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LncRNA weighted gene co‑expression 
network analysis reveals novel biomarkers 
related to prostate cancer metastasis
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Abstract 

Background:  Most prostate cancer patients die from metastasis and lack accurate efficacious biomarkers to moni‑
tor the disease behavior, optimize treatment and assess prognosis. Herein, we aimed to identify meaningful lncRNA 
biomarkers associated with prostate cancer metastatic progression.

Methods:  By repurposing microarray probes, 11,624 lncRNAs in prostate cancer were obtained from Gene Expression 
Omnibus  database (GSE46691, N = 545; GSE29079, N = 235; GSE94767, N = 130). Weighted gene co-expression net‑
work analysis was applied to determine the co-expression lncRNA network pertinent to metastasis. Hub lncRNAs were 
screened. RNA-seq and clinical data from the Cancer Genome Atlas prostate cancer (TCGA-PRAD) cohort (N = 531) 
were analyzed. Transwell assay and bioinformatic analysis were performed for mechanism research.

Results:  The high expression levels of nine hub lncRNAs (FTX, AC005261.1, NORAD, LINC01578, AC004542.2, ZFAS1, 
EBLN3P, THUMPD3-AS1, GAS5) were significantly associated with Gleason score and increased probability of meta‑
static progression. Among these lncRNAs, ZFAS1 had the consistent trends of expression in all of the analysis from 
different cohorts, and the Kaplan-Meier survival analyses showed higher expression of ZFAS1 was associated with 
shorter relapse free survival. In-vitro studies confirmed that downregulation of ZFAS1 decreased prostate cancer cell 
migration.

Conclusion:  We offered some new insights into discovering lncRNA markers correlated with metastatic progression 
of prostate cancer using the WGCNA. Some may serve as potential prognostic biomarkers and therapeutic targets for 
advanced metastatic prostate cancer.
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Introduction
According to the Encyclopedia of DNA Elements 
(ENCODE) project, less than 2% of the human genome 
is translated into proteins. More than 80% is transcribed 
into a versatile group of RNA. Those RNA transcripts 

without protein-coding capability, known as non-cod-
ing RNA (ncRNA), can be divided into “housekeeping 
ncRNA” such as mRNA and “regulatory ncRNA” such as 
small ncRNAs or long ncRNAs (lncRNAs) [1]. However, 
the functional roles of lncRNAs (> 200 nucleotides) are 
still not nearly as well-known as small ncRNAs, particu-
larly miRNA. It gradually becomes clear that lncRNAs 
play important roles in transcription, translation, splic-
ing, nuclear/cytoplasmic trafficking and interact with 
major pathways controlling proliferation, differentiation, 
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or survival [2]. Accumulating evidence in hematologi-
cal and solid malignancies have shown that lncRNAs 
can regulate tumor initiation, progression, or metastasis 
due to alterations of gene expressions [3]. In addition, for 
their tissue and tumor specificity, lncRNAs can be used 
as promising candidates for biomarkers and therapeutic 
targets.

Some lncRNAs have been applied successfully in 
clinical practice. Prostate cancer antigen 3 (PCA3), the 
highly prostate-specific lncRNA overexpressed in more 
than 95% of primary prostate tumors, was developed 
as a urine test for the supplementary diagnosis of pros-
tate cancer (PCa) [4]. Furthermore, the Progensa PCA3 
test was successfully approved by the US Food and Drug 
Administration (FDA) in 2012 [5]. The lncRNA Sec-
ond Chromosome Locus Associated with Prostate 1 
(SChLAP1) has also been identified as a molecular driver 
and predictive biomarker of aggressive PCa in multiple 
clinical studies [6]. PCa is the foremost non-cutaneous 
malignancy in men worldwide, with increasing morbid-
ity and mortality. The leading cause of prostate cancer 
death is metastasis. The five-year survival rate for meta-
static prostate cancer (mPCa) dramatically decrease to 
only 31% while for localized PCa is almost 100%1. Worse, 
some of them exhibit rapid resistance to standard andro-
gen deprivation therapy (ADT) combined with/without 
microtubule-targeted taxane chemotherapy and lead 
to fatal disease. It is important to study clonal diversity 
and cancer heterogeneity alongside the development and 
impact of the tumour microenvironment (TME), which 
includes the extracellular matrix (ECM),blood vessels, 
immune cells and fibroblasts2. However, the present 
clinical predictors (such as serum prostate-specific anti-
gen, biopsy Gleason score) of biological outcomes for 
PCa still remain imprecise and imperfect [7]. Meanwhile, 
molecular biomarkers, especially non-coding genes, set 
a new phenotypic frontier in prostate cancer metastasis 
and resistance3. Therefore, we aimed to find the clinically 
relevant lncRNA network and hub lncRNAs tightly asso-
ciated with PCa metastasis by applying systems biology.

