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Abstract

Background: Molecular characterization of individual cancer patients is important because cancer is a complex and
heterogeneous disease with many possible genetic and environmental causes. Many studies have been conducted to
identify diagnostic or prognostic gene signatures for cancer from gene expression profiles. However, some gene
signatures may fail to serve as diagnostic or prognostic biomarkers and gene signatures may not be found in gene
expression profiles.

Methods: In this study, we developed a general method for constructing patient-specific gene correlation networks
and for identifying prognostic gene pairs from the networks. A patient-specific gene correlation network was
constructed by comparing a reference gene correlation network from normal samples to a network perturbed by a
single patient sample. The main difference of our method from previous ones includes (1) it is focused on finding
prognostic gene pairs rather than prognostic genes and (2) it can identify prognostic gene pairs from gene expression
profiles even when no significant prognostic genes exist.

Results: Evaluation of our method with extensive data sets of three cancer types (breast invasive carcinoma, colon
adenocarcinoma, and lung adenocarcinoma) showed that our approach is general and that gene pairs can serve as
more reliable prognostic signatures for cancer than genes.

Conclusions: Our study revealed that prognosis of individual cancer patients is associated with the existence of
prognostic gene pairs in the patient-specific network and the size of a subnetwork of the prognostic gene pairs in the
patient-specific network. Although preliminary, our approach will be useful for finding gene pairs to predict survival
time of patients and to tailor treatments to individual characteristics. The program for dynamically constructing
patient-specific gene networks and for finding prognostic gene pairs is available at http://bclab.inha.ac.kr/pancancer.
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Background
Cancer is a very heterogeneous and complex disease with
many possible genetic and environmental causes. The
same treatment for the same type of cancer often results
in different outcomes in terms of efficacy and side effects
of the treatment. Many targeted therapies are effective
only for patients with specific genetic alterations (known
as driver mutations) that help cancer cells form and grow
[1, 2]. Therefore, identifying genetic mutations specific to
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individual cancer patients is important for determining
targeted therapies that can effectively cure the patients
while minimizing side effects [3].

For the past decade, a huge amount of gene expression
data have been generated by high-throughput technolo-
gies such as microarray and RNA-seq. The availability of
the data has triggered the development of a variety of
computational methods for cancer research. For exam-
ple, several methods have been developed for exploring
gene expression characteristics [4–8] or for constructing
gene networks of several types (e.g., gene co-expression
network, gene correlation network, or gene regulatory
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network). However, a patient-specific gene correlation
network is not easy to construct from a single sample
because a gene network requires many samples to com-
pute gene-gene relations. Recently Liu et al. [9] and a
few others proposed a method to construct a sample-
specific network by computing the difference between a
reference network for multiple reference samples and a
network perturbed by a new sample. But, their sample-
specific network is not reliable because a slight change to
the reference samples can result in a significantly different
sample-specific network for the same sample due to the
small number of reference samples.

In this study, we developed a new method for construct-
ing cancer patient-specific gene correlation networks and
for finding potential prognostic gene pairs. So far many
computational methods developed for cancer research
have focused on identifying diagnostic or prognostic gene
signatures from gene expression data which can serve
as diagnostic or prognostic biomarkers. However, such
gene signatures may not be found in gene expression data
because gene expression levels are often sensitive to sys-
tematic biases of measurements [10]. One objective of our
method is to find prognostic gene pairs which can be used
to predict the likely outcome or survival time of cancer
patients. It should be noted that the network built by our
method is not a gene regulatory network because our net-
work does not show regulatory relations between genes. It
is also different from a typical gene co-expression network
that represents co-expression relations between genes.

As shown later in this paper, our approach has been
used in constructing patient-specific gene networks for
three types of cancer (breast invasive carcinoma, colon
adenocarcinoma, and lung adenocarcinoma). From the
gene-gene relations computed for the networks, we identi-
fied significant gene pairs in each cancer type. The results
of evaluating our method demonstrated that informative
patient-specific networks can be constructed dynamically
from the user’s choice of a sample and that significant
prognostic gene pairs can be found even when no signif-
icant prognostic genes exist. The remainder of this paper
presents details of our method and experimental results of
the method in three types of cancer.

Methods
This section discusses our approach to constructing can-
cer patient-specific networks and identifying prognostic
gene pairs of cancer patients.

