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Abstract 

Background:  Benign breast disease (BBD) is a risk factor for breast cancer (BC); however, little is known about 
the genetic alterations present at the time of BBD diagnosis and how these relate to risk of incident BC.

Methods:  A subset of a long-term BBD cohort was selected to examine DNA variation across three BBD groups (42 
future estrogen receptor-positive (ER+) BC, 36 future estrogen receptor-negative (ER−) BC, and 42 controls cancer-
free for at least 16 years post-BBD). DNA extracted from archival formalin fixed, paraffin-embedded (FFPE) tissue blocks 
was analyzed for presence of DNA alterations using a targeted panel of 93 BC-associated genes. To address artifacts 
frequently observed in FFPE tissues (e.g., C>T changes), we applied three filtering strategies based on alternative allele 
frequencies and nucleotide substitution context. Gene-level associations were performed using two types of burden 
tests and adjusted for clinical and technical covariates.

Results:  After filtering, the variant frequency of SNPs in our sample was highly consistent with population allele 
frequencies reported in 1 KG/ExAC (0.986, p < 1e−16). The top ten genes found to be nominally associated with later 
cancer status by four of 12 association methods(p < 0.05) were MED12, MSH2, BRIP1, PMS1, GATA3, MUC16, FAM175A, 
EXT2, MLH1 and TGFB1, although these were not statistically significant in permutation testing. However, all 10 gene-
level associations had OR < 1 with lower mutation burden in controls compared to cases, which was marginally 
statistically significant in permutation testing (p = 0.04). Comparing between the three case groups, BBD ER+ cases 
were closer to controls in mutation profile, while BBD ER− cases were distinct. Notably, the variant burden was sig‑
nificantly higher in controls than in either ER+ or ER− cases. CD45 expression was associated with mutational burden 
(p < 0.001).

Conclusions:  Somatic mutations were more frequent in benign breast tissue from women who did not develop can‑
cer, opening questions of clonal diversity or immune-mediated restraint on future cancer development. CD45 expres‑
sion was positively associated with mutational burden, most strongly in controls. Further studies in both normal and 
premalignant tissues are needed to better understand the role of somatic gene mutations and their contribution to 
future cancer development.
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Background
Breast cancer (BC) is a leading cause of cancer in women, 
and is believed to result from the progressive accumula-
tion of genetic and epigenetic alterations, where genomic 
analyses have revealed both inherited predisposition 
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and common genetic variation play a role in susceptibil-
ity [1–3]. However, the majority of women with BC have 
no major germline mutations and thus develop sporadic 
cancers, raising questions. Early detection is critical to 
detect and prevent cancer-related death, as early-stage 
BC has a 99% five-year survival rate, compared to 27% for 
advanced stage cancers [4]. Identification of biomarkers 
that predict progression in cancer precursors could ena-
ble improved management, where high-risk women are 
offered closer surveillance and preventative treatments 
and low-risk women may be screened less frequently. 
Benign breast disease (BBD), which includes non-prolif-
erative, proliferative and proliferative lesions with atypia, 
is viewed as a nonobligate precursor stage in the develop-
ment of BC [5], and is associated with an increased risk 
of invasive BC, particularly in those with proliferative or 
atypical lesions [6–8].

As the majority of women with BC have no major ger-
mline mutations and thus develop sporadic cancer [9, 
10], the platform of benign breast disease offers a win-
dow in early carcinogenetic events. Questions remain 
regarding the processes that drive deoxyribonucleic acid 
(DNA) mutations in breast tissue for patients with spo-
radic BC, and which mutations are associated with the 
earliest stages of BC development. In particular, atypical 
hyperplasia has been reported to share genomic changes 
with common sporadic BC, including structural genomic 
changes such as aneuploidy, loss of heterozygosity, and 
large-scale amplifications and deletions [11, 12]. In addi-
tion to structural alterations, analysis of DNA mutations 
present in BBD biopsies, which contain both the BBD 
lesion and the surrounding tissue bed, has the potential 
to define the processes that drive the development of 
cancer-associated DNA mutations, as well as which of 
those mutations are most critical for cancer development 
[11, 12].

To date, few DNA sequencing studies have exam-
ined mutational status in BBD tissues. Rohan et  al. [13] 
sequenced 218 BBD cases that subsequently developed 
invasive BC and matched cancer free BBD controls using 
a targeted capture-based panel and reported no signifi-
cant mutation burden differences. Adjacent, non-malig-
nant tissue was used as a surrogate for germline variants 
which were excluded. Soysal et  al. [14] used a targeted 
amplicon-based sequencing panel to profile 17 cases 
of invasive BC with a previous diagnosis of fibrocystic 
disease, all with matching normal tissue. They reported 
that no significant mutations in hotspot residues were 
seen in either tumor or benign disease. A recent report 
by Zeng et al. [15] detailed whole exome sequencing on 
135 BBD cases that subsequently developed cancer and 
69 cancer free controls, using a subset of patients with 
available germline DNA and a neural network to predict 

somatic variants in the unrelated BBD samples. While 
finding no significant difference in the number of muta-
tions between cases and controls, when filtering to vari-
ants with variant allele frequency (VAF) > 25%, non-silent 
mutation differences were observed between cases and 
controls for some but not all genes detected at lower VAF.