The functions of lncRNAs are greatly influenced by 
their transcript abundance due to not encoding proteins. 
However, the overall expression abundance of lncRNA is 
lower than mRNA, which leads to higher requirements 
for the amount of sequencing data for the detection of 
lncRNA. In comparison, chips have higher reliability in 
detecting low-abundance RNA, particularly in lncRNA 
with overlapping regions of mRNA. Chip-based probes 
are shorter and can be designed according to specific 
sequences, which are more suitable for high-throughput 
lncRNA detection than RNA sequencing. Therefore, 
we developed a computational pipeline to re-annotate 
probes that are uniquely mapped to lncRNA.

Moreover, the Affymetrix Human Exon 1.0 ST Array 
platform was used to query the expression of lncRNA 
in PCa samples. This platform retains the most anno-
tated lncRNA data currently [8]. Based on the expres-
sion data, weighted gene co-expression network analysis 
(WGCNA), which allows a systems-level investigation of 
correlations between genotype and phenotype, was cho-
sen to examine how lncRNAs jointly affect prostate can-
cer metastasis. WGCNA approach can identify the highly 
correlated genes that share quite similar expression pro-
files on different samples and construct a “co-expression 
network” using these genes. WGCNA can cluster highly 
correlated genes into a module, a subregion of the net-
work, and might be linked to specific functions for the 
members involved in well-defined pathways. The central 
genes in a module are defined as “hub genes” that are 
regarded as the most suitable candidates to imply some 
physiological or pathological processes [9, 10]. Compar-
ing co-expression lncRNAs networks according to the 
metastatic and non-metastatic associated expression data 
can recognize the distinguished modules and the most 
relevant hub lncRNAs. Thus, some potential diagnostic 
or prognostic lncRNAs that are highly associated with 
PCa metastasis could be found.

Materials and methods
Data recruitment and preprocessing
PCa related gene expression data were searched in the 
Gene Expression Omnibus (GEO, http://​www.​ncbi.​
nlm.​nih.​gov/​geo/) of National Center of Biotechnology 
Information (NCBI), and were downloaded according to 
the accession numbers GSE46691(N = 545), GSE29079 
(N = 235), GSE94767 (N = 130). The microarray platform 
used in these above datasets was Affymetrix Human 
Exon 1.0 ST array (HuEx-1_0-st). GSE46691 consist-
ing of 545 PCa patients, 212 (39%) developed metastatic 
progression after long-term follow-up (mean 13.4 years), 
was used to construct the co-expression gene module 
and discover hub lncRNAs. GSE29079 and GSE94767 
consisting of the tumor stage information, were exploited 
as independent validation datasets. These datasets were 
all labeled with their corresponding accession numbers. 
For the TCGA prostate adenocarcinoma (PRAD) cohort 
(N = 531), the gene expression profiles of the prostate 
cancer tumor and adjacent normal tissue and the most 
recent clinicopathological information of these patients 
were extracted from Genomic Data Commons Data Por-
tal (https://​portal.​gdc.​cancer.​gov).

Re‑purposing data to interrogate lncRNA expression
We collected lncRNA annotations from the Ensembl 
database (Homo sapiens GRCh38, release 96) [11] and 
re-annotated probe sets of the Human Exon 1.0 ST array 
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(GPL5188 or GPL5175) for lncRNAs through mapping 
all probes to the human genome with SeqMap [12], just 
as the computational pipeline developed by Liu et al. [8]. 
Only the probes with no mismatch and mapped uniquely 
to the genome were kept. Based on the Ensembl data-
base annotations (http://​www.​ensem​bl.​org/), probes 
mapped to pseudogene transcripts or protein-coding 
transcripts were all removed. At last, we obtained 11,624 
corresponding lncRNA genes with no less than 4 probes. 
The raw intensity of the array probes was preprocessed 
identically using the R package oligo for normalization 
and background correction. The lncRNA expression level 
was measured as the average value of the background-
corrected intensity with all probes corresponding to this 
lncRNA.

WGCNA for lncRNA and hub lncRNAs definition
Four co-expression networks were constructed using 
the WGCNA package in R. LncRNA expression profiles 
of the GSE46691 dataset were used to conduct the co-
expression networks of the selected lncRNAs. An unsu-
pervised co-expression relationship was initially built on 
the adjacency matrix of connection strengths using Pear-
son’s correlation coefficients for all pair-wise lncRNAs. 
The parameter of the matrix emphasized the strong con-
nections between lncRNAs, whereas it penalized weaker 
connections (β = 6). Then, the adjacency matrix has been 
transformed into a topological overlap matrix (TOM), 
which represented the connectivity of each lncRNA in 
the module. Hierarchical cluster analysis dendrogram 
was also performed to identify co-expression clusters 
with the gene profiler with a minimum gene number of 
30.