Data sets
For comparative analysis of cancer samples and normal
samples, we obtained gene expressions of tumor samples
from The Cancer Genome Atlas (TCGA) [11] and gene
expressions of normal samples from Genotype-Tissue
Expression (GTEx) [12]. For tumor samples, we selected

primary tumor samples of three types: breast inva-
sive carcinoma (BRCA), colon adenocarcinoma (COAD),
and lung adenocarcinoma (LUAD). For normal samples
related to each cancer type, we excluded cell lines and
selected normal tissues in breast, colon, and lung from
the GTEx dataset. All the gene expression data of the
samples were extracted from the UCSC TOIL RNA-seq
recompute compendium (https://toil.xenahubs.net) [13].
The gene expressions were processed using RSEM [14]
and log2-transformed.

For each type of cancer, we collected elite genes and
related genes from the MalaCards database [15]. We
obtained a total of 516 genes associated with BRCA
(74 elite and 442 related genes), 466 genes for COAD
(70 elite and 396 related genes), and 410 genes for LUAD
(61 elite and 349 related genes). Table 1 shows the num-
ber of samples used in our study, and the list of the genes
is available in Additional file 1.

Constructing cancer patient-specific gene networks
For every pair of genes in normal samples we computed
the Pearson correlation coefficient (PCC) between their
expression levels by equation 1. In the equation, N is the
number of samples and x̄ is the mean of x. A reference
gene network for N normal samples was constructed for
each type of cancer.

PCC(xi, xj) =
∑N

k=1 (xik − x̄i)(xjk − x̄j)
√∑N

k=1 (xik − x̄i)2 ∑N
k=1 (xjk − x̄j)2

(1)

For a patient-specific gene network, we first constructed
a perturbed network by adding a single sample of the
patient to the N normal samples. A patient-specific gene
correlation network was obtained by subtracting the ref-
erence network from the perturbed network (Fig. 1). For
every pair of genes gi and gj, we computed the change
in PCC between the perturbed network and reference
network by equation 2. In the patient-specific network,
�PCC reflects the difference in gene correlations between
the normal samples and the patient sample.

�PCC(gi, gj) = |PCCperturbed(gi, gj) − PCCreference(gi, gj)|
(2)

Table 1 The number of samples and genes used in this study

Cancer type ID
Number of samples Number of
Tumor Normal Malacards genes

Breast invasive carcinoma BRCA 1050 100 516

Colon adenocarcinoma COAD 286 100 466

Lung adenocarcinoma LUAD 405 100 410
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Fig. 1 Process of constructing cancer patient-specific gene network. A reference gene network is first constructed from N normal samples. A
perturbed network is obtained by adding a cancer sample of the patient to the N normal samples. A patient-specific gene network is obtained by
subtracting the reference network from the perturbed network

Finding prognostic gene pairs for cancer patients
To find potential prognostic gene pairs, we clustered the
patients into two groups by hierarchical clustering in the
following way. For each gene pair in a sample of a can-
cer patient, we examined whether �PCC of the gene pair
belongs to the top 25% of the corresponding pair in all
tumor samples. Patients with the top 25% �PCC of a gene
pair were clustered into one group, and the remaining
patients were clustered into the other group. When either
one of the groups contains < 10 patients, the gene pair
was excluded from potential prognostic gene pairs.

We performed the log-rank test [16] using the life-
lines package (https://lifelines.readthedocs.io). For every
gene pair, we examined the difference in their sur-
vival time and obtained the p-value of the test. It
should be noted that patients can be clustered differ-
ently depending on the gene pair used for clustering.
The p-value of the log-rank test was adjusted using the
Benjamini-Hochberg procedure [17] in a Python package
(https://www.statsmodels.org), which consists of the fol-
lowing steps to control the false discovery rate (FDR) at
level α. In the second step, pj ≤ j

mα can be transformed to
pj

m
j ≤ α, so min(1, pj

m
j ) was used as an adjusted p-value

of the log-rank test.

1. Sort the p-values as p1, p2, . . . , pm.
2. Find the rank j for which pj ≤ j

mα.
3. Declare the top j tests 1, 2, . . . , j as significant.