The Mayo Clinic BBD cohort was first described in 
2005 [5], and includes more than 13,258 BBD cases with 
a median follow-up of 13  years of clinical data [16]. To 
identify underlying genetic aberrations in BBD cases 
associated with future BC occurrences, we designed a 
DNA sequencing study of 120 patients with formalin-
fixed paraffin-embedded (FFPE) BBD tissues. This study 
focused on three groups, those patients who remained 
cancer-free after at least 16  years post-BBD (controls), 
and those developing estrogen receptor positive (ER+) 
or estrogen receptor negative (ER−) invasive BC can-
cers within 16  years. Analysis focused on comparison 
of controls to the cancer groups, and between ER+ and 
ER− cancers.

Methods
Cohort constructions
The Mayo Clinic Benign Breast Disease (BBD) Cohort 
includes 13,455 women, ages 18–85 who underwent 
benign biopsies at Mayo Clinic between 1967 and 2001. 
Women who had been diagnosed with invasive or in situ 
BC before or within six months of biopsy or have under-
gone risk-reducing mastectomy or breast reduction sur-
gery prior to biopsy were excluded. Among this cohort, 
a frequency-matched (by age and year of biopsy) case–
control sample was selected, where cases were defined 
as those women with BBD who subsequently went on 
to develop either ER+ or ER− BC within 16 years, and 
controls were defined as women with BBD who had not 
developed BC after at least 16 years of follow-up. Index 
benign biopsies were screened from women with ER− or 
ER+ BC and corresponding controls, matched on age at 
biopsy, year of biopsy, and length of follow-up time/time 
to BC diagnosis. After determining tissue block avail-
ability, adequate DNA amount and quality, and adequate 
sequencing quality, our final sample set for associa-
tion analysis included 42 ER+ cases, 36 ER− cases, and 
42 controls diagnosed between 1969 and 2001. Demo-
graphic and clinical characteristics were compared across 
groups using Pearson chi-square tests for categorical var-
iables and ANOVA tests for continuous variables.

DNA extraction and sequencing
DNA extraction and sequencing were performed as 
previously reported [17]. In brief, DNA was extracted 
from ten micrometer sections of FFPE or fresh fro-
zen tissue using the GeneRead DNA FFPE kit (Qiagen, 
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Germantown, MD, US). After extraction, DNA was quan-
tified using Qubit™ dsDNA BR Assay (ThermoFisher Sci-
entific, Waltham, MA, USA) while quality was assessed 
using the Advanced Analytical Fragment Analyzer™ High 
Sensitivity Large Fragment Analysis kit which calculates 
fragment length and degradation.

The QIAseq Human Breast Cancer Targeted Panel, 
which targets 93 genes relevant in BC, was used to create 
libraries using 20–40 ng of DNA as previously reported 
[17], following Qiagen guidelines for FFPE DNA. Librar-
ies were quantified and sequenced on an Illumina® HiSeq 
4000 (Illumina, San Diego, CA, USA) paired end 150-bp.

To facilitate quality control and to provide confidence 
in results derived from archival FFPE tissue, a set of tech-
nical control samples was used, and included four fresh 
snap-frozen benign breast samples (with pathologic 
assessment of cryoH&E sections) and paired FFPE tis-
sues from reduction mammoplasties, one CEPH control 
NA12891 (Coriell Institute for Medical Research, Cam-
den, NJ, USA), one FFPE BBD sample not in the sample 
set, and a positive control sample from formalin fixed 
cell lines with 11 mutations at varying allelic frequencies 
(Horizon Diagnostics LLC, Columbus, GA, USA). Vari-
ants were located within the BRAF, cKIT, EGFR, KRAS, 
NRAS and PIK3CA genes.

DNA‑seq alignment and variant calling
The Qiagen Data Portal was used for primary sequenc-
ing analysis of the samples [18]. The analysis steps 
included adapter trimming, coupling molecular tag (MT) 
sequence to the read IDs, alignment to the reference 
genome (GRCh37 build), and subsequent variant call-
ing using smCounter, a molecular tag-aware variant call-
ing algorithm. smCounter uses a Bayesian probabilistic 
model to identify variants and infer genotypes, which has 
been shown to detect low frequency variants with high 
sensitivity [19]. Sequenced reads with identical molecular 
tags were identified as PCR duplicates. Reads identified 
as PCR duplicates were collapsed to create a consen-
sus read sequence. A molecular diversity score, defined 
as the proportion of molecular-tag coverage versus raw 
sequencing coverage (100 × MT-coverage/Raw-cover-
age), was calculated for each sample. For variant calling, 
the consensus sequence was compared to the reference 
genome and a prediction index of the alleles observed 
at the molecular tag level was calculated for every target 
position. A variant was called if the prediction index of an 
allele was higher than the pre-specified prediction index 
threshold, based on 8 reads per molecular tag [19]. The 
resulting variant calls were output in the standard VCF. 
After variant calling, initial variant filtering excluded 
likely false calls due to technical factors, including 

shallow molecular tag coverage, strand bias, presence in 
low complexity regions, and/or low base quality.

