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Abstract

Background: The current understanding of the genetic basis of complex human diseases is that they are caused
and affected by many common and rare genetic variants. A considerable number of the disease-associated variants
have been identified by Genome Wide Association Studies, however, they can explain only a small proportion of
heritability. One of the possible reasons for the missing heritability is that many undiscovered disease-causing variants
are weakly associated with the disease. This can pose serious challenges to many statistical methods, which seems to
be only capable of identifying disease-associated variants with relatively stronger coefficients.

Results: In order to help identify weaker variants, we propose a novel statistical method, Constrained Sparse
multi-locus Linear Mixed Model (CS-LMM) that aims to uncover genetic variants of weaker associations by
incorporating known associations as a prior knowledge in the model. Moreover, CS-LMM accounts for polygenic
effects as well as corrects for complex relatednesses. Our simulation experiments show that CS-LMM outperforms
other competing existing methods in various settings when the combinations of MAFs and coefficients reflect
different scenarios in complex human diseases.

Conclusions: We also apply our method to the GWAS data of alcoholism and Alzheimer’s disease and exploratively
discover several SNPs. Many of these discoveries are supported through literature survey. Furthermore, our association
results strengthen the belief in genetic links between alcoholism and Alzheimer’s disease.
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Background
Genome Wide Association Studies (GWAS) have allowed
people to address one of the most fundamental tasks
in genetic research, which is to uncover associations
between genetic variants and complex traits. Many efforts
have been made which employ traditional statistical test-
ing methods such as the Wald test to test the association
of each individual SNP with a certain human disease, yet
there are still a large amount of missing heritability to be
discovered [1], which is due to the relatively low statistical
power of these methods. In order to increase the power of
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the association mapping, many statistical approaches have
been proposed.

For example, linear regression and the Lasso vari-
ants have been introduced to account for polygenic
effects commonly seen in complex human diseases [2, 3].
Following the success of Lasso methods, the Adaptive
Lasso with the oracle property under some regular-
ity conditions [4], and the Precision Lasso that works
with correlated and linearly dependent variables [3] were
proposed.

However, a natural limitation of the Lasso-based
approaches is that they do not account for confounding
effects raised by population structure and other complex
relatedness in the GWAS data. In order to correct such
effects, linear mixed models (LMMs) have been devel-
oped and received much attention in the recent years
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[5, 6]. Recently, Segural et al introduced a multi-locus
LMM that utilizes step-wise selection to model polyge-
netic effects [7]. Further Liu et al extended the multi-locus
LMM by dividing the model into fixed effect model and
random effect model and use them iteratively [8]. On
an alternative approach, recent studies also proposed a
multi-locus extension to the standard LMM to account
for polygenic effects with the introduction of priors on
coefficients [9, 10].

Despite the success of the aforementioned methods
achieved, these methods are not effective in identifying
genetic variants with weaker coefficients. Considering the
current notion that many complex human diseases are
likely to be caused and affected by many–rather than a
few–genetic variants with small coefficients on a certain
disease [11] and yet only a limited number of signifi-
cant disease-associated variants have been identified from
GWAS, we conjecture that the variants with small coef-
ficients are difficult to identify given the presence of the
variants with much larger coefficients, and that they will
become easier to detect when conditioning on frequently
reported SNPs which usually have larger coefficients. Fol-
lowing this belief, we propose a novel statistical method,
Constrained Sparse Multi-locus Linear Mixed Model (CS-
LMM), [12, 13] to uncover novel genetic variants of
smaller coefficients by: 1) incorporating those frequently
reported or known variants as a prior knowledge to the
model, 2) accounting for polygenic association with a mul-
tivariate sparse regularized regression, and 3) correcting
for population structure and complex relatedness (includ-
ing family structure and other cypticx relatedness).

The performance of the CS-LMM model is evaluated
using extensive simulation experiments. We also apply
our CS-LMM model to an alcoholism and an Alzheimer’s
Disease GWAS data, with the prior knowledge of the
reported SNPs associated with each disease. We identify
a set of SNPs having weak associations with each dis-
ease. Most of our findings are consistent with previously
published results.