As for criteria for selecting potential prognostic gene
pairs, we used the p-value of the log-rank test and corre-
lations between two genes in total tumor samples. Only
the gene pairs with an adjusted p-value of the log-rank
test <0.05 and p-value of PCC <0.05 were selected as
potential prognostic gene pairs.

Results
Patient-specific gene networks
For k genes in n tumor samples, we computed n

(k
2
)

�PCCs. We computed 1050·(516
2

) = 139, 513, 500 �PCCs
for breast cancer, 286 · (466

2
) = 30, 986, 670 �PCCs for

colon cancer, and 405 · (410
2

) = 33, 957, 225 �PCCs for
lung cancer (see Table 1 for the number of tumor sam-
ples and genes). Among the �PCCs, gene pairs with the
p-value of PCC <0.05 in both the reference network and
the perturbed network were selected. There were a total of
44,275 distinct gene pairs for breast cancer, 43,577 distinct
gene pairs for colon cancer, and 16,874 distinct gene pairs
for lung cancer. The gene pairs are available in Additional
file 2.

For dynamic visualization of patient-specific gene
networks, we built a graph database with the gene
pairs and their �PCC values. We developed a web-
based system using javascript (https://github.com/neo4j-
contrib/neovis.js), which dynamically visualizes cancer
patient-specific gene networks. Users of the web-based

https://lifelines.readthedocs.io
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system can search gene pairs either in group 1 or group 2.
As discussed earlier, group 1 is a set of samples
with a gene pair that show a relatively large change
in PCC from normal samples and group 2 is a set
of the remaining samples. The system is available at
http://bclab.inha.ac.kr/pancancer.

Prognostic gene pairs in breast cancer
There were a total of 44,275 gene pairs in breast can-
cer samples (Additional file 2). We ranked the gene pairs
by the adjusted p-value of the log-rank test, and then
selected those with an adjusted p-value of the log-rank
test <0.05 and p-value of PCC <0.05 as potential prog-
nostic gene pairs in breast cancer (Fig. 2). The selected
gene pairs are listed in Additional file 3 and top 10 gene
pairs are shown in Table 2. For the top two gene pairs
in Table 2 (LINC01234_MET and KRT5_SP1), Fig. 3a
shows the survival rate of two groups using Kaplan-Meier
plots [18].

Group 1 of breast cancer samples with a big change
in PCC of LINC01234_MET (i.e., top 25% �PCC for
LINC01234_MET) from the normal samples showed a
much lower survival rate than the other group (group 2)
of breast cancer samples (the left Kaplan-Meier plot in

Fig. 3a). Likewise, group 1 of breast cancer samples with
a big change in PCC of KRT5_SP1 from the normal sam-
ples revealed a lower survival rate than the other group
of breast cancer samples (the right Kaplan-Meier plot in
Fig. 3a).

For colon cancer, LINC01133_PTGER4 and
ESR2_ZEB1-AS1 were found as potential prognostic gene
pairs (Fig. 3b). In a similar way, KRT18_SCUBE3 and
KRT18_RBM5 were found as potential prognostic gene
pairs for lung cancer (Fig. 3c).

For comparative purposes, we performed survival anal-
ysis with all individual genes. Figure 4a is the same
Kaplan-Meier plots shown in Fig. 3a, and Fig. 4b shows
four Kaplan-Meier plots comparing the survival rates with
respect to four individual genes. The four Kaplan-Meier
plots in Fig. 4b compare the survival rates of two groups
with respect to four individual genes, LINC01234, MET,
KRT5, and SP1, which are involved in prognostic gene
pairs LINC01234_MET and KRT5_SP1. It is interesting
to note that the genes no longer show prognostic power
when they are used alone. Figure 4c shows the Kaplan-
Meier plots for two genes, CASP9 and FGF14-AS2, which
showed the lowest adjusted p-value among all single genes
in the log-rank test. Despite the low p-value, the two genes

Fig. 2 Scatter plot of the p-value of the log-rank test against the Pearson correlation coefficient (PCC) of gene pairs in breast cancer. Only the gene
pairs with an adjusted p-value of the log-rank test <0.05 and p-value of PCC <0.05 were selected as potential prognostic gene pairs (red dots)
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Table 2 Gene pairs with the lowest adjusted p-value in breast cancer. Group 1: samples with the top 25% �PCC for the gene pair.
Group 2: remaining samples

