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Abstract 

Background:  Hepatocellular carcinoma (HCC) is one of the most common cancers. The discovery of specific genes 
severing as biomarkers is of paramount significance for cancer diagnosis and prognosis. The high-throughput omics 
data generated by the cancer genome atlas (TCGA) consortium provides a valuable resource for the discovery of HCC 
biomarker genes. Numerous methods have been proposed to select cancer biomarkers. However, these methods 
have not investigated the robustness of identification with different feature selection techniques.

Methods:  We use six different recursive feature elimination methods to select the gene signiatures of HCC from 
TCGA liver cancer data. The genes shared in the six selected subsets are proposed as robust biomarkers. Akaike infor‑
mation criterion (AIC) is employed to explain the optimization process of feature selection, which provides a statistical 
interpretation for the feature selection in machine learning methods. And we use several methods to validate the 
screened biomarkers.

Results:  In this paper, we propose a robust method for discovering biomarker genes for HCC from gene expres‑
sion data. Specifically, we implement recursive feature elimination cross-validation (RFE-CV) methods based on six 
different classication algorithms. The overlaps in the discovered gene sets via different methods are referred as the 
identified biomarkers. We give an interpretation of the feature selection process based on machine learning using AIC 
in statistics. Furthermore, the features selected by the backward logistic stepwise regression via AIC minimum theory 
are completely contained in the identified biomarkers. Through the classification results, the superiority of interpret‑
able robust biomarker discovery method is verified.

Conclusions:  It is found that overlaps among gene subsets contain different quantitative features selected by the 
RFE-CV of 6 classifiers. The AIC values in the model selection provide a theoretical foundation for the feature selec‑
tion process of biomarker discovery via machine learning. What’s more, genes containing in more optimally selected 
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Background
The number of cancer deaths worldwide indicates 
HCC is the second leading cause in recent years [1]. 
Despite the practice of surveillance program, most of 
HCC patients are often examined in advanced stage [2]. 
Studies have shown liver cancer patients can signifi-
cantly benefit from early screening [3]. Using effective 
molecular biomarkers is one of the most efficient way 
of realizing early cancer diagnosis. The availability of 
high-throughput omics data provides unprecedented 
opportunity and challenge for discoverying diagnostic 
biomarkers for HCC. For instance, the cohort study of 
TCGA provides amount of valuable data resources for 
the searching of cancer biomarkers [4].

So far, a number of methods of feature selection 
have been proposed to identify biomarkers from high-
throughput data [5]. Joint with machine-learning-based 
classification algorithms, feature selection is a very use-
ful strategy for biomarker discovery from ultra-dimen-
sional omics data [6]. Usually, different feature selection 
methods may produce different feature ranking. Due to 
the high dimensionality of omics data, feature rankings 
have more possibilities [7]. Therefore, it is of great sig-
nificance to realize the reproducibility of biomarkers 
and the robustness of biomarker discovery. Among the 
current feature selection methods, more attention is 
paid to whether the selected biomarkers can achieve a 
good classification performance. For example, the refer-
ence [8] has compared the classification performance of 
10 kinds of machine learning algorithms. The applica-
tions of 6 kinds of machine learning methods for omics 
data have been implemented previously [9]. In addition, 
for the feature selection method of TCGA data, the ref-
erence [10] used network smoothing technology com-
bined with PCA to select features. The reference [11] 
combined multiple levels of TCGA data to find key reg-
ulators and pathways between normal and tumor sam-
ples. A comprehensive feature selection strategy based 
on fuzzy rules has been experimented on TCGA data 
[12]. In order to realize the stability and reproducibility 
of biomarkers, a method combining individual signa-
tures was proposed to improve the stability of feature 
selection [7]. However, the stability and reproducibility 
of biomarkers are still needed to be emphasized and 
strengthened in biomarker identification.

