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Abstract

Background: Multiple acyl-CoA dehydrogenase deficiency (MADD), previously called glutaric aciduria type II, is a
rare congenital metabolic disorder of fatty acids and amino acids oxidation, with recessive autosomal transmission.
The prevalence in the general population is estimated to be 9/1,000,000 and the prevalence at birth approximately
1/200,000. The clinical features of this disease are divided into three groups of symptoms linked to a defect in
electron transfer flavoprotein (ETF) metabolism. In this case report, we present new pathogenic variations in one of
the two ETF protein subunits, called electron transfer flavoprotein alpha (ETFA), in a childhood-stage patient with
no antecedent.

Case presentation: A five-year-old child was admitted to the paediatric emergency unit for seizures without fever.
He was unconscious due to hypoglycaemia confirmed by laboratory analyses. At birth, he was a eutrophic full-term
new-born with a normal APGAR index (score for appearance, pulse, grimace, activity, and respiration). He had one
older brother and no parental consanguinity was reported. A slight speech acquisition delay was observed a few
months before his admission, but he had no schooling problems. MADD was suspected based on urinary organic
acids and plasma acylcarnitine analyses and later confirmed by genetic analysis, which showed previously unreported
ETFA gene variations, both heterozygous (c.354C > A (p.Asn118Lys) and c.652G > A (p.Val218Met) variations). Treatment
was based on avoiding fasting and a slow carbohydrate-rich evening meal associated with L-carnitine supplementation
(approximately 100 mg/kg/day) for several weeks. This treatment was maintained and associated with riboflavin
supplementation (approximately 150 mg/day). During follow up, the patient exhibited normal development and
normal scholastic performance, with no decompensation.

Conclusion: This case report describes new pathogenic variations of the ETFA gene. These compound heterozygous
mutations induce the production of altered proteins, leading to a mild form of MADD.
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Background
Multiple acyl-CoA dehydrogenase deficiency (MADD;
OMIM #231680), previously called glutaric aciduria type
II, is a rare congenital metabolic disorder of fatty acids
and amino acids oxidation, with recessive autosomal
transmission. First recognized in 1976, its prevalence in
the general population is approximately 9/1,000,000 and
1/200,000 live births [1].
Mitochondrial fatty acids oxidation and amino acids me-

tabolism are affected in MADD. These disorders are linked
to a dysfunction of electron transfer flavoprotein (ETF) [2].
Normally, electrons generated by fatty acids oxidation in the
mitochondrial matrix are first transferred to ETF and then
electron transfer flavoprotein dehydrogenase (ETFDH=
ETF-Ubiquinone-oxidoreductase = ETF-QO). Finally, the
electrons are transported to coenzyme Q, located in the
inner mitochondrial membrane. These electrons feed oxida-
tive phosphorylation to produce ATP. ETF, which is a
heterodimeric protein, is composed of two subunits: alpha
(ETFA) and beta (ETFB). EFTA is composed of two domains
and ETFB of one. Several mutations in the ETFA, ETFB, and
ETFDH genes have already been described and associated
with variable clinical presentations of the disease.
The clinical features of MADD can be classified into

three phenotypes: i) type I, a neonatal form with con-
genital anomalies, such as facial dysmorphism and renal
cysts associated with severe hypoglycaemia, acidosis,
hypotonia, and hepatomegaly, with a poor outcome in
the first days of life; ii) type II, also present in early
neonatal life, without congenital anomalies, for which
survival does not exceed a few months; and iii) type III,
which has variable symptoms, often much milder than
those of the two other types, which begin during child-
hood or early adulthood. Type III shows an intermittent
course, with severe hypoketotic hypoglycaemia and
hyperammonaemia, often associated with fatigability and
hepatomegaly during decompensation episodes. It is also
characterized by an energy deficiency and the accumula-
tion of toxic intermediates. Treatment for this form
generally consists of avoiding fasting combined with
riboflavin supplementation (Vitamin B2). This treatment
is particularly recommended for patients expressing
ETFDH gene mutations [3]. Here, we report new patho-
genic variations of the ETFA gene associated with a mild
form of MADD.