Gene pair Group 1 Group 2
Log-rank test Cox PH

statistic p-value adj. p-value Hazard ratio p-value 95% CI

LINC01234_MET 76 974 39.06 4.11E-10 7.98E-07 3.36 2.56E-07 2.12 - 5.33

KRT5_SP1 129 921 36.26 1.73E-09 2.92E-06 2.62 1.71E-06 1.76 - 3.88

LINC01234_SERPINB5 41 1009 32.21 1.38E-08 1.95E-05 3.82 4.40E-06 2.15 - 6.79

CDH3_SP1 25 1025 31.24 2.28E-08 2.95E-05 7.94 3.70E-08 3.79 - 16.61

PTK6_SP1 55 995 30.58 3.20E-08 3.83E-05 4.55 1.21E-06 2.46 - 8.39

CLDN7_PIK3CA 53 997 28.16 1.11E-07 1.23E-04 4.00 2.74E-07 2.36 - 6.80

KRT5_LINC01234 76 974 25.81 3.75E-07 3.89E-04 3.06 3.04E-06 1.91 - 4.91

LINC00636_SFN 13 1037 23.95 9.89E-07 8.69E-04 6.98 2.33E-05 2.83 - 17.20

CCNH_NME1 83 967 23.90 1.01E-06 8.75E-04 2.62 1.95E-05 1.68 - 4.09

PIP_TRIM25 41 1009 23.50 1.25E-06 1.04E-03 2.86 4.01E-04 1.59 - 5.13

(CASP9 and FGF14-AS2) do not show prognostic power
for breast cancer. The results of survival analysis in breast
cancer indicate that gene pairs can be more powerful
prognostic biomarkers than individual genes.

The prognostic gene pairs for breast cancer can be
included or excluded in a patient-specific gene network
depending on the type of the patient. As an example,
Figure 5 shows two subnetworks in the patient-specific
gene networks for two breast cancer samples. Sample
TCGA-AC-A2QJ-01 shows a big change in PCCs of two
prognostic gene pairs LINC01234_MET and KRT5_SP1
(group 1 in the survival analysis) and the patient-specific
network for the sample (Fig. 5A) includes the edges
corresponding to the gene pairs. In contrast, sample
TCGA-AC-A3BB-01 shows a much smaller change in
PCCs of LINC01234_MET and KRT5_SP1 (group 2).
In the patient-specific network for the sample TCGA-
AC-A3BB-01 of group 2, both prognostic gene pairs
LINC01234_MET and KRT5_SP1 are missing (Figure 5b).
In addition to this, the subnetwork in Fig. 5b is much
smaller than that in Figure 5a. The results imply that
the survival rate of cancer patients is associated with the
existence of prognostic gene pairs in the patient-specific
network and the size of a subnetwork of prognostic gene
pairs in the patient-specific network. This is because a
larger subnetwork is likely to contain more prognostic
gene pairs than a smaller subnetwork.

The LINC01234 gene is a long non-coding RNA
(lncRNA) signature which is pervasive in different stages,
subtypes and age groups of breast cancer [19]. In the
log-rank test, gene LINC01234 alone attained the 11-th
rank with respect to the adjusted p-value (Table 3) and
was not a significant prognostic gene. However, a gene
pair involving LINC01234 (i.e., LINC01234_MET) was
the most significant prognostic gene pair for breast cancer.

So far, no or little relation between LINC01234 and
MET has been known, but our method found the gene
pair LINC01234_MET as the most significant prognos-
tic gene pair for breast cancer. This finding is indeed
supported by the expression pattern of the genes in our
dataset. The LINC01234 gene shows a higher expression
level in group 1 of breast cancer samples than in group 2
of breast cancer samples or normal samples. In contrast,
the MET gene shows a lower expression level in group 1
of breast cancer samples than in group 2 of breast cancer
samples or normal samples (Additional file 4). This results
in a much larger �PCC(LINC01234, MET) for group 1
than for group 2 of breast cancer samples. The results
of the analysis also agree with the reports by previous
studies. LINC01234 is negatively related to miR-190b, and
miR-190b is down-regulated in breast cancer [19], thus
the expression level of LINC01234 can be higher in breast
cancer. On the other hand, deregulation of MET is fre-
quently observed in many types of cancer, including breast
cancer [20].

