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Abstract

Background: DNA methylation is a common chemical modification of DNA in the carcinogenesis of hepatocellular
carcinoma (HCQ).

Methods: In this bioinformatics analysis, 348 liver cancer samples were collected from the Cancer Genome Atlas
(TCGA) database to analyse specific DNA methylation sites that affect the prognosis of HCC patients.

Results: 10,699 CpG sites (CpGs) that were significantly related to the prognosis of patients were clustered
into 7 subgroups, and the samples of each subgroup were significantly different in various clinical
pathological data. In addition, by calculating the level of methylation sites in each subgroup, 119 methylation
sites (corresponding to 105 genes) were selected as specific methylation sites within the subgroups.
Moreover, genes in the corresponding promoter regions in which the above specific methylation sites were
located were subjected to signalling pathway enrichment analysis, and it was discovered that these genes
were enriched in the biological pathways that were reported to be closely correlated with HCC. Additionally,
the transcription factor enrichment analysis revealed that these genes were mainly enriched in the
transcription factor KROX. A naive Bayesian classification model was used to construct a prognostic model for
HCC, and the training and test data sets were used for independent verification and testing.

Conclusion: This classification method can well reflect the heterogeneity of HCC samples and help to
develop personalized treatment and accurately predict the prognosis of patients.
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Background

The liver is the greatest digestive and endocrine organ in
the human body, and primary HCC, which is character-
ized by easy metastasis and strong invasion, is one of the
most commonly seen malignant tumours in the clinic,
with a low 5-year survival rate [1]. HCC has become the
second major malignant tumour that threatens human
life [2]. In China, the leading aetiology of HCC is viral
hepatitis, among which hepatitis B and hepatitis C are
the most common, while alcoholic liver disease (ALD) is
dominant in western countries [3]. In recent years, an
increasing number of HCC cases with unknown reasons
has been diagnosed, showing a younger trend [4]. In
addition, with the advancement of HCC research, it has
been discovered that epigenetic changes [5], including
DNA methylation, histone modification and aberrant
miRNA expression, play core roles in HCC genesis,
wherein HCC genesis is related to abnormal DNA
methylation [6]. A large amount of literature has indi-
cated that DNA methylation represents a series of early
and most frequent molecular behaviours during the
HCC genesis process [7]. DNA methylation accumulates
with disease progression and is currently regarded as an
indication of malignant HCC [8]. Therefore, obtaining
samples from HCC patients after diagnosis, carrying out
specific analyses, and mining the specific biomarkers are
the key to prognostic assessment, classification deter-
mination, recurrence judgement, and early selection of
appropriate therapeutics and treatments.

DNA methylation refers to the process in which me-
thyl groups are transferred onto the 5’-position carbon
atom in the cytosine of the DNA CpG sequence to form
5-methylcytosine, with S-adenosylmethionine as the
donor under the catalysis of DNA methyltransferases
(DNMTs include three types, namely, DNMT1, DNMT2
and DNMT3) [9]. Hypermethylation of CpG islands is
related to the silencing of tumour suppressor gene
expression, which plays a key role during the early
tumourigenesis process [10]. Additionally, the univer-
sally low methylation level of the tumour genome is
closely associated with the activation of oncogenes,
changes in chromatin structure, and the loss of basic
groups; moreover, it is also closely correlated with
tumour invasion, metastasis and prognosis [11]. Cur-
rently, research has verified that genome-wide low DNA
methylation is an important mechanism responsible for
early HCC formation and is also an important cause of
early chromatin structural changes in non-cirrhosis
HCC. The low methylation of genes such as AKTS3,
CD147, LINE1 and SFRP1 has been proven to be signifi-
cantly correlated with the survival, tumour volume and
malignant grade of HCC patients [12—14]. Moreover, the
silencing of tumour suppressor genes and the loss of
DNA repair function in HCC are closely correlated with
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the high methylation of promoter CpG islands, which
prevents the timely repair of DNA damage, thus result-
ing in abnormal cell proliferation; for instance, the CpG
islands of genes such as SOX1, VIM, BMP4 and
CDKN2A show high methylation levels [15-17]. How-
ever, it is still unknown whether specific methylation
patterns in these gene promoter regions display clinical
significance compared with tumour classification, sur-
vival and prognosis in large-sample HCC patient data.
Therefore, this study aimed to establish a classification
method that integrates several DNA methylation
markers in order to help clinicians effectively assess
HCC patient prognosis and select therapeutic strategies.

