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Abstract 

Background:  Hepatocellular carcinoma (HCC) is a cancer with a poor prognosis. Many recent studies have sug-
gested that pyroptosis is important in tumour progression. However, the role of pyroptosis-related genes (PRGs) in 
HCC remains unclear.

Materials and methods:  We identified differentially expressed PRGs in tumours versus normal tissues. Through 
univariate, LASSO, and multivariate Cox regression analyses, a prognostic PRG signature was established. The signature 
effectiveness was evaluated by time-dependent receiver operating characteristic (t-ROC) curve and Kaplan–Meier 
(KM) survival analysis. The signature was validated in the ICGC (LIRI-JP) cohort. In addition, single-sample gene enrich-
ment analysis (ssGSEA) showed the infiltration of major immune cell types and the activity of common immune 
pathways in different subgroups.

Results:  Twenty-nine pyroptosis-related DEGs from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma 
(TCGA-LIHC) dataset were detected, and four genes (CTSV, CXCL8, MKI67 and PRF1) among them were selected to con-
struct a prognostic signature. Then, the patients were divided into high- and low-risk groups. The pyroptosis-related 
signature was significantly associated with overall survival (OS). In addition, the patients in the high-risk group had 
lower levels of immune infiltration.

Conclusion:  The prognostic signature for HCC based on 4 pyroptosis-related genes has reliable prognostic and pre-
dictive value for HCC patients.
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Background
Hepatocellular carcinoma (HCC) is one of the most com-
mon cancers, and its outlook is very poor. Worldwide, 
it is a leading cancer type in 11 countries and regions 
and is the third leading cause of cancer-related death 

in 23 countries after lung cancer and colorectal cancer. 
According to GLOBCAN 2020, 830,180 new deaths from 
HCC occur every year [1].In most patients, surgery is 
only an option for those in the early stages of liver cancer 
(less than stage IIIB and Child–Pugh stage A) [2]. Patients 
with advanced liver cancer often take conservative treat-
ments and have a poor prognosis. However, the early 
clinical manifestations of HCC are often atypical, and it 
is difficult to diagnose HCC only from the clinical mani-
festations. AFP is a common serum molecular marker 
used to diagnose liver cancer. However, normal AFP lev-
els may be present in approximately 30% of patients with 
HCC [3]. Accordingly, the establishment of a multigene 
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classifier to predict HCC outcomes is important. Such a 
classifier could have important reference value for pre-
dicting the survival and treatment outcomes of patients 
with liver cancer.

Pyroptosis is a form of regulated cell death (RCD), 
and the Nomenclature Committee on Cell Death rec-
ommended that it be recognized as a type of RCD that 
critically depends on the formation of plasma membrane 
pores by members of the gasdermin (GSDM) protein 
family, often (but not always) as a consequence of inflam-
matory caspase activation [4]. GSDM pores formed in 
the plasma membrane eventually lead to cell lysis, and 
a large number of damage-related molecular patterns 
(DAMPs), such as ATP, IL-1β, and HMGB1, are released 
at different times and stages [5], resulting in inflamma-
tion. Studies have shown that certain inflammatory fac-
tors, such as IL-1β, play a role in promoting tumour 
invasion. Solid tumours that have been shown to upregu-
late IL-1β include breast, colon, lung, and head and neck 
cancers and melanoma, and patients with these IL-1β-
upregulated tumours generally show a poor prognosis 
[6]. In many tumours, IL-1β may increase tumour cell 
metastasis by promoting angiogenesis [7, 8]. However, 
IL-1β has also been shown to inhibit cancer. Haabeth 
et al. demonstrated that IL-1β can drive tumour-specific 
Th1 response activation to inhibit the progression of 
B-cell myeloma and lymphoma [9, 10]. However, there 
are few studies on pyroptosis in HCC.

Here, we conducted a systematic study of pyroptosis-
related genes (PRGs) in HCC to determine differences in 
the expression of these genes between tumour patients 
and nontumour patients, to assess the correlation 
between their expression and patient prognosis and to 
study the effects of these PRGs on the tumour-immune 
microenvironment.