Possible effect of age and gender on survival and
comparison of PCC and SCC
For each prognostic gene pair, we investigated possible
effect of age and gender of cancer patients on their sur-
vival times using the Cox proportional hazards model.
Unlike the hazard ratios (HR) associated with prognos-
tic gene pairs, the hazard ratios associated with age were
close to 1 for all gene pairs in all three cancer types (breast
cancer, colon cancer and lung cancer). Thus, age is not
a confounding factor. The hazard ratios associated with
gender were in a wider range but with p-values >0.05,
thus gender cannot be considered as a confounding factor,
either. Detailed results for all prognostic gene pairs are
available in Additional file 3.
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Fig. 3 Kaplan-Meier plots comparing the survival rates of two groups with respect to prognostic gene pairs. a The survival rates of two groups of
BRCA samples with respect to prognostic gene pairs LINC01234_MET (left plot) and KRT5_SP1 (right plot). b The survival rates of two groups of
COAD samples with respect to prognostic gene pairs LINC01133_PTGER4 (left plot) and ESR2_ZEB1-AS1 (right plot). c The survival rates of two
groups of LUAD samples with respect to prognostic gene pairs KRT18_SCUBE3 (left plot) and KRT18_RBM5 (right plot). In all Kaplan-Meier plots,
group 1 is a set of cancer samples with a big change in PCC of the corresponding gene pair from the normal samples, and group 2 is a set of the
remaining samples of the same cancer type. Group 1 consistently shows a lower survival rate than group 2

PCC is known to be useful for detecting linear
association but sensitive to outliers. Spearman’s rank cor-
relation coefficient (SCC) also measures linear associa-
tion like PCC, but is more robust to outliers than PCC
because SCC is based on ranks instead of the actual

observed values. For comparative purposes, we exam-
ined the scatter plots of all gene pairs in groups 1 and
2 of cancer samples and in normal samples from GTEx.
No strictly linear association was observed in the prog-
nostic gene pairs in breast cancer samples, but different
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Fig. 4 Comparison of the prognostic power of gene pairs and single genes in BRCA. a The survival rates of two groups of BRCA samples with respect
to prognostic gene pairs LINC01234_MET and KRT5_SP1. b The survival rates of two groups of BRCA samples with respect to four single genes
(LINC01234, MET, KRT5 and SP1) involved in the gene pairs of a. c The survival rates of two groups of BRCA samples with respect to two genes
(CASP9 and FGF14-AS2) which showed the lowest adjusted p-value in the log-rank test. None of the 6 single genes (LINC01234, MET, KRT5, SP1,
CASP9 and FGF14-AS2) are predictive of survival rates. Group 1: cancer samples with the top 25% �PCC of the corresponding gene pair from the
normal samples. Group 2: the remaining cancer samples of the same cancer type. High expression: cancer samples with higher expression levels
than the average expression level. Low expression: remaining cancer samples
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Fig. 5 Example of a breast cancer patient-specific network. a Subnetwork of a patient-specific network for sample TCGA-AC-A2QJ-01 in group 1. b
Subnetwork of a patient-specific network for sample TCGA-AC-A3BB-01 in group 2

association patterns were observed in normal samples
(Additional file 5).

For the direct comparison of PCC and SCC, we com-
puted SCC between 516 genes in breast cancer and built a
correlation matrix. Figure 6 shows two heatmaps built by
average PCC and SCC in breast cancer samples. The order

of genes is the same for both heatmaps. There is a differ-
ence in density between the two heatmaps but the distri-
bution of density is quite similar to each other (enlarged
heatmaps are available in Additional file 6). Furthermore,
there is no significant difference in the top 10 prognostic
gene pairs derived by PCC and SCC (Additional file 7).