In this paper, we propose a robust method for discov-
ering biomarker genes from transcriptomic data. Spe-
cifically, we implement RFE-CV methods based on 6 
different classification algorithms, i.e., Adaboost, K-near-
est neighbor (KNN), naïve Bayes (NB), neural  network 
(NN), random forest (RF) and support vector machine 
(SVM). We find their intersections by comparing the 
subsets of features selected by different classifiers. The 
repeatability and stability of biomarker discovery can be 
achieved by using the genes in the overlapping part. Fea-
ture selection by machine learning is often regarded as a 
black-box predictive model. In Tansey’s work, the hold-
out randomization test is proposed to explain the black 
box statistically [13]. As we all known, Akaike informa-
tion criterion (AIC) is very widely used in the selection of 
statistical models [14]. Inspired by the studies of Tansey 
and Akaike, we propose to explain RFE-CV with AIC in 
statistics. For shedding light to the black box of feature 
selection, we also introduce backward logistic stepwise 
regression for comparing and verifying the machine-
learning-based feature selection process.

Methods
Figure  1 illustrates the framework of identifying cancer 
biomarkers from TCGA Liver Hepatocellular Carcinoma 
(LIHC) transcriptomic data, in which the four specific 
steps are contained.

Data preprocessing
We download the raw RNA sequencing (RNA-seq) data 
of HCC from Genomic Data Commons (GDC) using 
TCGA-Assembler 2.0 [15]. TCGA has sequenced more 
than 30 types of cancer and aims to provide a valuable 
data resource for the discovery of biomarkers [4]. For 
a proof-of-concept study, we use the RNA-seq data of 
HCC from the TCGA database which contains 20,530 
genes and 423 samples, including 50 normal samples 
and 373 tumor samples. To achieve a balanced dataset 
in machine learning, we select 50 positive samples and 
their corresponding 50 negative samples. In other words, 
a pair of positive and negative samples are from the same 
donor’s cancerous tissue and adjacent tissue respectively. 
We normalize the raw RNA-seq data using the median of 
ratios rule of DESeq2 [16] and remove the batch effects 

subsets make better biological sense and implication. The quality of feature selection is improved by the intersections 
of biomarkers selected from different classifiers. This is a general method suitable for screening biomarkers of complex 
diseases from high-throughput data.
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as a covariate. The data and code used in this paper are 
available at: http://​www.​github.​com/​zpliu​lab/​RobMa​rker.

Feature selection
Filter, wrapper and embedded techniques are three major 
types of feature selection methods [17]. In this work, the 
process of selecting biomarkers mainly consists of two 
substeps. The first is a filter and the second is a wrapper. 
In the filtering, we firstly select the genes with differential 
expression. After data normalization, the differentially 
expressed genes which meet the threshold requirements 
form the candidate pool of biomarkers [15]. We set the 
threshold condition as false discovery rate (FDR) < 0.01 
(1%), P value < 0.01 and Fold Change > 3. Secondly, we 
remove one of the redundant features  that have a high 
correlation value  with each other. For two genes, if the 
Pearson’s correlation coefficient between them is greater 
than 0.65, the gene with the higher mean absolute value 
is deleted [9].

Wrapper-based feature selection is the focus of our 
approach. Wrapper adopts the recursive feature selec-
tion method based on cross-validation to further select 
biomarkers from the gene pool which is obtained in the 
previous step. Here, 6 classical classification algorithms 
are tested, i.e., Adaboost, KNN, NB, NN, RF, SVM, which 

are combined with feature selection respectively. Each 
method is recorded to select the feature subset with the 
best classification accuracy and the least number of fea-
tures  [18].