Materials and methods
Data collection
The mRNA expression profiles (mRNA-seq) and cor-
responding clinical data of patients were obtained from 
The Cancer Genome Atlas (TCGA) database. We down-
loaded TCGA-liver hepatocellular cancer (LIHC) sample 
information after log2 (FPKM + 1) processing from the 
Xena platform (https://​xena.​ucsc.​edu/) [11]. Our inclu-
sion criteria for patients were as follows: histologically 
diagnosed with hepatocellular carcinoma [12]; available 
expression profiles; patients with survival information. 
Consequently, we extracted 267 tumour samples from 
the TCGA dataset for subsequent analysis (Table  1). 
Under the same criteria, 240 primary tumour solid tis-
sue samples (Table 2) were included as the external vali-
dation dataset from the International Cancer Genome 
Consortium (ICGC), and 184 PRGs were retrieved from 

the GeneCards database (25th August 2021. https://​www.​
genec​ards.​org/) with the keyword “pyroptosis”. The above 
three databases are publicly available and accessible.

Consensus clustering (CC) analysis
Unsupervised class discovery is a highly useful technique 
in cancer research, where intrinsic groups sharing bio-
logical characteristics may exist but are unknown. The 
CC method provides quantitative and visual stability evi-
dence for estimating the number of unsupervised classes 
in a dataset [13]. We used the “ConsensusClusterPlus” 
R package (version 1.52.0) to duplicate tumour samples 
in TCGA 1000 times to find the optimal classification 

Table 1  Clinicopathologic characteristics of HCC patients in 
TCGA database

Clinical information on HCC samples in the TCGA database includes gender, age, 
stage and grade

Characteristic Levels Overall

n 367 (100%)

Gender Female 119 (32.43%)

Male 248 (67.57%)

Age  ≤ 65 230 (62.67%)

 > 65 137 (37.33%)

Stage Stage I 171 (46.59%)

Stage II 85 (23.16%)

Stage III 83 (22.62%)

Stage IV 4 (1.09%)

Unknown 14 (3.81%)

Grade G1 55 (14.99%)

G2 176 (47.96%)

G3 119 (32.43%)

G4 12 (3.27%)

Unknown 5 (1.36%)

Table 2  Clinicopathologic characteristics of HCC patients in 
ICGC database

Clinical information on HCC samples in the ICGC database includes gender, age, 
stage

Characteristic Levels Overall

n 240 (100%)

Gender Female 61 (25.42%)

Male 179 (74.58%)

Age  ≤ 65 155 (64.58%)

 > 65 85 (35.42%)

Stage Stage I 36 (15%)

Stage II 109 (45.42%)

Stage III 74 (30.83%)

Stage IV 21 (8.75%)

https://xena.ucsc.edu/
https://www.genecards.org/
https://www.genecards.org/
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cluster of tumour samples, and approximately 80% of the 
samples were selected in each iteration.

Search for differentially expressed genes (DEGs) 
in the TCGA‑LIHC dataset
We used the empirical Bayesian approach of the 
“limma” R package (version 3.44.3) to obtain DEGs [14]. 
DEGs with |log2-fold change (FC)|≥ 1 and adj P-value 
(FDR) < 0.05 were used for subsequent analysis.

Construction of the prognostic PRG signature
Univariate Cox regression, least absolute shrinkage and 
selection operator (LASSO)-Cox regression and mul-
tivariate Cox regression analyses were used to iden-
tify the genes associated with pyroptosis and establish 
a prognostic PRG signature for HCC. In the univariate 
Cox regression analysis, P < 0.05 was considered to indi-
cate statistical significance, indicating that the gene is 
associated with overall survival (OS). The LASSO Cox 
regression model was then utilized to narrow down the 
candidate genes by using tenfold cross validation via the 
“glmnet” R package [15]. Then, we carried out multivari-
ate Cox regression analysis and established the risk scor-
ing equation according to the standardized regression 
coefficients of the factors.