The module eigengenes (MEs) were calculated fol-
lowing principal components analysis, representing 
the mean expression level of a module. The association 
between tumor metastasis (metastasis = 1; non-metas-
tasis = 0) and MEs were tested with a logistic regression 
model. For single-lncRNA association analysis, each 
lncRNA expression was dichotomized around its median 
expression, and then logistic regression analysis was per-
formed. Meanwhile, we test the association between the 
expression of each lncRNA and metastasis. Gene signifi-
cance (GS) of each lncRNA, which represented the bio-
logical significance of the lncRNA for metastasis, was 
calculated as minus log 10 of the p values [13]. In our 
study, hub genes were selected by the following norm, top 
10 genes with the largest k.in the module and GS larger 
than 1.3 (the p-value of the association test < 0.05). The 
significance of differences between groups was assessed 
by Student’s t-test or one-way ANOVA. P values of statis-
tical significance are represented as ∗p < 0 05, ∗∗p < 0 01.

Survival analyses
To appraise the prognostic values of the hub lncRNAs, 
we explored the relationship between hub lncRNAs and 
survival by using the ‘survival’ R package on the TCGA 
PRAD dataset. Biochemical recurrence-free survival 
(RFS) was used as the survival endpoints respectively. 
Patients were divided into the metastatic group and 
the non-metastatic group according to the TNM stages 
defined by the AJCC 8th edition system. Each lncRNA 
was dichotomized into high and low expression sub-
groups around its median value in each group. RFS was 
determined and compared using the Kaplan–Meier and 
the log-rank (Mantel-Cox) test.

Cell lines and cell culture
The human prostate cancer cell lines PC-3 and LNCaP 
were purchased from the Cell Resource Center of Shang-
hai Institutes for Biological Sciences, Chinese Academy 
of Sciences (Shanghai, PR China). The cells were cul-
tured according to the instructions from American Type 
Culture Collection (ATCC). PC-3 and LNCaP cells were 
cultured in F-12  K medium (Biological Industries) and 
RPMI-1640 medium (Biological Industries), respectively, 
supplemented with 10% (v/v) fetal bovine serum (Biologi-
cal Industries), 100 units/mL penicillin, and 100  mg/L 
streptomycin (Invitrogen).

Plasmid and RNA interference
The siRNA targeting ZFAS1 (si-ZFAS1) was obtained 
from Ribobio (Guangzhou, PR China), while as con-
trol, the mammalian non-targeting siRNA (si-NC) was 
used. Appropriate siRNA oligos for ZFAS1 were trans-
fected into PC-3 or LNCaP cells by using Lipofectamine 
RNAiMAX (Invitrogen) according to the manufacturer’s 
protocol. Cells were harvested and examined for PCR 
analysis to ensure the efficiency of siRNA treatment 
after 24  h transfection or harvested for transwell assay 
after 48  h transfection. Detailed information about the 
sequences of siRNA could be found in Additional file 1: 
Table S1.

RNA extraction and real‑time PCR analysis
Real-time quantitive RT-PCR was carried out to con-
firm the inhibition of lncRNA expression. Briefly, total 
RNA was isolated with the TRIzol reagent (Invitrogen) 
and reverse transcribed using PrimeScript RT reagent 
Kit with gDNA Eraser (TaKaRa) according to the manu-
facturer’s instructions. Then the PCR reaction was con-
ducted at 95 °C for 2 min followed by 40 cycles at 95 °C 
for 15  s and 61  °C for 20  s using the SYBR® Premix Ex 
TaqTM II real-time PCR system (TaKaRa). All gene 
expression levels in different treatments were represented 
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relative to their relevant control (Ct) and normalized 
to GAPDH gene levels (ΔΔCt). All assays were repeated 
at least three times. The final data were presented as 
mean ± SEM, and p < 0.05 was considered a statistical 
difference. The sequences of primers were listed in Addi-
tional file 1:  Table S2.

Transwell assay
For transwell assay, 2 × 104 cells of each group were re-
suspended in 200ml serum-free medium and planted 
in the upper chamber (8.0  mm pore, BD, USA), and 
600ml of appropriate medium with 10% FBS was added 
to the lower chamber. After incubating for 24 h at 37 ℃, 
the medium in the upper chamber was removed. The 
attached cells in the lower section were fixed with 4% ice-
cold polymethanol for 15  min before stained with 0.1% 
crystal violet for 30  min. The cells that migrated to the 
reverse side of the upper chambers were photographed. 
The migration rate was calculated by counting the migra-
tion cells in five random fields. All assays were repeated 
at least three times. The final data were presented as 
mean ± SEM, and p < 0.05 was considered a statistical 
difference.