Table 3 Genes with the lowest adjusted p-value in breast cancer. High expression: the number of samples with a higher expression
level than the average log2-expression level. Low expression: remaining samples

Gene High expression Low expression Log-rank statistic p-value adj. p-value

CASP9 559 491 11.37 0.0007 0.1049

FGF14-AS2 561 489 11.12 0.0009 0.1049

NTRK3 514 536 10.77 0.0010 0.1049

IL2 472 578 10.63 0.0011 0.1049

BRMS1L 506 544 10.34 0.0013 0.1049

KRT14 616 434 10.27 0.0014 0.1049

PTK2 474 576 10.04 0.0015 0.1049

GLI1 534 516 9.93 0.0016 0.1049

RBBP8 490 560 8.67 0.0032 0.1647

ADARB2-AS1 229 821 8.65 0.0033 0.1647

LINC01234 341 709 8.43 0.0037 0.1647

CLCA2 479 571 8.36 0.0038 0.1647

ST8SIA6-AS1 389 661 7.29 0.0069 0.2528
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Fig. 6 Heatmaps for correlation matrices in breast cancer. a Heatmap showing the Pearson correlation coefficient (PCC) between genes obtained
by hierarchical clustering using the Euclidean distance measure and the ward.D2 linkage method. b Heatmap showing the Spearman correlation
coefficient (SCC) between genes. The order of genes is the same for both heatmaps

Comparison with other signatures and functional
enrichment analysis in breast cancer
In a seminal paper, Venet et al. [21] showed that many ran-
dom gene expression signatures are more predictive than
known breast cancer signatures and that such random
signatures are significantly associated with proliferation
genes. More recently, Goh and Wong [22] also highlighted
the problem of random signature superiority in breast
cancer and other diseases. To address this issue, we com-
pared our prognostic gene pairs with the meta-PCNA
genes and noncancer signatures used in the study of
Venet et al. [21]. The meta-PCNA genes are the genes that
are most positively correlated with proliferation marker
PCNA in normal tissues. The noncancer signatures are
cancer irrelevant signatures such as those for predicting
postprandial laughter on peripheral blood mononuclear
cells, skin fibroblast localization, and social defeat in mice.

Eleven genes are shared by the 129 meta-PCNA genes
and the 516 Malacards genes used in our study. Among the
147 prognostic gene pairs found in breast cancer, only a
single gene pair IGKV1-5_MCM2 contains a meta-PCNA
gene (MCM2) and no other prognostic gene pairs con-
tain a meta-PCNA gene. Only one gene (TFAP2C) from
noncancer signatures is included in our prognostic gene
pair LINC01234_TFAP2C, and the remaining 146 prog-
nostic gene pairs contain no noncancer signatures. These
results indicate that the prognostic gene pairs found by

our method in breast cancer are not associated with pro-
liferation genes and that the prognostic gene pairs are not
associated with noncancer signatures, either.

We also carried out functional enrichment analysis of
the genes involved in the prognostic gene pairs for breast
cancer using DAVID (https://david.ncifcrf.gov). From the
analysis, we found four clusters with high enrichment
scores (Table 4). For comparison, we performed the log-
rank test with the 404 genes in the noncancer signatures,
and derived 31 significant gene pairs (Additional file 8),
which correspond to those with the top 25% �PCC. In
functional enrichment analysis of the 44 genes included in
the 31 gene pairs from noncancer signatures, no meaning-
ful clusters were derived. Detailed results of the functional
enrichment analysis are available in Additional file 9.

Prognostic gene pairs in colon cancer and lung cancer
From the log-rank test with 43,577 gene pairs in colon
cancer and 16,874 gene pairs in lung cancer, we found
38 and 12 prognostic gene pairs for colon cancer and
lung cancer, respectively. We examined whether prognos-
tic gene pairs are shared by the three cancer types (breast
cancer, colon cancer and lung cancer) (Fig. 7). The Venn
diagram in Figure 7a compares all gene pairs without any
constraints, and the Venn diagram in Figure 7b compares
the number of gene pairs with a p-value of the log-rank
test <0.05. Among the significant prognostic gene pairs,

https://david.ncifcrf.gov
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Table 4 Functional enrichment analysis of the genes in the prognostic gene pairs for breast cancer

#genes p-value FDR

Annotation cluster 1 Enrichment score: 13.55

KEGG_PATHWAY hsa05200:Pathways in cancer 36 1.64E-22 1.98E-19

KEGG_PATHWAY hsa05215:Prostate cancer 15 1.40E-12 1.70E-09

KEGG_PATHWAY hsa04151:PI3K-Akt signaling pathway 19 9.74E-08 1.18E-04

Annotation cluster 2 Enrichment score: 7.93

KEGG_PATHWAY hsa04510:Focal adhesion 18 2.31E-10 2.80E-07

KEGG_PATHWAY hsa05205:Proteoglycans in cancer 16 1.13E-08 1.37E-05

KEGG_PATHWAY hsa04015:Rap1 signaling pathway 16 2.20E-08 2.66E-05

KEGG_PATHWAY hsa05100:Bacterial invasion of epithelial cells 10 3.23E-07 3.91E-04