Methods
We formally introduce our model named Constrained
Sparse Multi-locus Linear Mixed Model (CS-LMM) that
aims to uncover genetic variants with weaker associa-
tions of a disease by incorporating variants of known
associations as a prior knowledge.

Model
Given frequently reported or known variants (will be
called known variants later for simplicity) with relatively
larger coefficients, our model CS-LMM aims to uncover
novel variants of smaller coefficients. In order to achieve
this, let X denote genotype data, Z denote population
identification, y denote phenotype data (we first assume

quantitative traits here, and discuss the case-control data
or binary traits later), and let K denote the set of the
variants that are known or frequently reported. The “coef-
ficient” is mathematically defined as the coefficient of
linear regression [14]. With these settings, we have our
CS-LMM model formally presented as:

y = Xβ + Zu + ε

u ∼ N(0, Iσu)

ε ∼ N(0, Iσε)

subject to ||β||1 ≤ c,
|βi| > 0, ∀i ∈ K,
|βj| < |βi|, ∀i ∈ K, j /∈ K

where β is the fixed genetic effects; u denotes the random
population effects; ε is natural noise. We also introduce a
constraint term ||β||1 ≤ c with the belief that only a subset
of the SNPs are associated with the phenotype, where c is
a constant.

Algorithm
We proceed to introduce a three-phase algorithm to esti-
mate the parameter β , σu, and σε in the CS-LMM model.

• Step I. Fitting known variants of larger
coefficients: We first fit a linear regression model to
determine the coefficients (magnitude of βi) for the
known SNPs, by solving the following equation:

β̂i = arg min
βi

||y −
∑

i
Xiβi||22, ∀i ∈ K (1)

• Step II. Correcting for population stratification
and complex relatedness: Then, we consider to
estimate σu and σε for population stratification. Since
y = Xβ + Zu + ε (u ∼ N(0, σu) and ε ∼ N(0, σε)) is
equivalent to y ∼ N(Xβ , ZZTσ 2

u + Iσ 2
ε ), we can

estimate the variance term with a maximum
likelihood estimation of Gaussian distribution by
maximizing the following:

l(σu, σε |y′, G) ∝ N(y′ − ȳ′|0, σ 2
u ZZT + σ 2

ε I) (2)

where ȳ′ is the empirical mean of y′ that is calculated
by

y′ = y −
∑

i
Xiβ̂i (3)

and ZZT is the genomic relationship matrix that is
estimated as ZZT = (Xj)(Xj)T , following the
convention [15].
We then solve Eq. 2 for σu and σε , where we can
adopt the trick of introducing δ = σ 2

ε

σ 2
u

to replace σ 2
u

for more efficient optimization [16].
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Finally, we can correct the population stratification
by rotating the original data:

X̃j = (diag(�) + δI)−
1
2 VT Xj

ỹ′ = (diag(�) + δI)−
1
2 VT y′

where ZZT = U�VT is the singular value
decomposition.

• Step III. Fitting variants with smaller coefficients:
Finally, we try to use the rest SNPs to explain the
residual phenotypes, with solving the following:

β̂j = arg min
βj

||ỹ′ −
∑

j
X̃jβj||22

subject to |βj| < min |βi|, ∀j ∀i

To solve this problem efficiently, we relax this
constrain to a Lasso constrain as follows:

β̂j = arg min
βj

||ỹ′ −
∑

j
X̃jβj||22 +

∑

j
λ||βj||1 (4)

This new Lasso problem is solved via proximal
gradient descent [17].

Stability Selection In Step III, to achieve a stable
variable selection, we follow the regime of stability
selection [18]: we run the algorithm 100 times, each
time with half of the data points sampled without
replacement from the original data. The final selected
variables are the ones that are chosen more than 75%
of chances over 100 runs.

Implementation
The implementation of CS-LMM is available as a python
software. Without installation, one can run the software
with a single command line. It takes the Plink binary
data as input. An extra file containing the known asso-
ciation variants is recommended. If this extra file is not
available, CS-LMM will first employ standard testing
methods such as Wald test to select variants with the
strongest signals. In order to identify a specific num-
ber (denoted as K) of SNPs associated with the disease,
users can inquire the model with the number K or with
a specific weight of the regularization term (λ in Eq. 4).
If neither the number of SNPs nor the regularization
weight is specified, the software will estimate the param-
eters using cross validation. The detailed instruction on
how to use the software can be found in the Addi-
tional file 1. The implementation is available as a stan-
dalone software1. The computational complexity and
scalability scales linearly with the number of samples
and SNPs.