Methods

Pre-processing of preliminary sample data and initial
screening of HCC DNA methylation sites

The latest clinical follow-up information was down-
loaded using the TCGA GDC API on July 31st, 2018 (as
shown in Table Sl.txt) and contained a total of 377
samples (as shown in Table S11.txt); the RNA-Seq data
(as shown in Table S2.txt) included 424 samples. Illumina
Infinium HumanMethylation450 data [18] were down-
loaded using the UCSC Cancer Browser [19] and contained
429 samples.

Subsequently, the samples with a follow-up period of
over 30days were screened from the clinical data for
further methylation profile matching, and a total of 348
samples detected for methylation were screened. More-
over, the CpG sites with an NA ratio of over 70% were
removed from all samples, and the cross-reactive CpG
sites in the genome were also removed according to the
cross-reactive sites. In addition, the missing values of
methylation profiles were filled using the KNN method
with the impute R package, and the unstable genomic
methylation sites were further removed in order to re-
move the CpG sites and single nucleotide sites from the
sex chromosomes. A total of 208,022 methylation sites
were finally obtained. Second, the 348 samples were di-
vided into a training set (n = 174) and test set (n =174).
The obtained clinical follow-up information is shown in
Table S3.txt and the clinical follow-up information is
shown in Table S4.txt.

Univariate analysis and multivariate survival analysis of
the training set methylation sites

First, a univariate Cox proportional hazards regression
model was applied to analyse each methylation site and
the survival data using the coxph function of the survival
R package [20], with p < 0.05 as the significant threshold.
Subsequently, the univariate Cox proportional hazards
regression model was also employed to analyse age, T,
N, and M stages, grade, sex and survival data. The
results suggested that the T, N and M stages showed
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significant differences in prognosis prediction, with log-
rank p-values of 0.002446, 0.034366 and 0.00259,
respectively. Then, the univariate Cox model was used
to select the significant methylation sites for multivariate
Cox proportional hazards regression model analysis,
with the T, N and M stages as the covariants in the
model and P<0.05 as the significant threshold. Finally,
the methylation sites of the training set samples that
were significant in both the univariate and multivariate
analyses were selected as characteristic biomarkers for
further analysis.

Molecular subtyping of HCC, screening of intra-group-
specific methylation sites, and enrichment analysis of
signalling pathways and transcription factors

First, the ConsensusClusterPlus R software package [21]
was used for the consistent clustering of characteristic
methylation sites that were significant in both the
univariate and multivariate analyses, and the molecular
subtypes were screened for subgroup classification. The
similarity distance between samples was calculated by
the Euclidean distance [22], K-means was used for clus-
tering, 80% samples were sampled 100 times by adopting
the resampling program, and the optimal cluster number
was determined by the cumulative distribution function
(CDF) [23]. On this basis, methylation expression profile
cluster analysis and clinical characteristic analysis of
each subgroup were also performed. Subsequently, the
EpiDiff software [24] was also employed to identify the
specific methylation sites. For each cluster, the average
value of each methylation level of the methylation sites
that were significant in both the univariate and multi-
variate analyses was calculated, the obtained matrix was
used as the input data of EpiDiff software, the threshold
was set at 2.099, and the cluster-specific methylation
sites were screened for genomic annotations. Addition-
ally, the correlation of these specific methylation sites
with the gene expression in the subgroups was explored.
A total of 172 corresponding samples that had been
detected with RNA-Seq were identified in the training
set samples, gene expression profiles were extracted
from these 172 samples to plot the expression profile
heat map, and the correlation and consistency of the
gene DNA methylation level with gene expression was
observed. Finally, the corresponding genes in the
promoter regions of these specific methylation sites were
subjected to signalling pathway and transcription factor
enrichment analysis using cluster Profiler [25] and g:pro-
filer [26], respectively.

Construction and testing of the prognosis prediction
model for HCC patients

The Bayesian network classifier was constructed using
the above identified specifically expressed methylation
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sites in each subtype, and the model performance was
judged through 10-fold cross-validation. Subsequently,
the expression profile data of specific CpG methylation
sites were extracted from both the training set and test
set and were substituted into the model for calculation.
In addition, the prediction results were calculated, and
the prediction accuracy of the prognosis classification
model as well as the identification stability of the methy-
lation features were verified and analysed. (A study flow-
chart has been added, see Figure S1.tif).