Recursive feature elimination based on cross‑validation 
(RFE‑CV)
It has been found that biomarkers selected by RFE-
CV have better classification performance than those 
selected by RFE [19]. For details, the process of RFE-
CV can be divided into two procedures [20]. In the 
first, we apply tenfold cross-validation to get the feature 
importance ranking. For each feature, we summarize 
its importance score in every folded dataset to obtain 
an overall ranking. In the second, the features at the 
last places in the overall ranking are gradually deleted, 
until all the features are removed. The best classifica-
tion subset is determined at the end of the algorithm. 
In this study, we use the RFE with tenfold cross-valida-
tion, so that each feature gets 10 importance scores. We 
take an average of them for a consensus ranking. Each 
time a feature is deleted, the classification accuracy of 
the model is calculated accordingly. The subset with the 
highest classification accuracy and the least number of 
features is regarded as the best feature subset. For each 

Fig. 1  The framework of robust biomarker discovery for HCC

http://www.github.com/zpliulab/RobMarker
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feature, we record its importance in each fold to track 
the change of importance over different folds. Thus, 
RFE-CV provides more probabilistic estimates of the 
importance of predictive variables than ranking based 
only on a single dataset [18].

We find the measure of feature importance by classi-
fiers can directly affect the ranking of features. NN cal-
culates the feature importance based on the connection 
weights between neurons in hidden layers. It divides the 
hidden-output connection weight of each hidden neu-
ron into components related to each input neuron. The 
importance of its characteristics is based on a product 
that is the absolute value of the hidden-output layer con-
nection weight multiplied by the absolute value of the 
hidden-input layer connection weight. For the impor-
tance of a feature, the sum of its proportion in each neu-
ron is calculated based on the product. Then we calculate 
the ratio of all the features to the sum of their weights in 
each neuron [21]. In general, NN determines the relative 
importance of a feature by identifying all weighted con-
nections between the nodes of interest [21]. We set the 
number of hidden neurons of NN classifier as 8 and the 
maximum number of feedback iterations as 30 [22]. In 
RF, we set the number of decision trees to be 500 [23]. 
The calculation of feature importance is based on the 
average value of the difference between the two out-of-
pocket error rates of each decision tree [20]. After add-
ing noise to a particular feature, the features that make 
the accuracy more affected, and often more significant. 
The argument is that if a feature is important, then the 
change will greatly affect the test error. If the test error 
does not change much, then the feature is not impor-
tant. Some methods calculate the importance of features 
according to their contributions to the classification per-
formance. For instance, Adaboost, KNN, NB and SVM 
rank the importance of features according to the AUC 
values contributed by each feature. Although these four 
classifiers rank the features according to the classification 
accuracy obtained by training the model with single fea-
ture, the models established by different classifiers for the 
same feature are different because of different calculation 
rules. We set the number of weak decision tree classifi-
ers in Adaboost to 10 [24], the parameter k in KNN to 3 
[25], and the kernel function in SVM to be linear [26]. NB 
classifier has no predetermined parameters [27].

Robust biomarker discovery
For the selection of biomarkers, the repeatability of bio-
markers is as important as the classification accuracy of 
the constructed models. The feature selection method 
based on wrapper is a strategy guided by machine learn-
ing algorithm [28]. Machine learning algorithm is a black 
box, and we don’t know how it calculates the importance 

of features. When a feature is calculated using different 
importance calculations and shows good importance in 
different ways, we acknowledge that it is a feature that 
makes sense in the model. If it is only important in a 
particular method, then we think its importance is not 
universal. It is more likely to be only related to the com-
putational process of the method and not to the nature 
of the model. The aim here is to establish a method for 
robust biomarker discovery. To achieve the reproducibil-
ity of biomarkers, we regard the genes with two or more 
occurrences in the 6 selected-feature subsets as identi-
fied biomarkers. We calculate the number of intersection 
features between the two subsets and perform a hyper-
geometric test to calculate the significance P value of 
overlapping. Then we analyze the biomarkers that appear 
in different subsets several times to verify the effective-
ness of our method. The more times a feature is selected 
in different ways, the better its repeatability. We train the 
model with genes that appear more than four times and 
then make predictions on independent datasets.