1https://github.com/HaohanWang/CS-LMM

Results
Simulations
In order to evaluate the performance of CS-LMM, we
compare it with several existing association methods
regarding their ability to uncover weaker associations.
In particular, we compare CS-LMM to the following
methods:

• Standard Wald test with the standard FDR control
using the Benjamini–Hochberg (BH) procedure [19]:
the most popular test used in GWA studies;

• L1-regularized linear regression (i.e. the Lasso);
• Adaptive Lasso: an extension of Lasso that weighs the

regularization term [4] (enabled by the method
introduced in [20] for high-dimensional data);

• Precision Lasso: a novel improvement of Lasso that is
more stable and consistent than Lasso [3];

• Linear mixed model: the most popular method of
population stratification;

• Sparse linear mixed model (sparse LMM): a
combination of sparse variable selection and
population stratification [9, 21].

• Multi-locus linear mixed model (MLMM): an
improvement of linear mixed model with step-wise
selection to enable polygenetic modelling [7].

• Fixed and random model Circulating Probability
Unification (FarmCPU): a novel extension of MLMM
that iteratively uses fixed effect model and random
effect model [8]

Data generation
We generate the simulation data comprehensively to
reflect real world scenarios of genetic data with popu-
lation structure under different minor allele frequencies
(MAFs) and coefficients. We use the SimuPop [22] soft-
ware to simulate the real world genomic data with pop-
ulation structure. We simulate p SNPs for n individuals,
denoted as X, and let Xj denote the jth SNP. These indi-
viduals are from g populations and each population has f
subpopulation.

In our simulation experiments, the SNPs come from two
sets with two different MAFs: 20% of these SNPs are from
one set (denoted as Set v) which has an MAF as mv while
the rest of the 80% SNPs are from the other set (denoted
as Set u) which has a MAF as mu. We assume there are
k SNPs associated with the phenotype, of which, 20% are
from set v and the rest are from set u.

In addition, the known SNPs in our simulation have
higher MAFs and larger coefficients than the SNPs to be
discovered. More specifically, for a SNP j, if j ∈ k and j ∈ v,
it simulates the SNP that is already known to be associ-
ated with the trait and it has coefficient βj = evcj. On the
other hand, if j ∈ k and j ∈ u, SNP j simulates the undis-
covered associated SNP that has coefficient βj = eucj. If

https://github.com/HaohanWang/CS-LMM


Wang et al. BMC Medical Genomics 2020, 13(Suppl 3):19 Page 4 of 10

j �∈ k, SNP j simulates a SNP that is not associated with
the phenotype and has the coefficient βj = 0cj = 0. cj is
the base coefficient, sampled from a uniform distribution
U(0, 1). This simulation process is showed in Fig. 1.

We generate the associated phenotype y as y = Xβ +
ε, where ε ∼ N(0, 1) is the natural noise. We further
transform y into a binary phenotype with a Binomial sam-
pling procedure with the probability of success achieved
through feeding y into the inverse logit function.

Following [1], we conduct experiments with a variety of
the settings with different combinations of MAFs (mu =
0.005, 0.01), coefficients (eu = 5, 10, 25) of the SNPs to be
discovered, and heritability (0.1, 0.3, 0.5, 0.7) of the pheno-
type. For the known SNPs, we keep mv = 0.1 and ev = 50.
We choose n = 500, p = 500000, and k = 10 for the
following experiments. For each configuration of the data,
we repeat the experiments 10 times with different random
seeds, and the reported result is based on the union of the
results from all runs.

Evaluation
To conduct a fair comparison, we evaluate these models
only regarding their ability to uncover the associated SNPs
that are not already known to CS-LMM, as CS-LMM
takes the known SNPs as a prior knowledge. For each
method, we follow the convention to select the parameter
λ (the weight of regularizer), which leads to the desired
number of the selected variables (denoted as K) [3, 23].
This helps to avoid overly complex models, which tend
to be selected by automatic measures such as cross val-
idation, the Akaike information criterion (AIC), and the
Bayesian information criterion (BIC) [24]. Moreover, it
is known that the performance of parameter estimation
and prediction are not directly coupled, e.g., as mentioned
in [25] and the hyperparameter selected through cross-

validation tend to report more false positives [3]. In our
experiments, we select exactly K = k variables.