Annotation cluster 3 Enrichment score: 6.62

UP_KEYWORDS Growth factor 11 7.37E-09 9.42E-06

GOTERM_MF_DIRECT GO:0008083 growth factor activity 12 2.54E-08 3.52E-05

GOTERM_BP_DIRECT GO:0050679 positive regulation of epithelial cell proliferation 6 7.40E-05 1.25E-01

Annotation cluster 4 Enrichment score: 5.44

GOTERM_MF_DIRECT GO:0044212 transcription regulatory region DNA binding 13 4.59E-08 6.36E-05

GOTERM_BP_DIRECT GO:0045893 positive regulation of transcription, DNA-templated 17 9.99E-07 1.69E-03

GOTERM_BP_DIRECT GO:0045892 negative regulation of transcription, DNA-templated 12 1.03E-03 1.73E-00

the gene pair CCNB1_TERT is the only prognostic gene
pair shared by the three types of cancer.

CCNB1 has been known to be associated with breast
cancer [23], but so far there is little or no direct relation
known between CCNB1 and TERT. Unlike most normal
cells where there is lack of telomerase activity, upregula-
tion of TERT transcriptional activity is detected in 80-90%
of tumor cells [24–26]. TERT is known to repress the cell
cycle regulator p21 in cancer [24], and p21 itself in tern
inhibits several p53-dependent genes (CCNB1 is one of
the p53-dependent genes) [23]. Thus, when the p21 level
is decreased by TERT in cancer cells, the expression level
of CCNB1 can be increased because CCNB1 is no longer
inhibited by p21.

To investigate whether such relation exists in the dataset
used in our study, we re-examined the expression levels of
the genes and their �PCCs in three types of cancer. Both
CCNB1 and TERT consistently showed higher expression
levels in cancer tissues of three types than in normal tis-
sues (Additional file 10). This result supports the known
fact that TERT expression is increased in tumor cells
and that CCNB1 expression is also increased because its
repressor p21 is inhibited by TERT. In addition to this,
group 1 of cancer tissues showed a higher �PCC than
group 2 of cancer tissues. Note that in our survival analy-
sis, group 1 is a group of cancer samples with a big change
in PCC of a gene pair (i.e., top 25% �PCC) from the nor-
mal samples, and group 2 is a group of the remaining

Fig. 7 The number of prognostic gene pairs shared by three cancer types. a The number of prognostic gene pairs without any constraints. b The
number of prognostic gene pairs with a p-value of the log-rank test <0.05. The single gene pair shared by the three cancer types is CCNB1_TERT



Park et al. BMC Medical Genomics 2019, 12(Suppl 8):179 Page 11 of 14

cancer samples. The Kaplan-Meier plot in Addition file
10 shows that group 1 has a lower survival rate than
group 2 in both breast cancer and lung cancer. However,
the opposite is observed in colon cancer. The reason for
the lower survival rate of group 2 of colon cancer sam-
ples with respect to CCNB1_TERT can be explained by
the expression pattern of TERT. As shown in Addition
file 10, the expression pattern of TERT in colon cancer
is very different from that in breast cancer and lung can-
cer. Unlike in breast cancer and lung cancer, TERT shows
increased expression levels in group 2 of colon cancer
samples, which is associated with the lower survival rate of
group 2 of colon cancer samples. Relevant data are given
in Additional file 10.

The survival rates of two groups of patients with respect
to the prognostic gene pairs for colon cancer and lung
cancer are shown in Fig. 3b and Fig. 3c, respectively. All
prognostic gene pairs found for colon cancer and lung
cancer are available in Additional file 3.

Figure 8 shows examples of patient-specific networks
for the two types of cancer. In Figure 8, samples A and B
are colon cancer samples and samples C and D are lung
cancer samples. Samples A and C belong to group 1 in
the survival analysis (i.e., they show a big change in PCC
of prognostic gene pairs from normal samples) and sam-
ples B and D belong to group 2. Two prognostic gene pairs
for colon cancer, LINC01133_PTGER4 and ESR2_ZEB1-
AS1, are included in the network for colon cancer sam-
ple A but are missing in the network for another colon
cancer sample B. Likewise, two prognostic gene pairs
for lung cancer, KRT18_SCUBE3 and KRT18_RBM5, are
included in the network for lung cancer sample C but
are missing in the network for another lung cancer
sample D.