To evaluate the predictive ability of the prognostic PRG 
signature, we used the median risk score to divide the 
sample into high- and low-risk groups. Kaplan–Meier 
(KM) survival curves were drawn with the "survival" 
R package (version 3.2-13), and the P value was calcu-
lated. In addition, time-dependent receiver operating 
characteristic (t-ROC) curve analyses were performed 
to determine how accurately the signature predicted 
patient survival at six months, one year, two years, and 
three years [16]. The risk curve was also used to verify the 
relationship between the risk score and patient survival 
status. Principal component analysis (PCA) integrated 
the risk score and patient survival information through 
dimensionality reduction and presented relevant infor-
mation in a low-dimensional manner, which could verify 
the signature’s ability to distinguish between high- and 
low-risk groups [17]. In addition, we performed a similar 
process with data from the ICGC database, and the prog-
nostic PRG signature was further validated in this inde-
pendent cohort.

Validation of prognostic genes in an external database
The mRNA expression levels of four marker genes were 
verified with the Tumour Immune Estimation Resource 
(TIMER) database (https://​cistr​ome.​shiny​apps.​io/​
timer/). In addition, we used the cBioPortal database 

Risk Score = �i(Coefi · Expi)

(https://​www.​cbiop​ortal.​org/) to investigate the genetic 
alterations of the related genes. The above two databases 
are publicly available and accessible.

Construction of the nomogram and evaluation of its 
predictive value
The expression levels of the four marker genes in the 
risk scoring equation were included in the nomogram to 
assess the 1-year, 2-year and 3-year survival rates of the 
patients, and calibration curves were drawn to assess the 
prognostic performance of the nomogram.

Validation of the independence of the risk scores 
from other clinical variables
The clinical information, including sex, age, tumour 
grade, tumour stage and risk scores, of patients providing 
the samples was included in the univariate Cox regres-
sion analysis, and bilateral P values < 0.05 were consid-
ered to be statistically significant. The clinical features 
were also incorporated into the multivariate Cox regres-
sion analysis to determine whether the prognostic model 
prediction ability was independent of the conventional 
clinical features. Hazard ratios (HRs) and 95% confidence 
intervals (CIs) were calculated.

Gene enrichment analysis
We next investigated the biological processes involving 
the DEGs between the high- and low-risk patient groups. 
DEGs with P < 0.05 and absolute value of log2 FC > 1 were 
selected for enrichment analysis. For the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [18–20] and 
gene ontology (GO) analyses, P < 0.05 and false discov-
ery rate (q) < 1 were considered indicators of statistical 
significance.

Immune infiltration analysis
The "GSVA" package (version 1.32.3) was used to calcu-
late the immune score of the samples, explore the infil-
tration of 16 major immune cell types and investigate 
the activity of 13 common immune pathways in different 
subgroups in the high- and low-risk groups.

Statistical analysis
Single-factor analysis of variance was applied to compare 
the gene expression of 184 PRGs between the normal and 
HCC tissues. Independent prognostic factors were iden-
tified by univariate and multivariate Cox regression. Dif-
ferences in OS between high- and low-risk groups were 
assessed using Kaplan–Meier analysis and two-sided 
log-rank test. When comparing the immune cell infiltra-
tion and immune pathway activation between the two 
groups, the Mann–Whitney test was used. All statistical 
P values are two-side and P < 0.05 represents statistical 

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://www.cbioportal.org/
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significance. Besides, R software (Version 4.0.2) was 
employed for all statistical data analyses. The flowchart of 
the whole study is shown in Fig. 1.

Results
CC analysis to explore patient differences
To effectively distinguish liver cancer patients by PRGs, 
we conducted CC analysis on all HCC patients in the 
TCGA cohort. The cluster variable K was increased from 
2 to 10; when K = 2, the correlation within subgroups was 
the highest, while the correlation between groups was 
the lowest. However, the samples could not be well dis-
tinguished (Additional file 1: Fig. S1a). In addition, when 
KM survival curves were generated for the two sub-
groups, we found no significant difference between the 
two groups (Additional file 1: Fig. S1b).