Sample QC and acceptance criteria
Samples with an average unique molecular tag (UMT) 
coverage of < 20 × and with genotyping call rate of 
SNPs < 80% were excluded. For each sample, variants 
were called as genotypes based on bins of allele frequen-
cies of 0–0.2 (rare homozygote), 0.4–0.6 (heterozygote), 
and 0.8–1.0 (common homozygote), and the genotyping 
call rate was defined as the proportion of SNPs for which 
the genotype was called. The distribution of genotyp-
ing call-rate versus the mean UMT coverage is shown in 
Additional File 1: Fig. S1.

Sample identity was examined using Spearman correla-
tion of the minor allele frequency of known SNPs across 
all samples to identify those emanating from the same 
individual. For quality control, 24 samples with two to 10 
replicates were profiled independently, with a total num-
ber of 119 replicate-pairs. After strict variant filtering, 
correlation values of replicates were completely separable 
from unrelated samples; replicate samples had correla-
tion close to 1.0 (all > 0.85), whereas unrelated samples 
had correlation centered around 0.6 (all < 0.85) (see Addi-
tional File 2: Fig. S2; Metadata on the final sample set are 
presented in Additional File 3: Table S1).

Additional variant filtering and population allele frequency 
concordance
As FFPE samples are known to be prone to variant arti-
facts, additional filtering was required before further 
analysis. Utilizing paired FFPE and fresh frozen sam-
ples that we studied previously with identical methods 
[17], false discovery rate (FDR) of variant-calling was 
approximated for seven mutation types (C>A, C>G, C>T, 
C > T at CpG, T > A, T>C and T>G) (see Additional File 
4: Fig. S3). The empirical relationships between alter-
nate allele frequency (AAF) and FDR were utilized to 
determine further filtering strategies. We defined three 
sets of variants based on liberal, classical or strict filter-
ing of AAF. For the liberal set, variants with AAF < 0.05 
were removed. For the classical set, C>T mutations (with 
the exception of SNPs annotated with an rsID) with 
AAF < 0.1 were removed, while other types of mutations 
with AAF < 0.05 were removed. For the strict set, all vari-
ants with AAF < 0.1 were removed.

After additional AAF-based filtering, variant frequen-
cies in our cohort were compared with population allele 
frequencies to ensure that additional filtering strategies 
did not skew allele distribution of study samples. In par-
ticular, all the detected variants were annotated with pop-
ulation allele frequencies observed in the 1000 Genomes 
Project and the Exome Aggregation Consortium (ExAC) 
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based on internally developed bioR annotation soft-
ware [20], and were compared between the overlapping 
variants.

Gene‑level association methods
To prioritize variants for association analyses, those 
meeting any of the following criteria were removed: 1. 
Observed in common populations with minor allele 
frequency (MAF) > 0.5%, according to Genome Aggre-
gation Database (gnomAD) and Trans-Omics for Pre-
cision Medicine (TOPMED) studies [21, 22]. 2. A small 
number of variants (N = 44) variants that were common 
in BBD controls (average VMF over the controls > 0.05). 
3. Defined as low functional impact by the CAVA bioin-
formatics annotation tool [23]. In the CAVA annotation 
process, medium and high impact variants were defined 
as essential splice bases, stop gain, frameshift, nonsyn-
onymous variant, inframe indels, start codon, stop loss, 
and/or exon end (alters first or last three bases of exon).

The AAFs were summarized at each position, overall, 
and by group (ER+, ER−, control). Frequencies were also 
summarized for each gene and overall, across genes.

Gene-level analyses considered mutations in two ways: 
(1) as a continuous allele frequency, and (2) as a binary 
presence/absence of mutation variable. Gene-level analy-
ses used logistic regression to compare the sum of con-
tinuous variant allele frequencies across variants in cases 
(all cases, as well as separately in ER+ and ER−) versus 
controls. Additionally, gene-level analyses of the binary 
presence/absence of mutations across a gene were con-
ducted with SKAT-O. In addition to the default weighting 
based on variant allele frequencies, secondary analyses 
also implemented a more stringent variant weighting 
where each mutation was down-weighted according to 
its FDR, and hence C->T mutations were more heavily 
down-weighted compared to other mutation types. This 
resulted in four statistical analysis methods: SKAT-O, 
C-T down-weighted SKAT-O, logistic regression, and 
C-T down-weighted logistic regression; when combined 
with the three levels of variant AAF filtering (liberal, clas-
sic, and strict, defined above), this yielded 12 combina-
tions of statistical method and filtering criteria.

All models were adjusted for relevant covariates, 
including epithelial percentage, histologic impression, 
patient’s age, year of biopsy (including a linear term for 
year, indicator for whether the biopsy was post-1992, 
year*1992 interaction due to an FFPE processing change), 
and SNP call rate. Sensitivity analyses were performed 
for the different variant QC criteria (strict, classical, and 
liberal). Primary analyses compared all cases (ER+ and 
ER−) to controls, but secondary analyses considered 
ER+ and ER− cases separately.