Results
Figure 2 shows the precision-recall curve of CS-LMM
compared to the Wald test, Lasso, Adaptive Lasso,
Precision Lasso, LMM, sparse LMM, MLMM, and
FarmCPU. The figure shows 24 experiments with three
choices of coefficients (eu) across two choices of MAFs
mu of the SNPs to be discovered, and four choices of her-
itability. In particular, plots in Figure 2 represent MAFs
and coefficients correspond to heritability 0.1 (a), 0.3 (b),
0.5(c), and 0.7(d).

Figure 2a represents the most challenging case since
the heratibility is as small as 0.1. All the methods do not
behave well in this setting, and MLMM seems to have
tiny advantages over other methods. Figure 2b and c illus-
trate the more realistic cases with heritabilities set as 0.3
and 0.5. Within this set-up, we can see CS-LMM has clear
advantages over other methods. Sparse LMM and vanilla
LMM are also behaving well, but still inferior to CS-
LMM. Figure 2d represents a simple scenario where the
heritability is 0.7. In this setting, simpler univeriate test-
ing methods, such as Wald and LMM, can also perform
well, and CS-LMM behave roughly slightly shy of these
univariate testing methods. In general, CS-LMM behave
better than the competing methods in most settings of the
experiments.

Other experiments Other than the main experiment
shown in Fig. 2, we have tested our methods in a
larger range of choices of coefficients and MAF, tested
the methods when we have different choices of k, and
tested the methods under a larger number of samples.

Fig. 1 An illustration of the generation process of SNP array data. This figure shows the data is generated with three populations as an example
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Fig. 2 Simulation results of CS-LMM compared to other models in terms of the precision-recall curve. The x-axis is recall and y-axis is precision. This
figure is split into four components based on the heritability. a: heritability is 0.1; b heritability is 0.3; c heritability is 0.5; d heritability is 0.7;

We also reported other other evaluation criteria includ-
ing true positives, false positives and area under ROC
(auROC) under a broader setting of the experiment. There
more thorough tests are included in Additional file 1:
Section 4–7.

Taken together, these results show that CS-LMM out-
performs other competing existing approaches in most
cases, in particular, in the settings when the heratibility
is at an intermediate level. Notably, these are also the
settings that resemble real life scenarios for complex
human diseases, and thus demonstrating the necessity and
promising usages of CS-LMM in the real life.

Application to real data
Alcoholism study
We apply our method CS-LMM to the case-control
GWAS data collected from subjects with and without
alcoholism by The Center for Education and Drug Abuse
Research (CEDAR) at the University of Pittsburgh. The
data set consists of 383 individuals that include 305 sub-
jects reported to be addicted to the consumption of alco-
hol through their lifetime. The data consists of 234 male
subjects and 149 female subjects. The ages of these sub-
jects range from 21 to 31. There are 519,138 genotyped
SNPs in the data. The missing values are imputed as the
mode of corresponding SNPs. To take the full advantage

of our method, we collect the SNPs associated with alco-
holism that are reported in GWAS Catalog [26] with
p-values smaller than 1e-8 as the known SNPs to build in
the CS-LMM model. The four SNPs we collect include:
rs1789891, rs7590720, rs2835872, and rs4478858. With
these known alcoholism-associated SNPs fed into CS-
LMM, we run the model to uncover additional SNPs that
have weaker associations with alcoholism.

We inquire 20 SNPs from the model, and CS-LMM
returns 21 predicted SNPs when converges, including
the 4 known SNPs we feed into the model as a prior
knowledge, and thus the model discovers 17 alcoholism-
associated SNPs. Table 1 lists the SNPs associated with
alcoholism that are identified by CS-LMM. Since it is chal-
lenging to verify the reliability of these findings experi-
mentally, we instead conduct a literature survey to find out
whether the genes where these SNPs reside are linked to
alcoholism or related disorders. Even though this type of
“verification” may not provide conclusive evidence about
the association between the identified SNPs and the dis-
ease, it can provide clues about whether the findings are
worth further investigation.