Identification of differentially expressed PRGs 
between tumour and normal tissue
Overall, 184 genes related to pyroptosis were retrieved 
from the GeneCards database, and 29 differentially 
expressed genes with |Log2 FC|> 1 were screened by 
the "limma" package (Fig.  2a,b). P < 0.05 was considered 
to indicate statistically significant DEGs. Of the DEGs, 
8 PRGs were upregulated in liver cancer tissues, and 21 
PRGs were downregulated in tumour tissues.

To further explore the association between these PRGs, 
protein–protein interaction (PPI) analysis was per-
formed, setting the minimum required interaction score 

at 0.4 (medium confidence). Cytoscape software (Version 
3.7.2) was employed for visualization (Fig.  2c), and we 
found that IL1B interacts with many genes at the protein 
level. In addition, we mapped the correlation network 
containing these 29 genes and explored their relation-
ships at the gene level (Fig. 2d).

Construction and development of a prognostic signature 
for HCC
Through univariate Cox regression analysis, we found 10 
DEGs related to the prognosis of HCC among 29 PRGs 
(Fig.  3a). High expression of ANXA2, CTSV, CXCL8, 
IL13RA2, MKI67, TLR2 and TREM2 may promote sur-
vival, while high expression of CD14, MST1 and NLRP6 
may adversely affect survival. LASSO regression analy-
sis further narrowed ten genes down to seven (ANXA2, 
CTSV, CXCL8, MKI67, NLRP6, NLRP6, and PRF1) 
(Fig. 3b, c). Finally, we obtained 4 key prognosis-related 
PRGs—CTSV, CXCL8, MKI67 and PRF1—by stepwise 
multivariate regression analysis (Fig.  3d, e). The prog-
nostic PRG signature was constructed as follows: risk 
score = (0.249* CTSV expression) + (0.137* CXCL8 
expression) + (0.264* MKI67 expression) + (−  0.224* 
PRF1 expression). CTSV, CXCL8 and MKI67 were high-
risk factors (HR > 1), and PRF1 was a protective factor 
(HR > 1). After calculating the risk scores of all samples, 
the median was used to divide the samples into two sub-
groups (high and low risk), with a cut-off value of 0.384. 
Patients in the high- and low-risk groups were well 

Fig. 1  The flowchart of the whole study. Flowchart for establishing and verifying prognostic signature
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distinguished by PCA (Fig.  4a), and the high-risk score 
group had a higher mortality rate and shorter survival 
time (Fig. 4b, c). By plotting t-ROC curves, we found that 
risk scores also had certain significance in differentiat-
ing patients’ half-year, 1-year, 2-year, and 3-year survival 
(Fig.  4d). The area under the t-ROC curve (AUC) was 
0.691 at 6  months, 0.725 at 1  year, 0.694 at 2  years and 
0.681 at 3 years. In addition, multivariate Cox regression 
proved that our prognostic signature was an independent 
prognostic factor for HCC (Fig. 4e).

External database validation of the PRG‑related prognostic 
signature in HCC
TIMER database analysis confirmed that CTSV and 
MKI67 were highly expressed in tumour tissues, while 
CXCL8 and PRF1 were expressed at low levels in tumour 
tissues (Fig.  5a), which was consistent with our find-
ings. We investigated the genetic changes in the CTSV, 
CXCL8, MKI67 and PRF1 genes. The mutations of these 
four genes in TCGA HCC samples were assessed via the 
cBioPortal database. MKI67 had the highest frequency of 

Fig. 2  Searching for PRGs and links between them. Volcano plot of all DEGs between HCC and normal samples. Red: upregulated DEGs; Black: 
nonsignificant genes; Green: downregulated DEGs (a). Overall, 29 PRGs were found in DEGs (b). PPI analysis and the correlation network were drawn 
to explore the relationship between 29 genes (c, d)
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genetic alterations (3%), and missense mutation was the 
most common alteration (Fig. 5b).

Construction of a nomogram
Univariate and multivariate Cox regression analyses 
showed that the expression of CTSV, CXCL8, MKI67 and 
PRF1 were independent prognostic factors in liver can-
cer patients. On this basis, we constructed a nomogram 
to predict the patient’s probability of survival at one, 

two, and three years. The expression levels of four genes 
(CTSV, CXCL8, MKI67 and PRF1) were included as indi-
cators to establish the risk score (Fig. 6a). In addition, a 
calibration plot was drawn and indicated that our nomo-
gram had good predictive performance (Fig. 6b–d).