Backward logistic stepwise regression with AIC
Typically, the feature selection procedure of RFE is a 
black box. To shed light on the black box, we propose 
a theoretical explanation of the selection process. We 
employ AIC value to explain the feature selection process 
in machine learning and use a backward logistic stepwise 
regression to explain the results of feature selection.

Stepwise regression is one of the main methods for 
model selection which has relatively sufficient theoretical 
basis [29]. By recording the process of feature selection, 
each step of RFE-CV process is measured by AIC. In this 
study, the stepwise regression via AIC minimum theory 
is applied to the candidate pool to select the model with 
the minimum AIC value.

In order to introduce the maximum likelihood method 
into the multi-model selection problem, Akaike proposed 
AIC which is suitable for a wide range of problem. It 
makes us use the backward stepwise regression method 
combined with AIC [29]. The problem we interested is a 
binary classification, so we choose logistic regression for 
an easy explanation. Logistic regression uses the method 
of maximizing likelihood estimation and gradient descent 
method to solve parameters to achieve the purpose of 
data dichotomy. The goal is to find the best fitting model 
to describe the relationship between dependent variables 
and a set of independent (predicted or interpreted) vari-
ables [30].

Firstly, we put all features in the candidate set into the 
model. Secondly, logistic regression is performed on 
these features [31]. The algorithm tries to remove one of 
the independent variables from the model to see if there 
is a significant change in the AIC values. And then it 
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removes the variable that minimizes AIC. This process 
is repeated until no arguments meet the elimination cri-
teria. Our goal is to find a model with the smallest AIC 
value.

AIC is widely used in the model selection in statistics 
[14]. When the goodness of fit of the model is the same 
degree, the model with fewer variables is preferred [14]. 
The parsimony principle of model selection is similar 
to that of RFE-CV. For completeness, we make a brief 
introduction of the calculation process of AIC. More 
detailed calculation steps refer to the supplementary 
material.

Suppose that a random variable Y  has a prob-
ability density function f (y|θ) , and θ is the param-
eter vector. The likelihood function of θ is defined as 
L(θ) = f (y1|θ)f (y2|θ) . . . f (yN |θ) . The g(y) is the prob-
ability density function that describes the true distri-
bution of Y  . Here 

∧

θ  is considered as the estimate of θ 
that maximizes the logarithmic likelihood function 
l(θ) = ln L(θ) . Because of l(θ) =

∑

ln f (yi|θ) , then we 
can get

We introduce m =
max L(θ0)

max L(
∧

θ)
 by means of the methods in 

the literature [14]. Then we get

When N → ∞ , −2 lnm asymptotically obeys the chi-
square distribution of t degrees of freedom. The t is the 
dimension of the parameter vector θ . In other words, it is 
E{2[l(

∧

θ)− l(θ0)])} = t . The formulas are as follows

From Formula (3), we know that the adjacent shape of 
2l(θ) at θ =

∧

θ  can be approximated by the adjacent shape 
of 2E∗l(θ) at θ = θ0 . 2l(θ) and 2E∗l(θ) are approximated 
by quadric surfaces with vertices 

∧

θ  and θ0 . That means 
that 2E∗l(θ0) is t higher than 2E∗l(

∧

θ) on average. So the 
estimate of E{2E∗l(

∧

θ)} = 2NE∗E ln f (Y |
∧

θ) is 2l(
∧

θ)− 2t . 
Then we can get

(1)

1

N
l(θ) → E ln f (Y |θ) =

∫

g(y) ln f (y|θ), N → ∞.

(2)−2 lnm = −2 ln
max L(θ0)

max L(
∧

θ)

= �



ln
f (y|

∧

θ)

f (y|θ0)





2

.

(3)

2l(
∧

θ) = 2� ln f (yi|
∧

θ) = 2N

∫

f (yi|
∧

θ) ln f (yi|
∧

θ)dy

2E∗l(θ0) = 2�

∫

f (xi|θ0) ln f (xi|θ0)dx

= 2N

∫

f (xi|θ0) ln f (xi|θ0)dx.