Results

Mining characteristic DNA methylation sites based on the
survival and prognosis data of HCC patients

First, a series of data downloaded from TCGA was pre-
processed, including filling in the missing values, removing
the Cp@ sites and single nucleotide sites from the sex chro-
mosomes, removing the CpG sites with cross-reactivity
from the genome, excluding samples with incomplete data,
and randomly dividing the samples into a training set and
test set (see Materials and methods). Afterwards, the
methylation sites and survival data were subjected to uni-
variate Cox proportional hazards regression model analysis
(using the coxph function in the survival R package, see
Table S5.txt), with the significance threshold set as P < 0.05.
A total of 26,208 significantly different sites regarding prog-
nosis were discovered, and the top 20 are shown in Table 1.
Similarly, our findings revealed that the T, N and M stages
were also significantly correlated with prognosis, with log-
rank P values of 0.002446, 0.034366 and 0.00259, respect-
ively. In addition, the univariate Cox model was used to
select the significant methylation sites for multivariate Cox
proportional hazards regression model analysis, with the T,
N and M stages as the covariants in the model. Finally, a
total of 10,699 significant methylation sites were obtained
(see Table S6.txt). As a result, the methylation sites (z = 10,
699) from the training set samples that were significant in
both the univariate and multivariate analyses were selected
as characteristic biomarkers for further analysis.

Using the characteristic DNA methylation sites for the
consistent clustering of HCC molecular subgroups

The Consensus Cluster Plus R software package was
used for the consistent clustering of characteristic
methylation sites that were significant in both the
univariate and multivariate analyses, and the molecular
subtypes were screened for subgroup classification. The
similarity distance between samples was calculated by
the Euclidean distance, K-means was used for clustering,
80% samples were sampled 100 times by adopting the
resampling program, and the optimal cluster number
was determined by the CDF. As shown in Fig. 1a, stable
clustering results could be obtained when the cluster
number was 6 or 7. Further observation of the CDF delta
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Table 1 The top 20 most significant methylation sites

CpGs p.value HR Low 95%Cl High 95% Cl
€g11835695 1.14E-09 2.35E-08 8.24E-11 6.72E-06
€g09407273 2.32E-08 2.04E-06 2.06E-08 0.000202
€g05978187 3.70E-08 7.96E+ 50 5.98E+ 32 1.06E+ 69
€g17922226 545E-08 0.007683 0.001328 0.044456
cg16474647 6.07E-08 0.00037 2.12E-05 0.006453
cg13754720 7.69E-08 0.000261 1.29E-05 0.005295
€g22288195 9.21E-08 0.000397 2.25E-05 0.007031
cg16068336 1.72E-07 7.73E+16 36E+10 1.66E+ 23
€g14520941 1.73E-07 0.000291 1.37E-05 0.006172
€g25319233 2.20E-07 0.000656 4.10E-05 0.010496
cg07285167 232E-07 0.012751 0.002441 0.066611
€g22398566 249E-07 48E+12 72,969,412 3.16E+ 17
€g24505619 2.61E-07 0.000544 3.11E-05 0.009507
€g25841634 2.93E-07 513,1285 3370.924 78,109,408
€g08079806 3.17E-07 0.000436 2.25E-05 0.008466
€g03236992 3.25E-07 1E+179 6.60E+ 79 1E+179
cg00121045 3.36E-07 0.000139 4.57E-06 0.004206
€g25400614 33707 1.02E-08 8.72E-12 1.20E-05
€g14826331 3.39E-07 0.020849 0.004712 0.092258
€g09169615 4.24E-07 6,102,271 14,325.15 2.6E+09

area curve (Fig. 1b) suggested that stable clustering results ~ tumour samples were assigned to these 7 subgroups. Fur-
could be acquired when the cluster number was set as 7. thermore, 10,699 methylation profiles were used for cluster
Finally, k = 7 was selected to obtain 7 molecular subtypes. analysis, and the distance between methylation sites was

calculated by the Euclidean distance. Figure 2b shows that
Methylation expression profile cluster analysis and clinical  most methylation sites had low abundance in each sample,
characteristic analysis based on the HCC molecular while the methylation expression profiles of these 7 clusters
subgroups of samples were also greatly different. In particular, the
The stable clustering results at k=7 were selected accord-  methylation levels of the samples in Cluster5 and Cluster6
ing to consistent clustering. As presented in Fig. 2a, 174  were markedly lower than those of the other groups.
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The distribution of the samples according to the 7 mo-
lecular subtypes regarding prognosis, T, N, and M stage,
grade and age was further analysed, as displayed in Fig. 3.
Figure 3a shows that the samples in Cluster5 and Clus-
ter6 had the highest invasion degrees; Fig. 3b suggested
that M1 samples were mainly distributed in Cluster4
and Cluster5; Fig. 3¢ indicated that the samples in Clus-
ter5 and Cluster6 had high stages; Fig. 3d suggested that
Cluster6 had the largest number of G4 samples; Fig. 3e
presented the great difference in the age distribution
among the different clusters; and Fig. 3f revealed a
significant difference in prognosis among these 7 clus-
ters of samples, among which the samples in Cluster2
had the best prognosis, while the samples in Cluster5
and Cluster6 had the poorest prognosis.