Case presentation
A five-year-old child was admitted for seizures without
fever. No personal or familial antecedents nor parental
consanguinity were reported. He had one older brother
and had been a full-term eutrophic baby with a normal
vitality index (APGAR) at birth. Normal early psycho-
motor development had been recorded. Only a slight
delay in speech acquisition had been observed a few

months before emergency admission, without any hear-
ing or schooling problems.
The circumstances were as follows. After a very active

day and no evening meal, the boy was found uncon-
scious and experiencing tonic-clonic seizures the follow-
ing morning. In the emergency room, his vital signs
were normal, with a Glasgow score of 7. However, gly-
caemia was 0.3 g/L (30 mg/dL, control range (CR) 0.6 to
1 g/l). Despite glucose supplementation (30% intraven-
ous), he exhibited only a slight gain in consciousness
and limited improvement. A second hypoglycaemic
episode (0.19 g/L, 19 mg/dL) again led to tonic -clonic
movements and unconsciousness. Orotracheal intub-
ation was performed, restoring normal oxygen satur-
ation, but was associated with tachycardia of 140 bpm
and low blood pressure (83/36 mmHg). However, no
abnormality of the heart, digestive track, or skin was ob-
served and no organomegaly was found. Except for the
loss of consciousness, the neurological examination was
normal. Laboratory tests showed uncompensated meta-
bolic acidosis and hyperammonaemia at 116 μmol/L
(CR < 55 μmol/L). Cerebrospinal fluid biological marker,
plasma glycaemic cycle marker (glycaemia/insulin/C-
peptide), and cortisol/ACTH hormone levels were all
normal. However, total and free carnitine plasma levels
were markedly low: 5 μmol/L (CR 43 to 65 μmol/L) and
3 μmol/L (CR 30 to 40 μmol/L), respectively.
These findings all suggested decompensation of a meta-

bolic disease, which was thus explored by metabolic profiling
of plasma and urine samples at the Clinical Biochemistry De-
partments of the Limoges and Lyon University Hospitals.
The amino acids profile in plasma was largely non-
informative. However, the urinary organic acids profile (per-
formed by Gas chromatography – mass spectroscopy)
showed high levels of several organic acids, such as dicarbox-
ylic acids and glutaric acid (Table 1). In addition, a peak of
suberylglycine was detected, along with ketosis revealed by
high levels of acetoacetic acid and 3 hydroxybutyric acid.
Hypo-carnitinemia was associated with a pathological acyl-
carnitine profile (performed by tandem mass spectroscopy),

Table 1 Urinary organic acids profile analysis performed by Gas
chromatography – mass spectroscopy

Urinary concentrations in the
patient (mmol/mol of creatinine)

Control
Range

Adipic acid 1004.2 ↑↑↑ < 4.7

Suberic acid 131.8 ↑↑ < 1.9

Sebacic acid 137.9 ↑ < 9

Glutaric acid 56.0 ↑↑ < 2

Ethylmalonic acid 65.9 ↑ < 8.7

2-hydroxyglutaric acid 33.5 ↑ < 16.4

3-hydroxyglutaric acid 12.5 ↑↑ < 0.4

Hexanoylglycine 20.1 ↑ < 4
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which showed slightly elevated levels of medium-length acyl-
carnitine chains, particularly octanoyl (0.6 μmol/L, CR < 0.3)
and decanoylcarnitine (1.1 μmol/L, CR < 0.5). After L-
carnitine supplementation (100mg/kg/day), the levels of free
and total carnitine increased significantly, rising from 3 to
65 μmol/L and 5 to 85 μmol/L, respectively. The acylcarni-
tine profile also showed elevated levels of short and medium-
length chains (butyrylcarnitine (C4): 1.6 μmol/L (CR< 0.6),
octanoylcarnitine (C8): 1.0 (CR < 0.3), decanoylcarnitine
(C10): 1.0 (CR < 0.5), and tetradecenoylcarnitine (C14:1): 0.3
(CR < 0.2)). Despite the absence of elevated levels of glutaryl-
carnitine (C5) in the acylcarnitine profiles, these alterations
pointed towards MADD, a riboflavin metabolism defect or a
medium-chain acyl-coenzyme A dehydrogenase deficiency
(MCAD). Based on these findings, we analysed genes in-
volved in multiple acyl-CoA dehydrogenase deficiency (ETFA
(NM_000126), ETFB (NM_001985), and ETFDH (NM_
004453)) and riboflavin transport and metabolism (SLC52A1
(NM_017986), SLC52A2 (NM_024531), SLC52A3 (NM_
033409), SLC25A32 (NM_030780), FLAD1 (NM_025207),
and RFK (NM_018339)) by next generation sequencing
(NGS) approach. A library was obtained using a custom
panel (NimbleGen SeqCap EZ Technology (Roche)) target-
ing exons and exon-intron boundaries (+/− 25 bp). Sequen-
cing was performed on a NextSeq500 (Illumina) sequencer.
Coverage was 100% at a depth of 30X and the bioinformatic
pipeline allowed SNV and CNV detection. The diagnosis of
MADD was confirmed by the finding of two new heterozy-
gous ETFA substitutions, c.354C >A (p.Asn118Lys) and
c.652G>A (p.Val218Met). Sanger sequencing was per-
formed to confirm these pathogenic variants. No other
pathogenic genetic variations were detected using an
NGS-specific panel.
Treatment was based on a recommendation of avoid-

ing fasting, a slow-release carbohydrate-rich evening
meal, and L-carnitine supplementation (approximately
100 mg/kg/day). This treatment was maintained and as-
sociated with riboflavin supplementation (approximately
150 mg/day). This treatment appeared to be sufficient, as
the patient exhibited normal development and scholastic
performance, with no other metabolic crises during the
following months.