When there is a big difference between the two models, 
the first term plays a major role in the difference. When 
the models are not very different, the second term plays 
a major role. A more detailed derivation can be found in 
the Additional file 1.

Results
Classification and feature selection
We obtain the 6 best classification subsets correspond-
ing to the 6 machine learning algorithms. The feature 
subsets contain the least number of features but can 
enable the machine learning algorithms to achieve their 
best classification performances individually. When 
each classifier reaches its maximum classification accu-
racy, we obtain its classification performance. Five 
evaluation parameters, sensitivity (SN), specificity (SP), 
F1-score, accuracy (ACC) and AUC (area under curve) 
are used. The ROC curves are shown in Fig. 2. The cor-
responding evaluation metrics are shown in Table  1. 
From them, we find that each classifier achieves good 
classification performance. The classification accu-
racy of NB and RF reaches 0.99, i.e., only one sample 
is misclassified. It demonstrates the effectiveness of our 
method in selecting biomarkers for classifying HCC 
and control samples.

Because of the different ways of calculating feature 
importance, the 6 RFE-CV methods select the best sub-
set individually. Thus, the selected feature subsets con-
tain different genes. In the feature selection process, 
we will iteratively obtain a new model after remov-
ing a feature. In order to make full use of all samples, 

(4)AIC = −2l(
∧

θ)+ 2t.
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Fig. 2  ROC curves corresponding to the best subsets selected by 6 
classification algorithms
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we implement tenfold cross-validation classification 
for the new model. By changing the number of fea-
tures for a model, different classification accuracy can 
be obtained. Figure  3 illustrates the correspondence 
between classification accuracy and feature number. 
The red points annotate the best feature subset with the 
highest classification accuracy and the least number of 
genes. Among them, the subset selected by NB contains 
the least number of features, namely 12 genes, followed 
by 13 genes selected by RF classifier.

Discovery of biomarkers
We compare 6 RFE-CV methods and find a lot of over-
laps between the optimal gene subsets. The specific rela-
tionship between them is shown in Fig. 4. As described, 
genes in two or more selected subsets are regarded as the 
identified biomarkers. A total of 110 genes are selected by 
the former 6 methods, and 60 genes are contained in the 
overlaps, which are considered as biomarkers. Among 
them, 32 genes are contained in 3 or more optimal fea-
ture subsets, which are considered to have more func-
tional significance.

Table 1  The classification performance of the 6 classifiers

Method # of gene SN SP F1-score ACC​ AUC​

Adaboost 21 0.940 1.00 0.969 0.970 0.994

KNN 62 0.960 1.00 0.979 0.980 0.999

NB 12 0.980 1.00 0.989 0.990 1.00

NN 63 0.960 1.00 0.979 0.980 1.00

RF 13 0.980 1.00 0.989 0.990 0.993

SVM 57 0.960 1.00 0.979 0.980 0.996

Fig. 3  The process of RFE-CV in 6 classifiers. Red point refers to these features with the maximum accuracy
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Firstly, the 6 optimal subsets have a common bio-
marker, SKAP1. Also, SKAP1 is the last feature of the 
stepwise regression deletion, although it is not included 
in the final four biomarkers identified by stepwise regres-
sion. Studies have revealed that SKAP1 is a gene involved 
in the biological process of immune T cells [32]. It is also 
shown to be related to the signaling pathways of HCC 
[33].

Secondly, we find that the four optimal feature sub-
sets selected by Adaboost, KNN, NB and SVM classifi-
ers have inclusion relations. Among them, subsets with 
a larger number of features contain the subsets with a 
smaller number of features. The reason is underlying 
their same feature ranking method. The four classifiers 
measure the importance of each feature based on the 
AUC value when each feature is classified separately. By 

comparing the genes in the four identified optimal fea-
ture subsets, we find most of these features rank at the 
same places in the four classifiers. The important genes 
identified by different classifiers indicate the effec-
tiveness and consistency of different feature selection 
strategies.