Screening of intra-group-specific methylation sites and
enrichment analysis of transcription factors based on the
HCC molecular subtype classification

To identify the methylation-based molecular subtypes of
HCC, the EpiDiff software was used to identify specific
methylation sites. For each cluster, the average value of
the methylation levels of the 10,699 methylation sites
was calculated, and the obtained 10,699 x 6 matrix was
used as the input data of EpiDiff software, as presented
in Table S7.txt. The threshold was set at 2.099, and 119
methylation sites were considered cluster-specific
methylation sites, as displayed in Table S8.txt. The heat

map is presented in Fig. 4a, which suggested that
Cluster6 had the most specific methylation sites, and
most of them were lowly methylated sites, while a small
number of specific methylation sites also existed in the
remaining clusters, which were mostly hypermethylated.
In addition, there were no specific methylation sites in
Clusterl. The modification level heat map of the specific
methylation modification sites is illustrated in Fig. 4b.
These 119 methylation sites were then subjected to
genomic annotations, which obtained 105 genes near
these methylation sites, as shown in Table S9.

Moreover, the correlation of these specific methylation
sites with gene expression in the subgroups was
explored. A total of 172 corresponding samples that had
been detected with RNA-Seq were identified in the
training set samples, 105 gene expression profiles were
extracted from these 172 samples (as presented in Table
$10), and the expression profile heat map was further
plotted. As shown in Fig. 4c, there were different expres-
sion patterns in these subgroups at the expression profile
level, suggesting partial consistency between the DNA
methylation levels of these genes and their expression.

Furthermore, to observe the mechanism of action of
these specific methylation sites, KEGG enrichment ana-
lysis was carried out on the corresponding genes in the
promoter regions of these specific methylation sites
using the cluster Profiler R software package, as shown
in Fig. 5a. It could be seen from the figure that these
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genes were enriched in multiple cancer-related path-  genes were enriched in KROX and involved 67 methyla-
ways, especially the HCC pathway. Additionally, g: pro-  tion sites.

filer was further used for transcription factor enrichment

analysis, which revealed that these genes were enriched  Construction of the prognosis prediction model for HCC
in the transcription factor KROX (TF: M00982), with a  patients and evaluation in the test set

significant FDR value of 8.46e-03. The corresponding To verify the differential ability of the identified specific
genes are shown in Fig. 5b, which suggested that 48 methylation sites, the 119 specific methylation sites
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identified using EpiDiff software were used to construct a
Bayesian network classifier, and the model performance
was judged through 10-fold cross-validation. The classifi-
cation accuracy of the model constructed based on the
training set was 70.68%, and the area under the ROC
curve (AUC) was 0.923 (Fig. 6a), suggesting that this clas-
sifier had a favourable classification performance.
Furthermore, to verify the stability and reliability of
the model, the expression profile data of these 119 CpG

methylation sites were extracted from the test set and
incorporated into the model for model verification. The
predicted results are shown in Table 2, which shows that
the cluster statistic number of the training set was
similar to that of the predicted samples. Furthermore,
the methylation patterns of these 7 clusters of samples
were plotted using the pheatmap R package (Fig. 6b).
The heatmap showed the presence of markedly distinct
methylation patterns among these 7 clusters of samples.
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Table 2 Statistics of various samples predicted in the test set

Cluster Number of Samples
1 45
2 27
3 33
4 24
5 31
6 14
7 0

Moreover, the differences in prognosis among these 7
clusters of samples were also analysed (Fig. 6¢), and sig-
nificant differences were found in the prognosis of these
7 clusters of samples (p=0.00068). In addition, the
Cluster2 samples showed markedly better prognoses
over the other clusters of samples, which were consistent
with the findings in the training set data.

Finally, the clinical features of these 7 clusters of
samples in the test dataset were analysed, and Fig. 7
shows that the clinical feature distribution in each clus-
ter was consistent with that in the training set. Overall,
the prognosis prediction model constructed using these
119 methylation profiles showed high prediction accur-
acy and stability in identifying the methylation features.