In order to assess statistical significance of the gene-
level results, permutation tests were conducted. The sam-
ple labels were permuted 100 times (with the relationship 
between the covariates and group status preserved), and 
the gene-level analyses across the 12 combinations of 
variant filtering and statistical analysis method were per-
formed. Empirical p-values were calculated from the dis-
tribution of two quantities: (1) the number of genes with 
p-value < 0.05 in 4 out of 12 methods (two-sided test) and 
(2) the number of genes with p-value < 0.05 and OR < 1 
under the weighted logistic regression model with classi-
cal variant filtering (one-sided test).

Mutational signature analysis
Using the high-impact variants with classic AAF filter-
ing, a set of custom Perl scripts was used to generate a 
mutation frequency table of all SNVs across each sam-
ple to assess the of mutation types being reported. This 
mutation frequency table was subsequently used to gen-
erate plots of mutation signatures for the variants using 
Perl and R scripts (code available from GitHub reposi-
tory https://​github.​com/​Liuy12/​BBD_​gener​ead). Muta-
tional spectrums and de-novo mutational signatures were 
identified using the MutationalPatterns package (version 
1.2.1) [24]. De-novo signatures were extracted based on 
a non-negative matrix factorization (NMF) algorithm. 
Through consensus clustering, four stable de-novo muta-
tional signatures were identified and compared with 
COSMIC mutational signatures v2 (n = 30) based on 
cosine similarity (Additional File 5: Fig. S4) [25]. Signa-
ture A (QGR signature) matches the patterns identified 
in samples processed with the FFPE DNA protocol used, 
the QIAGEN GeneRead DNA FFPE Kit ("QGR") [17]. 
Signature B (FFPE signature) matches patterns observed 
in FFPE samples but not in fresh-frozen samples. Signa-
ture C (Block year signature) was highly associated with 
the year of FFPE block creation. Signature D (Residual 
signature) had no clear correspondence with previously 
found mutational signatures. The estimated signatures 
are shown in Additional File 6: Table S2.

Immunohistochemistry analysis
In all BBD samples, expression of Ki67 and CD45 was 
assessed in up to 10 normal lobules using IHC. Immu-
nostaining was performed using the following antibod-
ies: CD45 (Abcam ab10559, 1:800), Ki67 (DAKO M7240, 
1:100). Samples were deparaffinized with three changes 
of xylene, rehydrated in 95% ethanol and rinsed well in 
running distilled water. Slides were then placed in a pre-
heated Antigen Retrieval solution (pH 6.0, DAKO) for 
25 min and then cooled in the buffer for 25 min followed 
by a five-minute rinse in running distilled water. After 
the heat-inactivated epitope retrieval step, slides were 

https://github.com/Liuy12/BBD_generead
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placed on the DAKO Autostainer at room temperature 
for the following procedure. Sections were incubated 
with 3% H2O2 for five minutes to inactivate the endog-
enous peroxides and then incubated in the primary 
antibody at dilutions listed above for 60  min at room 
temperature. Sections were rinsed with Tris-buffered 
saline/Triton-X100 (TBST) wash buffer and incubated 
with the secondary antibody (Envision (+) anti-mouse 
labeled polymer (HRP, K4001) for Ki67 and Envision (+) 
anti-rabbit labeled polymer (HRP, K4003) for CD45) for 
30 min. Slides were then rinsed with TBST wash buffer 
and sections were incubated in 3,3′-diaminobenzidine 
(DAB+) (K3467, DAKO) for five minutes, counterstained 
with Gills I hematoxylin for one minute, followed by a 
three-minute tap water rinse to blue sections, dehydrated 
through graded alcohols and cleared in three changes of 
xylene and mounted with permanent mounting media. 
Slides were scanned using the Aperio™ Scanscope XT 
Slide Scanner (Leica Biosystems, Buffalo Grove, IL, USA) 
with image acquisition and staining quantitation using 
Aperio™ ImageScope Software (Leica Biosystems, Buf-
falo Grove, IL, USA). Slides were scanned at resolution 
of 0.5  µm/pixel with no downstream image processing. 
Ki67 was measured as percent positive nuclei and CD45 
was measured as an H score (a combined measure of 
the intensity and extent of staining) [26–28]. CD45 and 
Ki67 were assessed as continuous measures. Associations 
across groups were evaluated as Wilcoxon rank-sum 
tests, and associations with mutational burden (based on 

classical variant filtering) were evaluated with Spearman 
correlation.

Results
Sample characteristics
The clinicopathologic characteristics of the samples 
selected for this study are shown in Table 1. Among the 
full BBD Cohort, a frequency-matched case–control sam-
ple set of BBD biopsies was selected based on outcome in 
follow-up at 16 years: incident ER + BC (BBD-ER+), inci-
dent ER− BC (BBD-ER−) or cancer-free (BBD-control), 
matched on age at biopsy and year of biopsy or censor-
ing. Selection criteria also included availability of blocks 
with adequate tissue for DNA extraction. Severity of BBD 
was the only feature that differed significantly among the 
three groups (p = 0.026). The BBD-controls included the 
highest percentage of non-proliferative disease (n = 25; 
59.5%), while the BBD-ER− group had the highest pro-
portion of proliferative disease without atypia (n = 19; 
52.8%) and the BBD-ER+ group had the highest propor-
tion of atypical hyperplasia (n = 9; 21.4%), consistent with 
previous studies [5].