LncRNA–miRNA–mRNA network prediction
For predicting potential lncRNA–target regulations, 
we used LncTarD (http://​bio-​bigda​ta.​hrbmu.​edu.​cn/​
LncTa​rD/), a manually curated database that offered a 
comprehensive resource of experimentally supported 
lncRNA-target regulations and integrated pan-cancer 
transcriptome data from TCGA[14]. The experimen-
tal module from DIANA-LncBase v2 (www.​micro​rna.​
gr/​LncBa​se), which provided a broad compendium of 
experimentally supported microRNA-lncRNA interac-
tions from high-throughput and low yield methodolo-
gies extracted from published literature and analyzed raw 
sequencing data[15], was used to predict lncRNA-micro-
RNA interactions (validation type was Direct). MiRcode 
(http://​www.​mirco​de.​org)[16], which provides putative 
miRNA target sites based on the complete GENCODE 
gene annotation, and ctcRbase (http://​www.​origin-​gene.​
cn/​datab​ase/​ctcRb​ase/), a database collected expres-
sion data of circulating tumor cells/microemboli (CTCs/
CTM) in all kinds of cancer types derived from RNA-seq 
data analyses [17], were used to predict miRNA–mRNA 
target relationships. Cytoscape_3.7.2 software was used 
to visualize networks.

Results
LncRNA modules association with PCa metastasis
Totally, 4 lncRNA modules were identified, labeled with 
blue, green, turquoise, or yellow (Fig.  1  A, B), which 
indicated a high degree of independence among the 4 

modules and relative independence of lncRNAs expres-
sion in each module. Similar results were shown by the 
heatmap plotted according to the correlation between 
the 4 modules (Fig. 1 C). The yellow module (OR = 1.44, 
95% CI = 1.02–2.04, p = 3.83 × 10− 2) was significantly 
associated with PCa metastasis (Table 1). The MEs in the 
yellow module was calculated and revealed a positively 
correlation with tumor metastasis status (p = 0.0039) as 
well as the Gleason score(p = 1.9 × 10− 4) (Fig. 1D, E).

Hub lncRNAs definition and correlation with metastasis
9 lncRNAs (FTX, AC005261.1, NORAD, LINC01578, 
AC004542.2, ZFAS1, EBLN3P, THUMPD3-AS1, GAS5) 
in the yellow module met the criteria (Table  2). The 
Results indicated that the expression of all the 9 hub 
lncRNAs was up-regulated in metastatic tumor group 
relative to non-metastatic tumor group (Fig. 2).

Altered expression of hub lncRNAs throughout prostate 
tumor progression
According to GSE29079 dataset, the samples were divided 
into the neoplasm and benign groups, T-test analysis 
showed that 5 lncRNAs (AC005261.1 p = 2.16 × 10− 13, 
AC004542.2 p = 6.40 × 10− 17, ZFAS1 p = 1.06 × 10− 6, 
EBLN3P p = 8.09 × 10− 8, GAS5 p = 0.014) had been 
up-regulated in the tumor samples, while other 4 lncR-
NAs were not significant (Fig. 3). Furthermore, the one-
way ANOVA analysis showed seven lncRNAs increased 
with tumor progression (NORAD p = 0.025, LINC01578 
p = 0.023, AC004542.2 p = 0.025, ZFAS1 p = 1.17 × 10− 8, 
EBLN3P p = 0.002, THUMPD3-AS1 p = 0.044, GAS5 
p = 2.26 × 10− 7), which implied the expression levels 
of these lncRNAs had a highly consistent variation ten-
dency with the grades of PCa (Fig.  4). Taken together, 
the lncRNAs in common (EBLN3P, AC004542.2, ZFAS1, 
and GAS5) seemed the most potentially predictive or 
prognostic genes for PCa that were closely related to the 
tumor progression.

Hub lncRNAs validation using TCGA data
The results showed that AC005261.1, LINC01578, 
ZFAS1, EBLN3P, THUMPD3-AS1 and GAS5 were highly 
expressed in tumor than adjacent normal samples (Addi-
tional file  2:   Fig. S1). Differential expressions of FTX 
and NORAD were not significant. However, when the 
patients were stratified into metastatic and non-meta-
static groups according to TNM classification (N > 0 or 
M > 0), the expressions of FTX, AC005261.1, NORAD, 
ZFAS1, EBLN3P and THUMPD3-AS1 were significantly 
higher in metastatic group (Fig. 5 A). Interestingly, when 
the patients were classified into two categories deter-
mined by tumor extra-prostatic extension or Gleason 
score > 8, Stage I-IIIA and Stage IIIB-IV, only LINC01578 
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and GAS5 were not significant higher expressions in 
high-grade tumors (Additional file 3:  Fig. 2 A).

The curves revealed that higher expression of almost 
each hub lncRNA in non-metastatic group was con-
nected to shorter RFS. Conversely, lower expression 
of almost each of them in metastatic group was closely 

correlated with worse survival (Fig.  5B). But unexpect-
edly, the expressions of these hub lncRNAs except FTX 
seem unable to predict the RFS in advanced patients 
when the patients were classified into Stage I-IIIA and 
Stage IIIB-IV group (Additional file  3:   Fig.  2B). These 
results implied the 8 hub lncRNAs might be involved 
in the pathogenesis of tumor metastasis, while their 
functions were likely to change once the tumor had 
metastasized.