Encouragingly, all the SNPs we discovered are linked
to alcoholism, through the gene these SNPs reside in,
in previously published results (shown in Table 1). For
example, the 5th, the 6th, and the 17th SNPs are within
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Table 1 The top SNPs that CS-LMM identifies in an alcoholism study with four known associations

Rank SNP Chr Chr Position Est. Coe. MAF Gene Disease [Literature]

1 rs1789891 4 99329262 4.2E3 0.15 ADH1B ALC [27]

2 rs7590720 2 216033935 1.7E3 0.29 PECR ALC [28]; AD [29]

3 rs2835872 21 37654970 1.5E3 0.25 KCNJ6 ALC [30]; DS [31]

4 rs4478858 1 31411078 1.4E3 0.44 SERINC2 ALC [32]

5 rs1789924 4 99353129 -2.2E-4 0.33 ADH1C ALC [33]

6 rs698 4 99339632 -2.2E-4 0.33 ADH1C ALC [33]

7 rs2851300 4 99358667 -2.2E-4 0.33

8 rs10483038 21 37652469 -1.6E-4 0.25 KCNJ6 ALC [30]; DS [31]

9 rs1344694 2 216028914 -1.3E-4 0.32 PECR ALC [28]; AD [29]

10 rs4147536 4 99317955 -7.6E-5 0.30 ADH1B ALC [27]

11 rs12482570 21 37705475 -5.9E-5 0.28 KCNJ6 ALC [30]; DS [31]

12 rs857975 21 37629311 -5.8E-5 0.28 KCNJ6 ALC [30]; DS [31]

13 rs4147544 4 99213357 -5.7E-5 0.45 ADH6 ALC [34]

14 rs702860 21 37636327 -5.6E-5 0.26 KCNJ6 ALC [30]; DS [31]

15 rs2835853 21 37642590 -5.6E-5 0.26 KCNJ6 ALC [30]; DS [31]

16 rs717859 21 37640500 -5.6E-5 0.26 KCNJ6 ALC [30]; DS [31]

17 rs11499823 4 99353592 -5.6E-5 0.12 ADH1C ALC [33]

18 rs2835910 21 37713604 -5.5E-5 0.30 KCNJ6 ALC [30]; DS [31]

19 rs4355398 4 99237168 -3.8E-5 0.25

20 rs2187483 4 99212946 -9.7E-7 0.38 ADH6 ALC [34]

21 rs2835831 21 37614931 -6.9E-7 0.30

The SNPs are ranked by the absolute values of their estimated coefficients. The first four SNPs with the largest coefficients in the upper panel are known SNPs that our model
CS-LMM takes as prior knowledge. The rest SNPs in the lower panel are ones predicted by the model. The MAFs reported in the table are calculated using the case-control
alcoholism GWAS data. The information of whether a SNP is located within a region of a gene is taken from the Database for Single Nucleotide Polymorphisms (dbSNP) [35],
and listed in the ’Gene’ column. Abbreviations: ALC, Alcoholism; AD, Alzheimer’s Disease; DS, Down Syndrome; Est. Coe.: Estimated Coefficients. Note that the literature
support may refer to how the genes that the corresponding SNPs reside in are related to the phenotype, instead of the SNPs themselves. See discussions in Section
Alcoholism Study for details

the region of the gene ADH1C, which encodes class I
alcohol dehydrogenase, gamma subunit, a member of the
alcohol dehydrogenase family. ADH1C has been shown
to be associated with alcoholism in different populations
[33]. Also, there are seven different SNPs residing within
the region of KCNJ6, which encodes a member of the
G protein-coupled inwardly-rectifying potassium chan-
nel. KCNJ6 is also reported to be associated with alco-
holism previously [30]. The 9th SNP resides within the
region of PECR. Interestingly, previous evidence shows
that PECR is not only associated with alcoholism [28],
but also plays some role in Alzheimer’s disease [29]. A
previous study reported that the protein level of PECR
is significantly altered in the cortical lipid rafts of the
murine model of AD, compared to the control mice [29].
This result is consistent with a previous study suggesting
associations between daily alcohol users and Alzheimer’s
patients [36].