Gene‑level associations
To address potentially artefactual FFPE variants, 12 com-
binations of variant filtering strategies and statistical 
analysis methods (classical, liberal and strict variant qual-
ity control (QC) filtering, combined with C-T weighted 
and un-weighted SKAT-O and logistic regression, 

Table 1  Cohort characteristics

* Statistical comparisons for demographic variables across BBD group were conducted with Pearson’s chi-square test for categorical variables and ANOVA test for 
continuous variables

Cancer free at 16 years 
(N = 42)

ER negative BC 
(N = 36)

ER positive BC 
(N = 42)

Total (N = 120) P value*

Age 0.416

   < 45 11 (26.2%) 11 (30.6%) 7 (16.7%) 29 (24.2%)

 45–55 19 (45.2%) 14 (38.9%) 16 (38.1%) 49 (40.8%)

   > 55 12 (28.6%) 11 (30.6%) 19 (45.2%) 42 (35.0%)

Histologic impression 0.026

 Non-proliferative disease 25 (59.5%) 14 (38.9%) 19 (45.2%) 58 (48.3%)

 Proliferative disease without Atypia 16 (38.1%) 19 (52.8%) 14 (33.3%) 49 (40.8%)

 Atypical hyperplasia 1 (2.4%) 3 (8.3%) 9 (21.4%) 13 (10.8%)

Atrophy 0.086

 N-miss 2 3 3 8

 None 9 (22.5%) 13 (39.4%) 6 (15.4%) 28 (25.0%)

 Partial 16 (40.0%) 13 (39.4%) 23 (59.0%) 52 (46.4%)

 Complete 15 (37.5%) 7 (21.2%) 10 (25.6%) 32 (28.6%)

Year of BBD 0.452

 Mean (SD) 1986 (8) 1987 (8) 1988 (9) 1987 (8)

 Range 1969–1996 1970–1999 1972–2001 1969–2001
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described in Methods) were used to identify significant 
gene-level mutation burden differences between cancer 
(BBD-ER+ and BBD-ER−) and cancer-free (BBD-con-
trol) groups (Fig.  1a; Table  2). Full results are shown in 
Additional files 7–9: Tables S3–S5. No gene-level results 
were statistically significant after Bonferroni correction 
for 93 genes (p < 0.00054). Through consensus analysis of 
association results shown as Fig.  1b, 10 genes (MED12, 
MSH2, BRIP1, PMS1, GATA3, MUC16, FAM175A, EXT2, 
MLH1 and TGFB1) of nominal significance (p < 0.05) 
were found according to at least four methods. Based on 
the results of the permutation tests, the empirical p-value 
from observing 10 or more genes with nominal signifi-
cance in four out of 12 methods is 0.15.

After extensive sample- and variant-level quality con-
trol, common single nucleotide polymorphisms (SNP) 
variants detected in this cohort had highly consist-
ent allele frequency distributions when compared with 
population frequencies derived from large-scale ger-
mline sequencing studies such as 1000 Genome Project 
and Exome Aggregation Consortium (ExAC), shown as 
Fig.  2a. The concordance of detected allele frequencies 
with population frequencies were persistent even when 
variants were stratified by nucleotide substitution type 
(see Additional File 10: Fig. S5). This strong concordance 
at the population-level suggests a solid basis for the asso-
ciation analyses. When comparing overall BBD cancer 
cases (BBD-ER+ and BBD-ER−) versus BBD-controls, 
a volcano plot of gene-level association effect-sizes by 
the corresponding significance levels showed a skewed 

distribution, with more significant findings enriched for 
more mutations in cancer-free subjects (Fig.  2b). Based 
on the results of the permutation tests, the empirical 
p-value for observing 10 or more genes with nominal 
significance and OR < 1 was 0.04; hence, the increased 
mutational burden in controls is marginally statistically 
significant. By further stratifying association analysis 
by type of BC (i.e. ER+ and ER−), the association dif-
ferences were more profound when comparing BBD 
controls with BBD subjects with future ER− cancers 
than those with ER+ cancers, while the volcano plots 
remained skewed towards enrichment of protective asso-
ciations (see Additional File 11: Fig. S6).