Downregulation of ZFAS1 inhibited the migration 
of prostate cancer cells
In view of above findings, the expression of ZFAS1 
was consistent in all different independent cohorts. To 
further verify the its effect on prostate cancer metas-
tasis, the mobility of cells was measured by the tran-
swell experiment. Downregulation of ZFAS1 showed a 

Fig. 1  WGCNA of lncRNAs for PRAD. A Topological overlap matrix plot showing the lncRNA co-expression network (yellow part) and the modules 
based on co-expression network (left and up). On a linear scale, the depth of the yellow color and the intensity of the relevance between the pairs 
of modules have a positive correlation. Each column and row represent a lncRNA. B Clustering dendrograms of lncRNAs based on the topological 
overlap and the assigned module colors. Four co-expression modules were constructed with different colors, and the height reflects the affinity of 
individual lncRNAs. C Heatmap plot for the adjacencies in the eigengene network. Red represents positive correlation, and blue represents negative 
correlation. D ME of Module yellow-metastasis relationships. E ME of Module yellow- disease progression relationships

Table 1  Association between modules and metastasis in 
GSE46691

Module Gene count OR (95% CI) p-value

blue 2868 1.20 (0.848–1.69) 0.31

green 483 0.994 (0.704–1.403) 0.97

turquoise 5939 0.78 (0.55–1.095) 0.15

yellow 541 1.44 (1.02–2.04) 0.038
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Table 2  Association relationship between hub genes with metastasis in the training datasets

Ensemble id Gene Symbol Position k.in rank OR (95% CI) P value

ENSG00000230590 FTX chrX:73,940,435–74,293,574 1 1.99 (1.30–3.09) 1.82 × 10− 3

ENSG00000268205 AC005261.1 chr19:57304305–57,308,562 2 1.57 (1.22–2.03) 4.45 × 10− 4

ENSG00000260032 NORAD chr20:36045618–36,051,018 3 2.05 (1.45–2.94) 6.82 × 10− 5

ENSG00000272888 LINC01578 chr15:92882707–92,899,701 4 1.43 (1.05–1.96) 2.42 × 10− 2

ENSG00000269987 AC004542.2 Chr22: 30,976,515–30,978,848 5 1.33 (1.10–1.62) 3.25 × 10− 3

ENSG00000177410 ZFAS1 chr20:49278178–49,295,738 6 1.32 (1.03–1.70) 2.90 × 10− 2

ENSG00000281649 EBLN3P chr9:37079857–37,090,507 7 2.07 (1.45–3.00) 8.75 × 10− 5

ENSG00000206573 THUMPD3-AS1 chr3:9349689–9,398,579 8 2.11 (1.31–3.44) 2.22 × 10− 3

ENSG00000234741 GAS5 chr1: 173,858,559–173,868,882 9 1.57 (1.09–2.27) 1.61 × 10− 2

Fig. 2  Differentially expressed hub lncRNAs in metastasis and non- metastasis tissues. Left: Log10 expression data in 212 metastasis PCa samples. 
Right: Log10 expression data in 333 non-metastasis PCa samples
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decreased migratory capacity of prostate cancer cells 
(Fig.  6). Compared with negative control cells, there 
was a significant 55%, or 54% decrease in LNCaP cells 
or PC-3 cells transfected with si-ZFAS1, respectively. 
The changes in migratory cellular behavior impled that 
downregulation of ZFAS1 in prostate cancer might 
cause a less aggressive phenotype consistent with the 
clinical data analysis.

lncRNA–miRNA–mRNA ceRNA predicted regulatory 
networks
Based on the LncTarD records, we obtained the target 
networks of 4 hub lncRNAs (GAS, ZFAS1, NORAD, 
and FTX) (Fig. 7 A). It was noted that ZEB2 appeared 
to be not only co-regulated by NORAD and ZFAS1 
but also involved in cell migration. The expression cor-
relations of ZFAS1-ZEB2 and NORAD-ZEB2 across 

Fig. 3  Differentially expressed hub lncRNAs in different tumor grades of PCa cohort (GSE29079). Expression levels of FTX, AC005261.1, NORAD, 
LINC01578, AC004542.2, ZFAS1, EBLN3P, THUMPD3-AS1, and GAS5 in benign and tumor tissues
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33 TCGA cancer types were checked (Fig.  7B). Inter-
estingly, ZFAS1 was negatively correlated with ZEB2, 
while NORAD was positively correlated with ZEB2 in 
PRAD cancer type. For mechanism research, the rel-
evant lncRNA–miRNA–mRNA networks were con-
structed depending on the data from DIANA-LncBase, 
miRcode, and ctcRbase (Fig. 7 C). Among the potential 
miRNA targets, ZFAS1, NORAD, and ZEB2 (has-miR-
144-3p, has-miR-101-3p, has-miR-26a-5p, has-miR-
26b-5p) might be worthy of further verification.