Moreover, we find that there are a lot of overlaps 
between the features selected by RF and the features 
selected by the four classifiers. 6 out of 12 features 
selected by NB appear in the 13 features selected by 
RF. The feature subsets selected by NN and KNN have 
the largest intersection, with 16 features. The overlap 
between two subsets is shown in Table 2. We employ the 
hypergeometric distribution test for achieving its statisti-
cal significance P value [34].

Fig. 4  The overlap status of the 6 optimal feature subsets

Table 2  The number of overlapping features and the corresponding significance P values

Overlap Adaboost KNN NB NN RF SVM SR

Adaboost 21 21 12 4 8 21 2

KNN < 1e−6 62 12 16 12 57 4

NB < 1e−6 < 1e−6 12 2 6 12 2

NN 6e-2 < 1e−6 2.1e-1 63 3 14 3

RF < 1e−6 < 1e−6 < 1e−6 6e-2 13 11 0

SVM < 1e−6 < 1e−6 < 1e−6 1.43e−5 < 1e−6 57 4

SR 5.36e-4 1.82e-5 9.95e-4 1.3e-3 1 1.55e-5 4
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Some biomarkers that appear more frequently in the 
selected subsets are considered as important feature 
genes, which should be explored their biological func-
tional significance in later sections.

Statistical interpretation of feature selection in machine 
learning
In the candidate biomarker pool, we perform a back-
ward logistic stepwise regression on 886 differentially 
expressed genes [35]. The AIC values are used to meas-
ure the quality of the model iteratively. After putting all 
the features in the model, we remove sequentially the 
ones that reduce the AIC value with the fastest speed. 
At the end of the algorithm, the final best model has the 
smallest AIC value. It selects four feature genes, namely 
COL9A1, PHOSPHO1, EGFL6 and OXT. All the four 
features are included in the biomarker set selected 
by the former 6 REF-CV methods. Since the stepwise 
regression selects very few features, we analyze it from 
another perspective. We find that the relatively impor-
tant features deleted near the end of stepwise regres-
sion are actually included in the selected biomarker 
set. Moreover, the P values of these features are very 
small. It indidates they are significantly differentially 
expressed genes. From the beginning of stepwise 
regression, there is a tendency for the latter deletion 
feature to have a smaller P value. Table 3 lists the last-
deleted five features in the stepwise regression process, 
and we can determine that they are indeed included in 
our biomarker collection.

We also analyze the overlap between the four features 
selected by the backward logistic stepwise regression and 
the optimal subsets of each classifier. The four features of 
the backward logistic stepwise regression are fully con-
tained in the feature subsets of KNN and SVM, and three 
features are in the subset of NN. The overlap of backward 
logistic stepwise regression and the other optimal subsets 
are illustrated in Tables 2 and 3 respectively.

Synchronization with the iterative elimination of RFE-
CV, for each deletion of a feature in the iteration, logistic 
regression is performed on the new model and its AIC 
value is calculated correspondingly. By calculating AIC 

values, we statistically interprete the feature selection 
process for each classifier. The relationship between AIC 
values and feature numbers is shown in Fig. 5.

As illustrated in Fig.  5, AIC values gradually decrease 
with the decreasing number of features. Except the NN 
classifier, AIC values based on the other five classifiers 
all decline at a slope of 2. When the number of features 
is large, the features fit the model roughly the same. The 
number of features has a large impact on the AIC value. 
When the AIC value drops to a certain point (< 20), it 
tends to increase sharply. The turning point has the mini-
mum AIC value. When the number of features in the 
subset is less than the turning point, the goodness of fit 
to the model will deteriorate. In this case, the number 
of features will not be the dominant factor, thus the AIC 
value will increase.