Validation of the PRG‑related prognostic signature for HCC
To verify the availability of our PRG-related model, 
we downloaded liver cancer datasets from the ICGC 

Fig. 3  Construction and development of a prognostic signature for HCC. Univariate Cox regression was used to identify genes associated with OS 
(a). LASSO regression of the 10 OS-related genes (b, c). The prognostic signature was established based on multivariate Cox regression (d, e)
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Fig. 4  Internal validation of the TCGA cohort. PCA plot for samples based on the risk scores (a). Risk score and survival status distribution of 
HCC samples from the TCGA database (b). KM curves of samples in the high- and low-risk groups (c). t-ROC curves demonstrated the predictive 
efficiency of the risk score (d). Multivariate Cox regression showed that the risk score was an independent prognostic factor in the TCGA database 
(e)
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database to verify the risk score equation. We used a cut-
off value of 0.384 for the training set to divide the ICGC 
database samples into high- and low-risk subgroups. 
Consistent with the results from the TCGA database, 

patients in the high- and low-risk groups could still be 
distinguished by PCA (Fig.  7a). Patients with high risk 
scores had worse prognoses (Fig. 7b), and the OS of high-
risk patients was significantly reduced compared with 

Fig. 5  External database validation of the PRG-related prognostic signature in HCC. Human CTSV, CXCL8, MKI67 and PRF1 levels in different tumour 
types from TCGA were determined using TIMER (a). The mutations of these four genes in TCGA HCC samples were assessed via the cBioPortal 
database (b)
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that of low-risk patients (P = 6.501e−03) (Fig.  7c). The 
AUCs of the prognostic signature at six months, one year, 
two years and three years were 0.673, 0.731, 0.681 and 
0.705, respectively (Fig. 7d). Multivariate Cox regression 
proved that the prognostic signature was an independent 
prognostic factor for HCC (Fig. 7e). All of the above evi-
dence indicates that PRGs are of certain clinical value in 
our prognostic signature of HCC.

Gene enrichment analysis
To further explore the differences in gene function and 
pathways between the high- and low-risk subgroups, the 
"limma" package was used to identify DEGs between the 
two subgroups of TCGA patients. The differential crite-
ria were an absolute value of log FC > 1 and P < 0.05. In 
total, 45 genes related to the risk score were found. Of 
these, 43 genes were upregulated in the high-risk group, 
and 2 were downregulated. Then, KEGG and GO enrich-
ment analysis was conducted on these genes (Fig. 8a, b), 
and the results showed that most of the high risk-related 
pathways were cell cycle, cell metabolism and immune-
related pathways.

Analysis of the immune microenvironment in patient 
subgroups
To explore the differences in immune infiltration and 
the activity of immune-related pathways in high- to low-
risk subgroups, single-sample gene enrichment analysis 
(ssGSEA) was used to calculate the immune score of 16 
kinds of immune cells in each sample. The results showed 
that the high-risk group usually had a lower level of 
immune infiltration. In particular, B cells, CD8 + T cells, 
macrophages, mast cells, neutrophils, NK cells, pDCs 
(plasmacytoid dendritic cells), T helper cells, and TILs 
(tumour-infiltrating lymphocytes) (Fig. 9a) were found at 
lower levels in this group. The activity of immune-related 
pathways was also generally downregulated in the high-
risk group (Fig. 9b).