Discussion
LncRNAs have emerged as new important regulators 
in the pathogenesis of human urologic cancers over the 
last decade. Herein, we undertook an unbiased study to 
identify lncRNA biomarkers associated with prostate 
cancer metastatic progression. Microarray/RNA-seq 
and clinical data of prostate cancer were obtained from 
the GEO and TCGA-PRAD cohort. The WGCNA was 
used to identify lncRNA networks in GSE46691. One 
lncRNA module was confirmed to be associated with 

Fig. 4  Differentially expressed hub lncRNAs in different tumor grades of PCa cohort (GSE94767). Expression levels of FTX, AC005261.1, NORAD, 
LINC01578, AC004542.2, ZFAS1, EBLN3P, THUMPD3-AS1, and GAS5 in normal, stroma, low tumor and tumor tissues
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cancer metastasis, and nine hub lncRNAs, namely FTX, 
AC005261.1, NORAD, LINC01578, AC004542.2, ZFAS1, 
EBLN3P, THUMPD3-AS1, and GAS5, were discovered. 
These nine lncRNAs’ expressions were all up-regulated 
in metastasis samples and significantly associated with 
the Gleason score. Among them, ZFAS1was not only 
high expressed in tumor groups compared with adjacent 
normal/benign groups, but significantly increased with 
deterioration by verifying in all the cohorts. More poten-
tially, survival analysis suggested that early PCa patients 
with high expression of ZFAS1 might have a worse prog-
nosis. Taken together, ZFAS1 appeared to be involved in 
the development of tumor metastasis. The in vitro analy-
sis further confirmed that down-regulation of ZFAS1 
expression decreased prostate cancer cell migration. In 
addition, the hub lncRNA-target networks were con-
structed, which implied that ZFAS1 and NORAD might 
participate in the process of cell migration through their 
common target ZEB2.

Metastatic PCa remains a fatal condition when cancer 
cells spread to the pelvic, bladder, rectum, bone, retrop-
eritoneal lymph nodes, spinal cord, and other body areas, 

despite localized PCa has a high long-term survival [18]. 
Metastatic PCa may fall into two broad classifications, 
disease treated with no androgen deprivation and disease 
resistant to such therapy. The standard of care for meta-
static patients remains androgen-deprivation therapy, 
which uses gonadotropin-releasing hormone (GnRH) 
analogs as an alternative to surgical castration [19]. The 
diagnosis of the metastatic disease depends on imaging, 
including radionuclide bone scanning, computed tomog-
raphy (CT), positron emission tomography (PET) with 
choline or prostate-specific membrane antigen (PSMA), 
whole-body magnetic resonance imaging (MRI). How-
ever, the pathological confirmation from imaging studies 
is incomplete and not sufficiently sensitive [20]. Second, 
While androgen deprivation therapy (ADT) combined 
with microtubule-targeted taxane chemotherapy can pro-
vide a survival benefit in recurrent or metastatic disease, 
treatment resistance invariably develops, leading to fatal 
disease. Acquired drug resistance is the result of genetic/
epigenetic changes that confer a drug-resistant pheno-
type in cancer cells4. LncRNA mediated mechanisms 
have been associated with epigenetic changes in prostate 

Fig. 5  Hub lncRNAs validation in TCGA data. AThe expression levels of FTX, AC005261.1, NORAD, LINC01578, ZFAS1, EBLN3P, THUMPD3-AS1, and 
GAS5 in non-metastatic and metastatic groups. B RFS curve of the 8 hub lncRNAs in PCa based on Kaplan–Meier analysis and log-rank test. Patients 
were divided into the high expression level group and the low expression level group based on the median value in non-metastatic or metastatic 
group
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cancer. According to the results of the COSMIC-021, 
combination of the cabozantinib, a kind of antiangio-
genic drugs, with the immune checkpoint inhibitor ate-
zolizumab achieved encouraging activity in patients 
with metastatic castration-resistant PC (mCRPC), while 
multiple previous phase III clinical trials5,6 in refractory 
CRPC have demonstrated increased toxicity with no 
clinical benefit. Tumor angiogenesis is regulated through 
interaction between anti-angiogenic factors and pro-
angiogenic within the tumor microenvironment. A grow-
ing number of studies have shown that different lncRNAs 
affect tumor angiogenesis, for example, lncRNA H19 tar-
gets miR-199a-5p and negatively regulates VEGFA 7. The 
vast spectrum of cancer traits warrants better molecular 
biomarkers to identify the more aggressive and clinically 
significant tumor subtypes. Accumulating recent evi-
dence has shown that lncRNAs play key roles in cancer 
initiation or progression and appear to have many fea-
tures for diagnostic markers or therapeutic targets [5].