Discussion

HCC is one of the most commonly seen malignant
tumours and is the third leading the global digestive sys-
tem tumour in terms of its mortality; the morbidity and
mortality of HCC also show increasing trends [27, 28].
The leading causes of HCC are chronic hepatitis viral
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infection (such as HBV and HCV), liver cirrhosis, mal-
nutrition, toxin invasion and metabolic disturbance.
Currently, great achievements have been attained in the
diagnosis and treatment of HCC, but its pathogenesis re-
mains incompletely elucidated.

Studies have shown that tumours are highly heteroge-
neous [29], and heterogeneity is the main cause of the
inconsistent clinical treatment of tumours. Finn et al.
showed different clinical outcomes of different molecular
subtypes of HCC, and different molecular subtypes in
tumours respond differently to clinical therapeutic drugs
[30]. At present, epigenetic abnormalities have been con-
sidered to be characteristic of many types of cancer [31].
The epigenome map can be used to identify the molecular
subtypes of a particular cancer and is related to clinical
outcomes [32]. For example, the CpG island methylation
phenotype is found in many types of cancer, abnormal
DNA methylation patterns can be used to detect the pres-
ence of precancerous lesions or malignant cells in tissue
sections [33-35]. Abnormal DNA methylation can also be
used to detect free tumour DNA in the blood of some
cancer patients [36]. Seven different molecular subtypes
were found in our study. They not only have different
epigenetic patterns but also have significant differences in
clinical characteristics such as age, tumour stage, histo-
logical type, and prognosis. These results indicate that the
individuals in these clusters may have different responses
to clinical drugs and provide a reference for personalized
therapy and drug development. We further identified
subtype-specific methylation sites that can be used as
markers to predict patient outcomes.

At present, a large amount of literature has reported the
role of DNA methylation in HCC diagnosis, treatment
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and prognostication. First, compared with genetic muta-
tions, DNA methylation changes are earlier events during
the cell carcinogenesis process, while the DNA decom-
posed after tumour tissue necrosis will enter the periph-
eral blood (plasma or serum) or other body fluids (such as
saliva or sputum). Therefore, detecting the methylation
status of the isolated tumour-related genes in body fluids
may be applied in the early diagnosis of HCC. For in-
stance, the promoter methylation status of two factors,
TFPI2 and IGFBP7, in serum is markedly higher than that
in normal subjects and hepatitis patients and may thereby
become a non-invasive molecular biomarker for the early
diagnosis of HCC in the clinic [37, 38]. Second, DNA
methylation is mediated by methyltransferase, and it has
become a novel approach in the field of HCC treatment to
explore therapeutic strategies based on changes in DNMT
activity and DNA methylation patterns. In addition,
preclinical studies have verified that drugs targeting the
DNMT action substrate (azacitidine) and the DNMT co-
factor SAM (sinefungin) as well as the anti-SAM metabol-
ite neplanosin, and the non-competitive non-nucleotide
transmethylase inhibitor procainamide can reverse the
abnormal methylation in tumour cells, re-express the
inactivated genes, and suppress cancer cell proliferation
and invasion [39-41]. Finally, DNA methylation also plays
an important role in the prognosis of HCC patients. The
CpG island methylation phenotype (CIMP) refers to the
presence of methylation in the CpG island of multiple
gene promoter regions. Some articles have suggested that
patients with high tumour CIMP are associated with a
markedly lower survival rate than those with low or no
CIMP, while patients with various CIMP degrees also have
evidently different tumour metastasis and TNM stages
[42]. In addition, the correlation between the methylation
of multiple gene promoter sequences and patient progno-
sis has also been verified, such as Tip30, RASSF1A and
CD147 [43].

Nevertheless, the specific methylation sequences in the
promoter regions of these gene remain unclear, and it is
still unknown whether the methylation of these genes
displays clinical significance compared with tumour
classification, survival and prognosis in large-sample
HCC patient data. This study attempted to establish a
classification method that integrates several DNA
methylation markers based on solving these problems in
order to help clinicians effectively assess the prognosis
of HCC patients and select the appropriate therapeutic
strategies for HCC patients.

Conclusions

This study identified specific methylation sites based on
the TCGA database and serial bioinformatics methods at
the prognosis level and constructed a prognosis predic-
tion model for HCC patients. This model contributes to
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clinically identifying novel HCC markers, providing
multiple targets for the precision medicine of HCC, and
more accurately subtyping HCC patients at the molecu-
lar subtype level. More importantly, this model is prom-
ising for providing certain assistance and guidance for
clinicians regarding prognosis judgement, clinical diag-
nosis and medication for HCC patients with different
epigenetic subtypes.
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