymor-
phism of CD247 is under strict regulation and correlated 
with multiple immune responses and autoimmune dis-
eases [44, 45]. Research reported that in cases of systemic 
lupus erythematosus (SLE), more than a half had attenu-
ation or deficiency of CD247 expression [46]. Here, we 
found that patients highly expressing CD247 had a higher 
survival rate at 28 days. The augmentation of CD247 
expression might be attributed to the binding of lncRNA 
with downstream hsa-miR-330-5p, hsa-miR-3909, hsa-
miR-4772-3p, which concurrently advanced TCR sig-
naling cascade reactions and assembly of T cell surface 
TCR/CD3 complex [47], resulting in enhanced resis-
tance to pathogen invasion and subsequently improving 
the survival in patients. Our in vitro cellular experiment 
revealed lower expression of CD247 in sepsis versus 
the heathy control, which was statistically significant 
(p = 0.012), consistent with the RNA-seq result. This fur-
ther demonstrates that the poor expression or deficiency 
of CD247 might lead to incidence and development of 
sepsis.

Interleukin-1 receptor family (IL-1R) plays a core part 
in immune and inflammatory responses and the mem-
bers are distributed in the majority of cells of the con-
genital and adaptive immunities. IL-1 family members 
are emerging as key participants in regulating the dif-
ferentiation and function of congenital and adaptive 
lymphoid cells. IL-1R2 is a member of the IL-1R fam-
ily that acts as a negative regulator of the IL-1 system to 
inhibit the maturation of IL-1, isolate its activated form 
or impede the assembly of signal complex [48, 49]. In the 
current study, RT-qPCR was performed to show differen-
tial high expression of IL-1R2 in sepsis, which was sta-
tistically different with that in healthy people (p = 0.001), 
consistent with the RNA-seq analysis. Combining the 
survival and meta-analysis, we speculated that IL-1R2 
expression increased in sepsis due to the binding of up-
stream lncRNA with hsa-miR-18b-5p, hsa-miR-20a-5p, 

hsa-miR-454-3p and hsa-miR-548k, which negatively 
regulated IL-1 level leading to decline of the body’s anti-
inflammatory capability and subsequent sepsis develop-
ment and patient death.

IL-2 is a cytokine that plays a core part in infection by 
delivering immune signals through IL-2/IL-2R complex 
[50, 51]. IL-2 receptor (IL-2R) consists of three subunits: 
IL-2Rα, IL-2Rβ and IL-2Rγ. IL-2Rβ gene deficiency may 
lead to life-threatening immune dysregulation [52]. In 
the current study, RT-qPCR was conducted and we found 
that expression of IL-2Rβ remarkably decreased in sep-
sis as compared to that in normal people (p = 0.015), 
consistent with the RNA-seq analysis. We reasoned that 
upstream LOC105376878, LOC105370660, LINC00987, 
LOC102724851 competitively bound with the down-
stream miRNA to promote IL-2Rβ expression and the 
recovery of activity, which further regulated immune 
response and facilitated patient survival.

Transforming growth factor–β (TGF-β) is essential 
for organisms to maintain homeostasis and develop 
normally. TGF-β responsiveness and dysregulation of 
downstream signaling pathways might be risk factors for 
multiple diseases, and they may play a role in tumori-
genesis, development and metastasis. TGF-β can bind 
to three isotype receptors of TGF-βR (TGF-βR1/2/3) 
with different affinities. TGF-βR3 generally shows a 
high expression in some tumors [53], such as endome-
trial cancer [54], pancreatic carcinoma [55] and cervi-
cal cancer [56]. Current studies on TGF-βR3 in sepsis 
are limited. We speculated the involvement of lncRNAs 
(LOC105376878, LINC00944, LOC727751) and miR-
NAs (hsa-miR-330-5p, hsa-miR-199b-5p, hsa-miR-3909) 
in the TGF-βR3 associated ceRNA regulatory network, 
which could augment the TGF-βR3 expression and in 
turn prolong the survival in patients of sepsis. Here, 
expression of TGF-βR3 profoundly decreased in a cellu-
lar model of sepsis when comparing to the normal con-
trol (p = 0.007), consistent with the RNA-seq analysis. 
High TGF-βR3 expression, therefore, might be conducive 
to prolonging the survival in patients with sepsis.

To conclude, the lncRNAs, miRNAs and mRNAs we 
identified here may not act in sepsis by a single mecha-
nism, instead, by the ceRNA regulatory mechanism 
of interactions between RNAs or by the interactions 
between gene-coding proteins. Combining the RNA-seq 
and bioinformatics analysis, here we proposed a ceRNA 
regulatory network composed of 23 lncRNAs, 10 miR-
NAs and 4 mRNAs, which participates in the occurrence, 
development and prognosis of sepsis. The network could 
be a potential biomarker to guide further studies on clini-
cal diagnosis and prognosis of sepsis. The current study 
still has some limitations. First, the sample size is small, 
requiring large-scale studies to validate the conclusion 
of the study. Second, the ceRNA regulatory network 

Table 2  Details of GSE datasets for Meta-analysis and Survival 
analysis
GSE datasets Organism Platform Num-

ber of 
samples

GSE28750 Blood of Homo sapiens GPL570 41

GSE54514 Blood of Homo sapiens GPL6947 163

GSE69528 Blood of Homo sapiens GPL10558 138

GSE95233 Blood of Homo sapiens GPL570 124

GSE67652 Blood of Homo sapiens GPL16699 24

GSE6535 Blood of Homo sapiens GPL4274 72

GSE63042 Blood of Homo sapiens GPL9115 129

GSE74224 Blood of Homo sapiens GPL5175 105

GSE12624 Blood of Homo sapiens GPL4204 70

GSE65682 Blood of Homo sapiens GPL13667 802
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Fig. 7  Heatmap and ceRNA regulatory network. (A-C) Heatmaps for 4 mRNAs (A), 10 miRNAs (B) and 23 lncRNAs (C). Red for up-regulated genes and 
green for down-regulated genes. (D-E) Sankey diagram (D) and directed network graph (E) established by the 4 mRNAs, 10 miRNAs and 23 lncRNAs (Con-
cave quadrilateral for lncRNA, triangle for miRNA and circle for mRNA).
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constructed here was only based on bioinformatics anal-
ysis without experimental validation. Prior to clinical 
application, experiments should be devised to identify 
the relationship between the RNAs. Third, the potential 
mechanism of action of the four core genes for progno-
sis in sepsis needs to be explored in further functional 
studies.
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