Mutational signatures
As we and others have shown, FFPE-derived sequencing 
may have distinct variant signatures collectively [17], and 
therefore de-novo mutational signature decomposition 
was conducted based on the classical definition of filtered 
variants for the entire BBD cohort, leading to four dif-
ferent mutational signatures shown in Fig. 3a: two of the 
observed signatures were primarily enriched for “C>T” 
paraffin artifacts and highly similar to FFPE/chemistry 
signatures, which we previously identified in paired com-
parisons between matched frozen and FFPE samples [17]. 
One of the de-novo signatures (Signature-D) was found 
to be highly correlated with collection age of FFPE block 
(Fig. 3b, c). However, no statistically significant difference 
was found between this block-year associated signature 
with cancer status (Fig. 3d). Nonetheless, this highlights 

Fig. 1  Gene-level association findings between cases (BBD with future cancer events) and controls (BBD without future cancer events up to 
16 years): a analytical flows of 12 association and filtering methods. b Histogram with connected dot-plot summarizing consensus of significant 
genes detected by 12 methods
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the necessity of strict global variant quality control meas-
ures beyond variant-level checks for FFPE sequencing 
data. Furthermore, we assessed a previously published 
BBD signature that was associated with risk of triple neg-
ative BC for association in our dataset [15]; we did not 
observe presence of the signature in our sample, overall, 
or within ER+, ER−, or triple negative cases (p > 0.05, 
data not shown).

Immunohistochemistry analysis
To follow-up on the findings that overall mutation was 
higher among BBD patients who remained cancer-free, 
we sought to investigate a potential hypothesis, where 
reduced mutational diversity is associated with (1) 
increased proliferation, or (2) reduced immune response. 

To investigate these hypotheses, we performed immu-
nohistochemistry (IHC) analysis of Ki67 (as a marker 
of proliferation) and CD45 (as a marker of immune 
response) in normal lobules. Ki67 expression in normal 
lobules was very low, so analyses were not pursued fur-
ther. However, CD45 expression was lower in BBD cases 
as compared to controls (p = 0.19), although not sta-
tistically significant, and was positively associated with 
mutational burden (r = 0.48, p < 0.001), most strongly in 
controls (r = 0.56, p = 0.004; Fig. 4a–d).

Germline mutation information
Germline DNA was not available for the vast majority of 
subjects; however, a subset of 14 patients did have prior 
germline sequencing data available from other sources. 

Table 2  Association results of leading genes (top 10 genes, with P < 0.05 in 4 out of 12 methods)

P values less than two thresholds: p < 0.05 (*), p < 0.01 (**)

Gene SKAT-O p SKAT-O p, weighted Logistic Regression OR Logistic 
Regression 
p

Logistic Regression 
OR, weighted

Logistic 
Regression p, 
weighted

Analysis

MED12 0.0475* 0.0390* 0.9239 (0.8455, 0.9916) 0.0268* 0.8138 (0.66, 0.9681) 0.0189* Classic

0.0067** 0.0016** 0.9472 (0.8917, 0.9941) 0.0261* 0.8441 (0.7129, 0.9696) 0.0148* Liberal

0.0445* 0.0342* 0.9205 (0.8368, 0.9923) 0.0293* 0.8326 (0.686, 0.9721) 0.0189* Strict

MSH2 0.0203* 0.0445* 0.7539 (0.5546, 0.9418) 0.0078** 0.4294 (0.1775, 0.8518) 0.0085** Classic

0.0544 0.0856 0.8651 (0.7189, 0.9902) 0.0339* 0.618 (0.3305, 0.9584) 0.0277* Liberal

0.0284* 0.0145* 0.6938 (0.4566, 0.9331) 0.0097** 0.3202 (0.1025, 0.7632) 0.0043** Strict

BRIP1 0.0252* 0.1015 0.8686 (0.7356, 0.9874) 0.0301* 0.7081 (0.4852, 0.9707) 0.0313* Classic

0.0087** 0.0319* 0.8873 (0.7758, 0.9777) 0.0131* 0.7271 (0.5182, 0.9436) 0.0146* Liberal

0.0468* 0.0809 0.864 (0.7049, 1.002) 0.0542 0.7046 (0.4418, 0.9956) 0.0469* Strict

PMS1 0.0519 0.0935 0.8117 (0.6799, 0.949) 0.0081** 0.6126 (0.4005, 0.8929) 0.0101* Classic

0.0684 0.0842 0.8595 (0.745, 0.9704) 0.0134* 0.6628 (0.4569, 0.9149) 0.0116* Liberal

0.0165* 0.0136* 0.7846 (0.6447, 0.9309) 0.0047** 0.6053 (0.3996, 0.865) 0.0049** Strict

GATA3 0.0046** 0.2446 0.7949 (0.5809, 1.004) 0.0544 0.4899 (0.2246, 0.938) 0.0304* Classic

0.0130* 0.4957 0.8798 (0.7154, 1.043) 0.1439 0.6355 (0.3493, 1.059) 0.0832 Liberal

0.0051** 0.0175* 0.8086 (0.5848, 1.028) 0.0861 0.4766 (0.2047, 0.912) 0.0233* Strict

MUC16 0.0151* 0.0021** 0.9875 (0.9726, 0.999) 0.0327* 0.9588 (0.9153, 0.9927) 0.0157* Classic

0.1559 0.1089 0.9934 (0.9847, 1.001) 0.0746 0.9767 (0.9494, 0.9992) 0.0424* Liberal

0.1247 0.0875 0.988 (0.9723, 1) 0.0586 0.9664 (0.9259, 0.9982) 0.0376* Strict

EXT2 0.1100 0.1604 0.8305 (0.6589, 0.997) 0.0461* 0.5994 (0.3212, 1.01) 0.0549 Classic