Discussion
HCC is a serious health hazard worldwide. Some stud-
ies have shown that pyroptosis plays an important role in 
the occurrence and development of tumours [21, 22], but 
the role of PRGs in liver cancer remains unclear. In this 
study, we first assessed 29 PRGs that were differentially 

Fig. 6  Construction and verification of a nomogram. The nomogram was built based on the expression of 4 genes in the training cohort (a). The 
calibration plots showed good predictive performance for OS at 1, 2, and 3 years (b–d)



Page 10 of 14Duan et al. BMC Medical Genomics          (2022) 15:166 

expressed in tumour and normal samples and conducted 
PPI network and correlation analysis to explore the 
associations of these genes in HCC. To further explore 

the prognostic value of these PRGs, we established a 
risk profile of four genes by univariate Cox regression, 
LASSO-Cox regression, and multivariate Cox regression 

Fig. 7  External validation of the ICGC cohort. PCA was performed by dividing HCC samples in the ICGC database into high- and low-risk groups 
using the cut-off values in TCGA (a). Samples with a high risk score in ICGC HCC samples had a worse prognosis (b, c). The t-ROC curve verifies the 
accuracy of the prognostic signature (d). Multivariate Cox regression showed that the risk score was an independent prognostic factor in the ICGC 
database (e)
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analyses, and the risk score equation was verified to be 
clinically significant in the ICGC database. A nomogram 
was constructed to estimate the patient’s one-, two-, 
and three-year survival probability. Enrichment analysis 
showed that the DEGs between the high- and low-risk 
groups were involved in immune-related pathways. We 
conducted ssGSEA and found that the level of immune 
infiltration and the activity of related pathways were 
decreased significantly in the high-risk group.

Among the four key PRGs obtained, cathepsin V 
(CTSV) promotes the proliferation and invasion of 
tumour cells in breast cancer [23] and colorectal can-
cer [24], but its role in liver cancer is unclear. CXCL8/
IL-8 is a well-known chemokine that mediates cancer 
cell motility, invasion and metastasis by promoting 
epithelial-mesenchymal transition (EMT) [25] while 
its role in HCC has been little explored. IL-8 has been 
found to increase cancer proliferation in  vitro [26]. In 
HCC, the IL-8 gene expression can be regulated by 
transcriptional activation of NF-κB, activation of the 
ERK, p38 mitogen-activated protein kinase (MAPK) 
and PI3K pathway [27]. Furthermore, NF-κB activation 
has been proven to be related to gasdermin D which is 
the executor of pyroptosis [28]. In Zhao et  al.’s study 
[29], MKI67 was confirmed to be related to the prog-
nosis of liver cancer. Upregulation of MKI67 elevates 
the degree of immune infiltration of many immune cell 
subtypes within LIHC, including functional T cells, 
CD4 + T cells, and CD8 + T cells [30]. However, the 

molecular mechanism of its involvement in pyrotopia 
in hepatocellular carcinoma is still unclear. Perforin, a 
pore-forming protein encoded by the PRF1 gene [31] 
and plays a crucial role in the killer cell-mediated elimi-
nation of virally infected host cells, tumour cells [32]. 
Perforin plays a dominant role in the CD8 + T cell-
mediated lysis of HCV-replicating human hepatoma 
cells [33]. At the same time, in HBV-specific hepato-
cellular carcinoma, perforin also plays a certain cyto-
toxic role [34]. Our results indicate that these four key 
genes are independent factors affecting the prognosis 
of HCC, and the signature including all these genes has 
good predictive performance in terms of prognosis and 
recurrence.

There are some shortcomings in our present study. 
Our signature should be validated further by perform-
ing clinical trials to better evaluate the relationship 
between the risk-score and pyroptosis in HCC. Besides, 
specific molecular mechanisms of 4 PRGs in our signa-
ture needs further examination.

In conclusion, our study suggests that the prognosis 
of HCC is closely related to pyroptosis. We constructed 
a promising PRG prognostic model to predict the prog-
nosis of HCC patients. It will be a helpful reference for 
clinical and treatment decision-making. At present, 
there are few studies on pyroptosis, especially its mech-
anism in HCC. The four genes in the signature may 
play an important role in pyroptosis in HCC. Our study 
preliminarily confirmed the prognostic value of these 
PRGs in HCC.

Fig. 8  Functional analysis based on the DEGs between the two risk groups in the TCGA cohort. GO enrichment analysis, including biological 
process analysis, cellular component analysis and molecular function (a). KEGG pathway analysis (b)
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Conclusion
In summary, we identified pyroptosis-related DEGs 
between HCC and normal tissues and provided a signa-
ture to evaluate the prognosis of HCC based on pyrop-
tosis-related genes.
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