In Fig.  5, we also annotate the AIC values of models 
when each classifier identifies its optimal feature subset. 
NB has the lowest AIC value, followed by RF. Although 
the classification performances obtained by the models 
trained by KNN, NN and SVM are good, their corre-
sponding minimum AIC values are relatively large due 
to the large number of features. Using simple machine 
learning methods to make feature selection, biomark-
ers cannot be excellently selected because redundant 
features may still exist. Therefore, AIC can be combined 
with the RFE method as a mentor, guiding the feature 
selection process for robust biomarker discovery.

According to the change trend of AIC value shown in 
Fig. 5, we theoretically explain the feature selection pro-
cess. As is known to all, the feature selection process 
based on AIC is a process in which the goodness of model 
fit increases and the number of features decreases [14]. 
Through our method, we prove that the feature selection 
process of biomarker discovery based on machine learn-
ing is also such a process.

Table 3  The last 5 genes deleted by stepwise regression

Step Deviance Resid. Dev P value AIC

ID2B 7.72e−11 1.91e−09 1.73e−17 18 + 1.91e−09

PMP2 4.55e−10 2.37e−10 1.05e−19 16 + 2.37e−10

MUC6 5.45e−10 2.91e−10 1.59e−07 14 + 2.91e−10

C1QL1 1.03e−09 3.94e−09 1.74e−24 12 + 3.94e−09

SKAP1 1.25e−08 1.64e−08 4.19e−13 10 + 1.64e−08
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Validation of biomarkers
We verify the effectiveness of the identified biomarkers in 
three ways, which will also prove the effectiveness of our 
proposed method. The genes in the intersection are iden-
tified as the robust biomarkers. The higher the frequency 
of gene emergence, the more likely it is to precisely diag-
nose the disease.

Firstly, we make a statistics of the biological functions 
of some important genes. Some genes have been verified 
to be closely associated with the occurrence and devel-
opment of HCC. Table  4 lists some representative bio-
marker genes in the overlaps. From the dysfunctions of 
genes listed in Table 4, we can conclude that the method 
of identifying biomarkers from overlaps is effective.

Secondly, we validate the features selected by the best-
performing classifiers on independent data sets. Based 
on the former results, we find that NB-RFE-CV achieves 

the best classification performance. Specifically, it selects 
the least number of feature subsets and obtain a better 
AUC value than the other five classifiers. Moreover, the 
optimal subset corresponding to NB for logistic regres-
sion has the minimum AIC value. To verify the results 
are not caused by overfitting, we use 12 genes selected 
by NB to classify samples of an independent dataset. We 
download another HCC dataset from GEO in NCBI with 
ID GSE25097 [9]. We use the former 100 TCGA samples 
as the training set and GSE25097 as the testing data set. 
Figure 6a shows the classification performance of the 12 
features. The metrics of SN, SP, F1-score, ACC and AUC 
are also shown. The results of cross-dataset validation 
demonstrate that the former good classification ability is 
not caused by overfitting, and that our proposed method 
of identifying biomarkers is efficient.

Table 4  Some genes and their dysfunctions from the interactions of selected feature subsets of different methods

Gene Subset Function

SKAP1 6 methods SKAP1 encodes a T cell adaptor protein and it is involved in HCC signaling pathways [32, 33]

EPHB1 SVM, KNN, NN Ephrin-B1 participates in the tumor progression through promoting the formation of new vessels of 
HCC [36]

STC2 NN, SVM, KNN STC2 is overexpressed in HCC and acts as a potential oncoprotein [37]

CDHR2 NN, SVM, KNN CDHR2 is highly expressed in HCC para-carcinoma tissue, but is weakly expressed in tumors. It is 
found to inhibit tumor growth [38]

FAM134B NN, SVM, KNN FAM134B works as a tumor inhibitor and inhibits cancer growth in vitro and in vivo [39]