The 10th SNP is within the region of ADH1B, which is
also known to be related with alcoholism. The 13th SNP

and the 20th SNP are within in the region of gene ADH6,
which is also known as an alcohol dependence gene [34].

Alzheimer’s disease study
Encouraged by our results from the alcoholism asso-
ciation mapping, we take a step further to investigate
whether there is a genetic link between alcoholism and
AD. We apply our method to a late-onset AD dataset
provided by Harvard Brain Tissue Resource Center and
Merck Research Laboratories [37]. The genotype data
was generated from 540 subjects, and consists of the
measurements for about 500,000 SNPs. There are 82 male
subjects and 87 female subjects. The gender of the rest
patients are unidentified. There are 366 subjects diag-
nosed with AD. The average age of these subjects is 56.
The missing values are imputed as the mode of the cor-
responding SNPs. We use the two SNPs, rs2075650 (gene
APOE) and rs157580 (gene TOMM40) as a prior knowl-
edge to build into CS-LMM. These two SNPs are reported
to be associated with AD with p-value less than 1e-20 in
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GWAS Catalog [26]. We inquire the model for 20 SNPs
that are associated with AD, and 22 SNPs are reported.
The results are shown in Table 2. The reason that we use
different thresholds (1e-20 for Alzheimer’s disease and 1e-
8 for Alcoholism) to choose SNPs are prior knowledge is
mainly due to the fact that Alzheimer’s disease is studied
much more extensively than alcoholism in GWAS catalog,
and p-values for SNPs that are reported to be associated
with Alzheimer’s disease tend to be smaller than those
for alcoholism. We verify our findings following the same
logic presented in the previous section.

Among the 19 SNPs associated with AD in Table 2, we
found that the 6th SNP within gene ABCA9 is previously
reported associated with AD [41], confirming again that
our method CS-LMM can identify biologically meaning-
ful variants. Also noticeably, the 15th SNP resides within
gene ESRRG, which encodes estrogen related recep-
tor γ . Interestingly, evidence suggests that ERRγ plays
key an role in alcohol-induced oxidative stress [42, 43].
This result also potentially verifies the existence of the
pleiotropic effects between alcoholism and AD.

Since this short list of SNPs shows a promising appli-
cation of CS-LMM, we also apply CS-LMM to identify a
longer list of 200 SNPs for further studies. The longer list
is reported in Additional file 1 (Section S2 and S3).

We also apply the competing existing methods to these
two data sets, none of these methods identify a list of SNPs
that are consistent with published results to the extent that
CS-LMM achieves.

Discussion
We developed a novel method: Constrained Sparse multi-
locus Linear Mixed Model (CS-LMM) that conditions
on the associations that have already been discovered to
identify disease-associated SNPs with weaker signals. Our
CS-LMM model accounts for polygenic effects as well
as corrects for complex relatedness such as population
structure, family structure and cryptic relatedness. Our
simulation experiments show that CS-LMM outperforms
other competing existing methods in terms of uncovering
the variants with weaker signals in various settings which
reflect real life scenarios for common and rare diseases.

Table 2 The top SNPs that CS-LMM identifies in an AD study with two known associations

Rank SNP Chr Chr Position Est. Coe. MAF Gene Disease [Literature]

1 rs2075650 19 44892362 0.21 0.18 APOE AD [38]

2 rs157580 19 44892009 0.02 0.27 TOMM40 AD [39]

3 rs10027926 4 3412927 -8.3E-11 0.14 RGS12 SCZ [40]

4 rs12641989 4 3418113 -7.8E-11 0.14 RGS12 SCZ [40]

5 rs3088231 4 3420484 -7.5E-11 0.13 RGS12 SCZ [40]

6 rs10512523 17 69044919 5.2E-11 0.28 ABCA9 AD [41]