Similar to PCA3, the clinically-relevant lncRNAs in 
PCa continue to be discovered. Studies in two separate 
independent cohorts validated prostate cancer-associ-
ated transcript-14 (PCAT-14), an androgen-regulated 
lncRNA, might be used as a novel PCa diagnosis bio-
marker for its high expression prostate tumors and low 
expression linked to poor outcomes [21, 22]. Studies 

found that prostate cancer gene expression marker 1 
(PCGEM1) with highly prostate-specificity was also 
related to androgen receptor (AR) signaling and was 
overexpressed in therapy-resistant PCa [23, 24]. Metas-
tasis-associated lung adenocarcinoma transcript-1 
(MALAT1) reported a close connection between high 
expression and poor prognosis indicators[25, 26]. Simi-
lar findings had been made with the second chromosome 
locus associated with prostate-1 (SCHLAP1) [27]. Other 
lncRNAs clinically relevant to PCa were such as urothe-
lial carcinoma-associated 1 (UCA1) [28, 29], nuclear 
enriched abundant transcript 1 (NEAT1) [30], HLA com-
plex group 11 (HCG11) [31]. Nevertheless, only a few 
lncRNAs related to PCa metastasis have been identified 
so far. Thus, we performed WGCNA by using publicly 
available data to characterize the metastasis-associated 
lncRNAs.

WGCNA, also known as the weighted correlation net-
work analysis, is widely used in bioinformatics applica-
tions based on pairwise correlations amongst variables 
[9]. It has been extensively used in various genomic appli-
cations. WGCNA can also be used as a data reduction 
technique, clustering method, feature selection method, 
framework for integrating genomic data, and data explor-
atory technique [32]. According to the theory, genes 
involved in similar pathways or closely related functions 

Fig. 6  Downregulation of the expression of ZFAS1 diminishes cellular migration in vitro. A PCR analysis of expression levels of ZFAS1 in LNCaP 
or PC-3 cells treated with si-ZFAS1 compared with negative control cells B Representative of inhibitive effect of downregulation of ZFAS1 on the 
migration of cells in a transwell assay.C Qualitative analysis of transwell assay. Data presented were mean ± SEM of three independent experiments. 
* p < 0.05, ** p < 0.01
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may have similar expression profiles. The WGCNA 
approach as a systems biology strategy transforms gene 
expression data across samples into a co-expression 
module that can provide perception in signaling net-
works. The results from the GSE46691 dataset showed 
that nine hub lncRNAs had noticeable associations for 
metastasis in the yellow module by the WGCNA pack-
age tool. Though the original array design did not target 
lncRNA measurement, microarray probes could be re-
annotated for interrogating the expression of lncRNA. 
Especially comparing with RNA-seq data, the array-
based expression data had better detection sensitivity 

and lower technical variation due to the low abundance 
of lncRNA [32]. Expression analyses from the other two 
independent datasets (GSE29079, GSE94767) showed 
four (AC004542.2, ZFAS1, EBLN3P, GAS5) out of nine 
lncRNAs were significantly overexpressed in tumor. 
Moreover, the TCGA data also showed again that ZFAS1, 
EBLN3P, or GAS5 was overexpressed in PCa tumor 
compared to adjacent normal samples. Besides, ZFAS1 
showed the potential to be a predictor of poor prognosis.

For further mechanism research, the hub lncRNA-tar-
get networks based on experimentally supported func-
tional regulations and expression associations in human 