MUC6 RF, NN, SVM, KNN MUC6 encodes a member of the mucin protein family. It is a biomarker gene of many cancers [40]

PHOSPHO1 Adaboost, NB, NN, SVM, KNN, Step‑
wise Regression

PHOSPHO1 is associated with hepatitis B [41]

OXT NN, SVM, KNN, Stepwise Regression OXT is found to regulate cell proliferation. It is a key differential gene in nonalcoholic fatty liver 
disease [42]

Fig. 6  The ROC curves of the trained NB classifier in the independent data GSE25097
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What’s more, it is also necessary to check the model 
trained by overlap features on independent datasets. 
There are 17 features that appear more than 4 times 
in the 6 feature subsets. We use these 17 features to 
train on the balanced data set of TCGA and test on the 
independent data set GSE25097. In the same way, NB 
classifier is selected. Figure 6b shows the classification 
perforamcne of 17 features.

We compare the two models and find that 17 fea-
tures in overlap could achieve better classification per-
formance. The latter’s five evaluation indicators are all 
higher than the former ones. Our proposed method 
greatly improves the elimination of false positive fea-
ture genes. To sum up, the three verifications further 
justify the effectiveness of our proposed method.

Discussion
In this paper, we proposed a robust biomarker discov-
ery framework via multiple feature selection methods. 
The set of differentially expressed genes provides a 
pool of biomarker candidates. We applied the RFE-CV 
feature selection methods based on 6 different clas-
sification algorithms to select diagnostic biomarkers 
from the candidate pool. The 6 classifiers respectively 
get the importance ranking of features and further 
obtain the best feature subsets. Theoreticallly, AIC 
was employed to explain the feature selection process 
of machine learning. In the process of feature reduc-
tion, AIC value also decreases, indicating that our fea-
ture selection process is statistically interpretable. For 
the 6 optimal feature subsets selected, we found out 
their overlaps that serve as  robust biomarkers. These 
discovered biomarkers have been shown to be closely 
related to the occurrence and development of HCC.

To achieve a statistical explanation of machine learn-
ing and feature selection, the genes in the candidate 
pool are simultaneously regressed step by step accord-
ing to the AIC minimum theory. We found the subset 
of genes selected in the adapative regression are com-
pletely included in the subset of genes selected by fea-
ture selection in machine learning. The consistency 
further indicates the important features play an impor-
tant role in training different methods. According to 
the trend of AIC value changing in the feature selec-
tion process, it can be found that the selected features 
may not be the most concise one only by machine 
learning. For example, the optimal subsets selected by 
NN, KNN and SVM contain relatively larger number of 
biomarker genes. In the model fitting of these selected 
subsets, the relationship between the AIC goodness 
and the number of features is not optimal. It is clear 
that some redundant feature genes still exist in these 
subsets. Ideally, the model with a minimum AIC value 

should be selected to ensure the best classification. 
Although our method can explain the feature selection 
process based on machine learning, the exploration of 
explicable feature selection process should go further. 
We will also continue to study the interpretability of 
feature selection.

Moreover, we found feature genes contained in more 
subsets make more biological sense. The quality of fea-
ture selection is improved by the intersection of bio-
markers. Through the previous experiments, we can 
prove that our method greatly improves the classifica-
tion performance, especially the problem of high false 
positives that the current classification model often 
achieves.

Conclusion
In summary, we presented a method for robust bio-
marker discovery from RNA-seq data based on feature 
selection with statistical validation. Not only do we pro-
vide a statistical interpretation of the machine-learning-
based feature selection process, but also the results of 
gene function enrichment analysis and the validation of 
independent data sets provide a compelling argument 
for our approach. More importantly, we proposed a solu-
tion to the problem of feature selection instability. Our 
method is not only applicable to the discovery of HCC 
biomarkers, but also to the discovery of other disease 
biomarkers.
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