7 rs4076949 1 234066399 4.2E-11 0.18 SLC35F3

8 rs874418 4 3440342 -3.9E-11 0.19 HGFAC

9 rs6842419 4 3475572 -3.2E-11 0.16 DOK7

10 rs16844383 4 3445516 -2.9E-11 0.21 HGFAC

11 rs12131508 1 234017193 1.7E-11 0.17 SLC35F3

12 rs12506821 4 3282833 -1.6E-11 0.16

13 rs11485175 1 222437868 1.4E-11 0.23

14 rs584507 10 6489788 1.2E-11 0.24 PRKCQ

15 rs12563692 1 216818264 -1.2E-11 0.30 ESRRG ALC [42, 43]

16 rs6446731 4 3283024 -1.1E-11 0.26

17 rs7984051 13 70233817 -8.1E-12 0.25

18 rs2327771 20 13295734 3.0E-12 0.29 ISM1

19 rs7548651 1 234012812 2.4E-12 0.20 SLC35F3

20 rs4330674 8 133209259 -1.2E-12 0.24 WISP1

21 rs16885750 5 56578982 -8.1E-13 0.12 C5orf67

22 rs938412 3 188571269 3.6E-13 0.31 LPP

The SNPs are ranked by the absolute values of their estimated coefficients. The first two SNPs with largest coefficients are known SNPs the model takes as a prior knowledge.
The rest are SNPs predicted by the model. The MAFs reported in the table are calculated using the AD GWAS data. The information of whether a SNP is located within a
region of a gene is taken from the dbSNP. Abbreviations: ALC, Alchoholism; AD, Alzheimer’s Disease; SCZ, Schizophrenia; Est. Coe.: Estimated Coefficients. Note that the
literature support may refer to how the genes that the corresponding SNPs reside in are related to the phenotype, instead of the SNPs themselves. See discussions in Section
Alzheimer’s Disease Study for details.
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Interestingly, in the case of ’rare variants with weak coef-
ficients’, which is categorized as the most challenging
case in [1, 44], CS-LMM is superior to other compet-
ing methods. Our simulations also show that CS-LMM
can particularly outperforms other methods consistently
in terms of controlling false positives.

Furthermore, we apply CS-LMM to alcoholism and AD
studies. For about top 20 SNPs associated with either
alcoholism or AD that CS-LMM identifies, many of the
SNPs reside within genes that were previously implicated
in the corresponding diseases. Interestingly, our results
further verify the pleiotropic effects between alcoholism
and AD. The results indicate that two alcoholism-
associated SNPs, rs7590720 (previously known) and
rs1344694 (newly discovered), reside in PECR. The pro-
tein level of PECR was shown to be abnormally altered
in a murine model of AD compared to the control mice,
suggesting the involvement of PECR in the disease mech-
anism of AD. Similarly, our results also show that a novel
AD-associated SNP, rs12563692, resides in ESRRG which
encodes estrogen related receptor γ . Notably, ERRγ plays
key an role in alcohol-induced oxidative stress and liver
injury.

One interesting aspect regarding CS-LMM is about the
three-phase learning algorithm we develop for estimating
the parameters of the model. Two alternative strategies
of learning the parameters are: 1) directly solving it as
a convex optimization problem with explicit constrains;
and 2) solving it as a standard Lasso with relaxation
on the regularization on known associations. We tested
these two algorithms in simulations, and our three-phase
learning algorithm outperforms these two alternative
strategies.

To tailor CS-LMM for case-control data or binary traits,
a simple extension can be made that replaces the lin-
ear regression cost function with logistic regression cost
function. Interestingly, our results indicates that CS-LMM
works well with case-control data as it is (data not shown),
without any extensions required. In fact, extending CS-
LMM to logistic regression (or any other generalized
linear models with a nontrivial link function) will affect
the results adversely. For a generalized linear model, we
believe CS-LMM will only function as desire when the
link function is identity.

Conclusions
In summary, we have proposed and developed a novel
software tool, CS-LMM, for disease association mapping
which takes into account genetic variants of known asso-
ciations, polygenic effects, as well as population structure
and complex relatedness. The results from our simulation
experiments and real data analysis demonstrate that CS-
LMM can be served as an effective tool for association
studies for complex human diseases.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12920-020-0667-4.

Additional file 1: Supplementary of Discovering Weaker Genetic
Associations Guided by Known Associations, with Application to Alcoholism
and Alzheimer’s Disease Studies. The file has instructions of using the
software and extra experimental results.
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