Discussion and conclusion
Multiple acyl-CoA dehydrogenase deficiency exhibits
varying clinical symptoms in childhood. This disease has
a lower prevalence than that of other diseases involved
in the dysfunction of mitochondrial β oxidation, such as
MCAD (1/14,600), which was highly suspected in this
case before the urinary organic acids profile was
obtained. Analysis of the urinary glutaric acid and 2-
hydroxyglutaric levels is crucial to distinguish MADD
from MCAD. Normal levels direct the diagnosis towards
MCAD, whereas mild or high levels direct the diagnosis

towards a mild or a severe form of MADD, respectively
[4]. Clinical and biological findings observed in a ribofla-
vin metabolism deficit can also mimic those observed in
MADD. Indeed, riboflavin is a hydrophilic vitamin in-
volved in flavin adenine dinucleotide (FAD) synthesis, the
prosthetic redox group of the heterodimeric ETFA/ETFB,
allowing electron transfer. Confirmation of the diagnosis
of MADD thus relies on genetic testing of the ETF and
ETF-QO encoding genes, as well as those involved in ribo-
flavin metabolism. Various genes can be mutated and are
known to promote the reported findings, including those
that encode ETFA, ETFB, ETFDH, the three cytoplasmic
transporters of riboflavin (SLC52A1, SLC52A2, SLC52A3),
the mitochondrial transporter of riboflavin (SLC25A32),
and FAD synthetase (FLAD1).
In the present case, we identified substitutions in the

ETFA gene, whereas sequencing of the other genes men-
tioned above showed no variations after enrichment by
capture of the coding regions. The originality of this
work is based on the description of new genetic varia-
tions which can contribute to explaining the role of the
various amino acids involved in the enzymatic activity of
ETFA. According to Grünert et al., only 5% of MADD
patients diagnosed after a few years of life carry an ETFA
variation. The main genes that are generally involved are
ETFDH (93%) and, to a lesser extent, ETFB (2%) [5].
ETF is a heterodimeric protein consisting of two sub-
units, with no covalent bonds: ETFA (domain I and II)
and ETFB (domain III). FAD, which is crucial for ETF
activity, is also known to be a cofactor involved in the
assembly and stability of the ETF complex, preventing
its proteolytic digestion [6]. In addition to FAD, the en-
zymatic site of ETF is characterized by a direct inter-
action with adenosine monophosphate (AMP) inside
domain III. Several studies have described the critical
role of AMP in stabilising the active three-dimensional
form of the ETF heterodimer involved in the interaction
between the alpha and beta subunits and FAD [7].
The ETFA gene is located on chromosome 15q23–25

and contains 12 exons. The variations found in this pa-
tient were c.354C > A and c.652G > A, which induce
p.Asn118Lys and p.Val218Met substitutions, respect-
ively. The c.354C > A variation (p.Asn118Lys), located at
the beginning of exon 5, has never been described in
affected patients and is not reported in the GnomAD
database. Moreover, according to Alamut Visual analysis,
this variation is predicted to be pathogenic by two of the
following three software: Mutation Taster and Poly-
phen2 versus SIFT. The c.652G > A variation (p.Val218-
Met), located on exon 7, has been detected twice among
251,428 alleles in GnomAD. It is predicted to be ‘prob-
ably damaging’ by the three mentioned prediction tools.
Genetic investigation of the parents allowed confirm-
ation of a compound heterozygous variation form in this
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patient, as the father carries the c.354C > A variation and
the mother the c.652G > A variation. However, both par-
ents have dominant normal alleles, with no symptom-
atology. In addition, the CADD phred score for
c.354C > A and c.652G > A are 28.1 (pathogenic) and 33
(highly pathogenic), respectively [8]. There is no genetic
information concerning the patient’s brother, who is
clinically healthy.
We investigated the pathogenicity of these variations