A similar expression pattern was observed in the prog-
nostic gene pair LINC01133_ PTGER4 for colon cancer.
As shown Additional file 4, the average expression level of
LINC01133 of group 1 of colon cancer samples is higher
than that of group 2 of colon cancer samples or nor-
mal samples. In contrast, the average expression level of
PTGER4 of group 1 of colon cancer samples is lower
than that of group 2 of colon cancer samples or normal
samples. Therefore, group 1 of colon samples shows a
larger �PCC(LINC01133, PTGER4) than group 2 of colon
samples.

Both LINC01133 and PTGER4 genes are related with
p21, which is a well-known tumor-suppressor gene.
PTGER4 (EP4) induces expression of p21, whereas
LINC01133 is negatively correlated with p21 [27, 28].
Thus, the low expression of PTGER4 in group 1 and the
high expression of LINC01133 are associated with the
decreased expression of p21 in group 1, which in turn is
associated with the lower survival time of group 1 than
group 2.

We also investigated the genes in the prognostic
gene pairs KRT18_SCUBE3 and KRT18_RBM5 for lung
cancer. KRT18 shows a higher expression level in group 1
of lung cancer samples than in group 2 of lung can-
cer samples and in normal samples. In contrast, both
SCUBE3 and RBM5 genes show a lower expression level
in group 1 of lung cancer samples than in group 2
of lung cancer samples and in normal samples. Thus,
both gene pairs KRT18_SCUBE3 and KRT18_RBM5 have
negative correlations. Furthermore, the gene pairs have
a larger �PCC in group 1 than in group 2 of lung
cancer samples. These results are consistent with the
previous report that high expression levels of KRT18
are correlated with unfavorable survival of lung cancer
patients [29].

The results indicate that prognosis of individual can-
cer patients is associated with the existence of prognostic
gene pairs in the patient-specific network and the size of
the subnetwork of prognostic gene pairs in the patient-
specific network.

Conclusion
In this paper, we proposed a new method for constructing
patient-specific gene networks and for finding prognostic
gene pairs for three types of cancer, breast invasive carci-
noma, colon adenocarcinoma and lung adenocarcinoma.
The key difference of our method from previous ones
is that (1) it is intended for finding prognostic gene
pairs rather than prognostic genes and (2) gene pairs
are more reliable prognostic signatures than individual
genes because prognostic gene pairs can be found even
in gene expression profiles where no significant prog-
nostic genes exist. For breast invasive carcinoma, colon
adenocarcinoma, and lung adenocarcinoma, we found a
total of 147, 38, and 12 potential prognostic gene pairs,
respectively.

The prognostic gene pairs found in our study show no
association with age or gender of cancer patients. They are
not correlated with proliferation genes, which are known
to confound the predictive power of random signatures.
Evaluation of our method with extensive data sets of three
cancer types showed that our approach is general and
that gene pairs can serve as more reliable prognostic sig-
natures for cancer than individual genes. We also found
that prognosis of individual cancer patients is associated
with the existence of prognostic gene pairs in the patient-
specific network and the size of the patient-specific
network.

Although preliminary, our approach will be useful for
finding gene pairs to predict survival time of patients and
to tailor treatments to individual characteristics. The pro-
gram for dynamically constructing patient-specific gene
networks and for finding prognostic gene pairs is available
at http://bclab.inha.ac.kr/pancancer.

http://bclab.inha.ac.kr/pancancer
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Fig. 8 Example of colon and lung cancer patient-specific networks. Samples a and b (ID: TCGA-A6-5662-01 and TCGA-A6-5664-01) are colon cancer
samples and samples c and d (ID: TCGA-44-6779-01 and TCGA-44-7661-01) are lung cancer samples. Samples a and c belong to group 1 (gene pairs
with the highest 25% of �PCC) in the log-rank test and samples b and d belong to group 2. The networks are available at http://bclab.inha.ac.kr/
pancancer

http://bclab.inha.ac.kr/pancancer
http://bclab.inha.ac.kr/pancancer
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