0.0404* 0.0494* 0.8593 (0.72, 0.9822) 0.0244* 0.6348 (0.3789, 0.9543) 0.0277* Liberal

0.1435 0.1836 0.8292 (0.6447, 1.009) 0.0620 0.6434 (0.3599, 1.038) 0.0718 Strict

FAM175A 0.0657 0.1724 0.7249 (0.4568, 1.014) 0.0612 0.3819 (0.09252, 1.061) 0.0669 Classic

0.0103* 0.0181* 0.7172 (0.5108, 0.9316) 0.0095** 0.3513 (0.1179, 0.8153) 0.0114* Liberal

0.1628 0.1461 0.7465 (0.4696, 1.05) 0.0981 0.4276 (0.1126, 1.089) 0.0793 Strict

MLH1 0.1012 0.0885 0.8551 (0.7103, 1.005) 0.0573 0.6972 (0.4748, 0.9608) 0.0267* Classic

0.1320 0.0929 0.8819 (0.7573, 1.002) 0.0529 0.7201 (0.5073, 0.9604) 0.0244* Liberal

0.0895 0.0168* 0.8393 (0.672, 1.021) 0.0801 0.7335 (0.511, 0.9976) 0.0482* Strict

TGFB1 0.1689 0.1067 0.7878 (0.542, 1.077) 0.1381 0.5017 (0.1886, 1.029) 0.0610 Classic

0.0070** 0.0146* 0.7198 (0.5139, 0.9364) 0.0118* 0.4107 (0.1599, 0.8326) 0.0097** Liberal

0.6571 0.6260 0.8737 (0.5926, 1.236) 0.4487 0.6909 (0.2797, 1.412) 0.3246 Strict
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Among these 14, 12 had no pathogenic mutations in pre-
disposition genes. One BBD-ER− subject had a patho-
genic mutation in BRCA1 that was also verified with 
clinical germline testing, and that BRCA1 mutation was 
also detected in the BBD tissue in this study. One BBD-
ER+ subject had a pathogenic mutation in BLM but did 
not undergo confirmatory clinical germline testing, and 
the BLM mutation was not detected in the subject’s BBD 
tissue in this study.

Discussion
In this study, 120 individuals diagnosed with BBD were 
studied to examine the association of somatic genetic 
variation with subsequent cancer development. The BBD 
controls with at least 16  years of cancer-free follow up 
were compared with BBD patients who developed ER+ 
or ER− invasive BC within 16  years, with comparison 
also between the two cancer groups. With a relatively 
balanced distribution of future cancer status, several 
genes were shown to have consistent associations with 
development of BC using 12 statistical methods, includ-
ing SKAT-O and logistic regression in classical, liberal 
and strict variant QC schema, although these results 
were not statistically significant in permutation test-
ing. However, marginally significantly skewed gene-level 
associations towards lower mutational burden were seen 
in the overall case population and in ER− cases, support-
ing the stratified analysis for studying BC risk. Our exten-
sive variant-level and mutational signature-based quality 
control assessments also highlight the challenges for ana-
lyzing biopsy-based BBD archival collections.

Other BBD sequencing-based studies have reported no 
significant mutations in original BBD tissues, and little to 
no overlap in the subsequent invasive BC [13–15]. There 

are multiple possible reasons for the differences in results 
compared to our study. Each of these studies used sur-
rogates of normal genomes to filter the data; in one study, 
tissue adjacent to the BBD lesion was used [13], which 
may inadequately account for field effects and lead to 
over-filtering. Rather, we used population germline fre-
quencies from published SNP databases to validate our 
variant filtering and then compared the mutation spec-
trum between the three groups. Additionally, one prior 
study focused on a limited number of BBD cases with 
fibrocystic histology [14], while the other [13] included 
multiple BBD histological types. Rohan et  al. [13] used 
targeted sequencing based on a capture approach, with 
substantially lower coverage than the amplicon-based 
approach here (reported mean variant coverage of 
90.4 × compared to mean UMT coverage of 595.6 × and 
mean depth of 9701.3x), and there was little overlap 
among the genes we targeted; among our top 10 genes, 
only MED12, TGFB1, and GATA3 were assessed in their 
study; although not statistically significant, MED12 and 
TGFB1 both had higher number of mutations in con-
trols, and data for GATA3 was not shown. Soysal et  al. 
[14] reported that two “Tier 2” mutations (with features 
suggestive of fixation artefacts) in MAP3K1 and PIK3CA, 
were present in BBD as well as in the subsequent BC. 
They also reported three GATA3 mutations (one “likely 
genuine" and two Tier 2) that were found in tumors but 
not the fibrocystic lesions; we also identified GATA3 as a 
top gene in this study. A third study reported 957 muta-
tions shared between ten invasive BC and the prior BBD 
lesions [15], as well as a de-novo mutational signature 
associated with future cancer risk; however, this was not 
reproduced in our study due possibly to the limited scope 
of our sequencing panel (93 genes vs. whole-exome).