using ETFA and ETFB 3D protein models to study the
potential effect of the two variations (Fig. 1) [9]. We de-
termined the probable interface between the two subunit
proteins using the python interface residues script [10].
The c.354C > A (p.Asn118Lys) variation (orange) is
located at the interface between the two subunits and
would mainly disturb heterodimerisation. The c.652G >
A (p.Val218Met) variation (red) is positioned in a β
sheet and is characterized by a valine substituted by a
methionine. According to Dynamut software, which pre-
dicts the impact of mutations on protein conformation,
flexibility, and stability, this variation could destabilize
the 3D structure of the ETFA protein and then disturb
its redox function [11]. Thus, these two variations would
together induce a pathological phenotype. However, the
patient did not exhibit MADD symptoms before the

episode of decompensation. However, patients with the
mild form of MADD often describe muscular weakness,
fatigability, nausea, and vomiting because of suboptimal
fatty-acid β oxidation in the mitochondria. During the
decompensation episode reported here, the patient ex-
hibited seizures resistant to traditional anti-convulsive
treatment and partial recovery after intravenous glucose
injection. The chromatographic profile of urinary or-
ganic acids was contributive and characterized by high
levels of glutaric acid, 2-hydroxyglutaric acid, and dicar-
boxylic acids associated with high levels of short and
medium acylcarnitine chains (C4 to C14) in the plasma.
Clinical examination was normal, without common
signs, such as hepatomegaly, hypotonia, or muscular
pain during effort. No muscular or liver biopsies were
performed after obtaining the genetic results to avoid
such an invasive exam. However, such biopsies are gen-
erally only performed to quantify the remaining enzym-
atic activity or measure the accumulation of adipocytes
in the liver, typically found in this disease.
In 2003, Olsen et al. reported a clear relationship be-

tween the phenotype and genotype in MADD [12].
Homozygous patients, exhibiting a nonsense mutation
with amino acids substitutions near the enzymatic site of
ETF, showed neonatal onset of MADD, with a severe

Fig. 1 Three-dimensional representation of ETF, a heterodimeric protein composed of two subunits with no covalent bond: ETFA (domain I and
II) and ETFB (domain III). The ETFA chain is represented in dark blue, the ETFB chain in light blue, and the ligands AMP in light green and FAD in
dark green. The orange ball represents the c.354C > A (p.Asn118Lys) variation and the red ball c.652G > A (p.Val218Met)
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phenotype and poor residual enzyme activity (from < 3
to 12% remaining activity). However, if mutations affect
a single allele that is not directly involved in the enzym-
atic activity of ETF, patients exhibit a mild form, with a
late onset during childhood or even adulthood. The
common symptoms are less severe and are sporadic,
characterized mainly by fatigability during episodes of
stress. However, the disease can progress towards
muscle lesions and respiratory dysfunction, as well as
pancreatitis. In the case reported here, the young age of
the patient may explain the lack of these types of
symptoms.
Riboflavin supplementation is generally proposed for

the treatment of MADD, particularly when ETFDH is
deficient, associated with the strict avoidance of fasting
and high intake of slow-release carbohydrates in the
evening. Mild activity and sports are recommended for
these patients. D,L-3hydroxybutyrate treatment has also
been proposed for riboflavin resistant forms to promote
the consumption of ketone bodies [13]. Silmara de
Moraes et al. showed that L-carnitine treatment has
protective affects against DNA damage in long chain 3-
hydroxyacyl-CoA dehydrogenase deficiency, MCAD, and
MADD [14]. The authors suggested that L-carnitine
could be used as systematic supplementation for these
disorders. In addition, El-Gharbawy and Vockley showed
that the treatment effect may not be so clear during an
episode of MADD. They advised avoiding fasting and
medium-chain triglyceride (MCT) oil as supplementa-
tion and to combine L-carnitine and glycine intake with
a low-fat and protein diet [15]. According to the recent
literature, L-carnitine supplementation may provide ben-
efits at several levels. Indeed, it induces a neuroprotec-
tive effect in the central nervous system, as described for
microglial and endothelial cells of mice with Parkinson’s
disease [16]. In addition, carnitine prevents sensory
neuron death in peripheral nerve injury and accelerates
regeneration [17] and exhibits antioxidant activity in
erythrocytes [18]. In our case, the five-year-old patient
exhibited normal cognitive development following good
compliance and the avoidance of fasting.
This case reports the description of new pathogenic

variatnts of the ETFA gene, a gene usually associated
with severe forms of the disease but associated in this
case with a mild form of MADD. The compound hetero-
zygous mutations (p.Asn118Lys and p.Val218Met) in the
ETFA gene induce the production of moderately altered
proteins, leading to a weakly pathogenic form. These
findings emphasize the need for further studies on the
roles and activity of ETFA.
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