Fig. 7  The lncRNA–miRNA–mRNA ceRNA predicted regulatory networks. A Network of hub lncRNA-target regulations. The red circle represents the 
target gene-related to cell metastasis based on experimental data. B Pearson correlation coefficients between ZFAS1 and ZEB2 or between NORAD 
and ZEB2 in each of 33 TCGA cancer types and scatter plot of ZFAS1-ZEB2 or NORAD-ZEB2 expression in PRAD cancer type, red*represents the 
significant association. C lncRNA–miRNA–mRNA networks base on the computationally/ experimentally supported predicted interacting miRNAs of 
ZFAS1, NORAD, and their common potential target ZEB2. The circle size depends on the EdgeCount
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diseases from LncTarD were constructed. ZEB2 was 
found to be a common potential target for both ZFAS1 
and NORAD. The expression of ZEB2 in the TCGA-
PRAD dataset was negatively correlated with ZFAS1 and 
positively correlated with NORAD, which indicated that 
the “co-highly expressed” ZFAS1 and NORAD had more 
complicated molecular mechanisms for regulating cell 
metastasis. ZEB2, a key activator of epithelial-mesenchy-
mal transition (EMT), has been found to promote EMT 
processes in various cancer metastases [33]. Moreover, 
NORAD and ZFAS1 have been reported to promote 
cell invasion and migration in cervical cancer and blad-
der cancer, respectively, by up-regulating ZEB2 [34, 35]. 
Detaching from the tumor mass and becoming motile 
are necessary for metastasizing cancer cells. Once these 
cells intravasate into the lymphatic or blood circulation, 
the survivors among them will attach to the target organ 
endothelium, extravasate into the organ parenchyma, 
and proliferate. The abnormal activation of an EMT con-
tributes to cancer metastasis, so treatments targeting the 
EMT pathway have become an attractive strategy [36]. 
In order to investigate the regulatory mechanism among 
NORAD, ZFAS1 and ZEB2, DIANA-LncBase v2, miR-
code, and ctcRbase databases were used to discover their 
respective potential target miRNAs. The results showed 
69 common potential miRNA targets between ZFAS1 
and NORAD and 28 common potential miRNA targets 
between NORAD and ZEB2. The four miRNAs of has-
miR-144-3p, has-miR-101-3p, has-miR-26a-5p, and has-
miR-26b-5p were potential targets shared by ZFAS1, 
NORAD, and ZEB2. There have been no reports about 
the involvement of these four miRNAs in tumor migra-
tion or invasion. As we know, multiple targets could be 
regulated by one miRNA, while one target could also be 
co-regulated by multiple miRNAs. Similarly, one lncRNA 
could target more than one miRNA, and some lncRNAs 
could form a complex lncRNA-miRNA-mRNA regula-
tory network [37]. In addition, the regulation of multiple 
lncRNAs on the same target gene may have differences in 
their response time.

Indeed, ZFAS1 was up-regulated in metastasis samples 
and related to poor RFS [38]. High expression of ZFAS1 
was closely associated with worse disease-free survival 
for PCa or gliomas patients [39, 40]. Recent studies dis-
closed that miR-135a-5 and miR-150-5p could be used 
as binding targets of ZFAS1 to participate in the regula-
tion of tumor proliferation, invasion, and migration [41, 
42]. As an important mechanism of lncRNA function, 
some lncRNAs with miRNA-binding sites can serve as 
‘sponges’ to seclude endogenous miRNAs, which dis-
turbs the modulation of gene expression mediated by 
miRNA. This phenomenon called competing endog-
enous RNAs (ceRNAs) belongs to the genome-wide 

finetuning regulatory molecules network [43–45]. PTEN 
pseudogene (PTENP1) is one of the ceRNAs correlated 
with PCa, which is linked to PTEN phosphatase as a 
tumor-suppressive pseudogene. Because of the 3’ UTR 
of PTENP1 RNA binding the same region of regulatory 
miRNA sequences, PTENP1 could reduce the downregu-
lation of PTEN mRNA [46]. At present, the research on 
the mechanism of ZFAS1 as ceRNA in migration is still 
in progress.

NORAD, a newly identified lncRNA, is unique for its 
high conservatism and the key role in maintaining chro-
mosomal stability by modulating the Pumilio (PUM) 
proteins’ activity. Moreover, genome instability drives 
metastasis via a cytosolic DNA response [47]. Recent 
studies indicated that NORAD was highly expressed 
in numerous human cancers, including breast cancer, 
esophageal squamous cell carcinoma, pancreatic can-
cer, colorectal cancer, bladder cancer, and cervical can-
cer, with poor overall survival [34, 48–50]. However, in 
hepatocellular carcinoma, NORAD acts contradictorily 
as a tumor suppressor [51]. In the present research, our 
results suggested that NORAD might involve cell migra-
tion and be highly expressed in the metastasis commu-
nity of PCa. Significantly, regulation of NORAD affects 
the PUM proteins and changes the extracellular vesicle 
(EV) proteins that participate in communication between 
cells in the tumor microenvironment [52, 53]. The 
effects of NORAD are implicated in almost all aspects 
of tumors, including carcinogenesis proliferation, apop-
tosis, invasion, and metastasis [54]. However, the precise 
molecular mechanisms of NORAD are still at a prelimi-
nary stage that requires further systematic investigation.

In summary, our analyses focused on the metasta-
sis of PCa and uncovered some relevant hub lncRNAs. 
Although other lncRNAs did not show significant differ-
ences in all cohort like ZFAS1 that might be related to 
the different stages of the disease and the different types 
of samples we used for analysis. The other 8 hub lncR-
NAs still shown some potential as a biomarker correlated 
with metastatic progression of PCa. For ZFAS1, further 
molecular mechanism investigations are needed in order 
to understand its function adequately.

Conclusion
To conclude, the yellow module derived from the micro-
array-based dataset via WGCNA was significantly asso-
ciated with metastasis of PCa. The nine hub lncRNAs 
within yellow were successfully validated in different 
clinical cohots, especially ZFAS1. These results suggest 
some new lncRNAs as potential prognostic biomarkers 
and therapeutic targets for prostate cancer development 
and progression worthy of further investigation.
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