Fig. 2  Variant concordances with normal genetics finding and gene-level volcano plots: a population frequency’s variant-level (x-axis) 
concordances with observed allele frequencies in this BBD cohort (y-axis). b Volcano plots of weighted logistic regression-based odds-ratio (OR) and 
statistical significance, for all the cases versus controls, using the classic definition of AAF variant filtering
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It is notable that mutations were more common in 
benign breast tissues of women who did not subse-
quently develop cancer. Many of the top 10 genes from 
our study are known to regulate cellular integrity, with 
half being involved in DNA repair (BRIP1, FAM175A), 
and particularly mismatch repair (MLH1, MSH2, PMS1). 
Regarding possible explanations for more common muta-
tions in controls compared to cases, we hypothesize that 
cells with more DNA damage might induce an immune-
mediated response that protects against cancer develop-
ment. In support of this, it has been shown that CD45+ 
cells are present in normal breast tissue [29], are more 
abundant in BBD compared to normal breast tissues, and 
B cells are less frequent in BBD cases compared to con-
trols[30]. In this study, CD45 expression was significantly 

higher with higher mutational burden and was somewhat 
lower in this series of BBD cases compared to controls, 
albeit not reaching statistical significance. There is a 
growing literature on somatic mutations in normal and 
benign tissues [31–33] leading to questions about the 
role that somatic mutation and clonal expansion may 
play in aging and disease, and it has been proffered that 
analyses of normal and precursor lesions are needed to 
understand how these may contribute, if at all, to cancer 
and other disease development [33]. Interestingly, these 
sequencing studies of normal tissues find mutations in 
many samples that do not appear to be destined for can-
cer, and varying hypotheses have been advanced includ-
ing immune system involvement and tissue architecture 
[31]. Supporting an immune-mediated suppression of 

Fig. 3  De-novo mutational signatures of entire dataset: a four dinucleotide signatures found through NMF under the classic AAF filtering definition. 
b heatmap of found de-novo signatures’ coefficients across all samples. c Violin plots of signature-D’s coefficients with respect to block-year (after 
vs. before 1992). d Violin plots of signature-D’s coefficients with respect to sample groups (control, ER-negative, and ER-positive)



Page 10 of 12Winham et al. BMC Med Genomics          (2021) 14:185 

carcinogenesis, lower variant allele frequencies were 
noted in gene mutations with in-silico predicted neo-
antigens [31]. If such neoantigens result in mutant pro-
teins, they may elicit an immune-mediated response; 
thus examining gene expression as well as the presence of 
immune mediator cells in tissue sections would be good 
next steps. Many of the significantly associated genes in 
our study are involved in DNA repair, with potential for 
recruiting an immune response to clear cells with DNA 
damage. Whether the increased mutational load results 
in changes more likely to be immunogenic in benign tis-
sues is intriguing and is an interesting avenue for future 
research.

Strengths of this study include use of archival tis-
sues from an annotated cohort with long follow-up for 
cancer outcomes, as well as careful quality control in 
study design, methods, and the analytical plan. Close 
attention was paid to handling of these data, including 
evaluating variant allele frequency differences depend-
ing on the nucleotide substitution, combined with mul-
tiple approaches to statistical analyses, and defining 

quality control criteria based on expected variation 
differences between matched FPPE and fresh frozen 
samples. In addition to defining top genes by statistical 
significance, we added additional rigor by requiring sig-
nificance across multiple analytical approaches. Limita-
tions include the use of older FFPE tissue which is more 
prone to sequencing artifacts; molecular preservation 
in such tissues often poses challenges for analysis, par-
ticularly for older samples when reagents and process-
ing protocol were less standardized in clinical practice. 
However, while fresh or frozen tissue is more optimal 
for sequencing studies, noting the high concordance 
of single nucleotide variants (SNVs) with publicly 
available data lends confidence to our careful filtering 
approach. Furthermore, this study did not include ger-
mline sequencing data for filtering of potential somatic 
mutations in the benign tissue, nor paired sequencing 
with the subsequent tumor. Finally, due to a small sam-
ple size per group, power was limited to detect muta-
tional differences, particularly for individual variants.

Fig. 4  Expression of CD45 by group and mutational burden. CD45 is presented as an H-score. a Example staining of low CD45 (18.62). Scale is 100 
um. b Example staining of high CD45 (60.15). Scale is 100 um. c CD45 H score by group. d CD45 H score by mutational burden (classic AAF filtering)
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In summary, we identified genes suggestive of associa-
tion with later cancer status, commonly involving DNA 
repair pathways, and interestingly the variant burden 
was higher in controls than in either future ER+ or ER− 
cases. CD45 expression was associated with mutational 
burden, suggesting a possible role of immunosurveillance 
in impeding cancer development. Key gene-level find-
ings warrant future validation in large cohort studies, and 
analyses in paired benign and subsequent tumor tissue.

Conclusions
Somatic mutations were more frequent in benign breast 
tissue from women who did not develop cancer, open-
ing questions of clonal diversity or immune-mediated 
restraint on future cancer development. CD45 expression 
was positively associated with mutational burden, most 
strongly in controls. Further studies in both normal and 
premalignant tissues are needed to better understand the 
role of somatic gene mutations and their contribution to 
future cancer development.
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