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Abstract

Background: Although there are huge volumes of genomic data, how to decipher them and identify driver events
is still a challenge. The current methods based on network typically use the relationship between genomic events
and consequent changes in gene expression to nominate putative driver genes. But there may exist some
relationships within the transcriptional network.

Methods: We developed MECoRank, a novel method that improves the recognition accuracy of driver genes.
MECoRank is based on bipartite graph to propagates the scores via an iterative process. After iteration, we will
obtain a ranked gene list for each patient sample. Then, we applied the Condorcet voting method to determine
the most impactful drivers in a population.

Results: We applied MECoRank to three cancer datasets to reveal candidate driver genes which have a greater
impact on gene expression. Experimental results show that our method not only can identify more driver genes
that have been validated than other methods, but also can recognize some impactful novel genes which have
been proved to be more important in literature.

Conclusions: We propose a novel approach named MECoRank to prioritize driver genes based on their impact on the
expression in the molecular interaction network. This method not only assesses mutation’s effect on the transcriptional
network, but also assesses the differential expression’s effect within the transcriptional network. And the results
demonstrated that MECoRank has better performance than the other competing approaches in identifying driver
genes.
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Background
Recent advances in deep sequencing have provided us
with an unprecedented amount of cancer genomics data.
With the rapid accumulation of huge volumes of gen-
omic data, we have tremendous opportunities to better
understand cancer initiation, progression and develop-
ment [1]. However, it is still a challenge to decipher
those data (e.g., single nucleotide variants (SNVs), small
insertions or deletions (indels), large copy-number varia-
tions (CNVs) and structural aberrations, etc.) and use
them to distinguish driver mutations which contribute
to cancer development from passenger mutations that
have accumulated in somatic cells but without functional
consequences [2, 3]. In fact, in the early stages, single
data, such as somatic aberrations data is the most com-
monly used data to identify driver genes. For example,
frequency-based methods, such as MuSiC [3] and Mut-
SigCV [4], are the common approach which relies on
the frequency of aberration of a given gene or locus in a
population of tumors [5]. In addition, machine learning
approaches based on alterations knowledge are also used
to identify driver genes. For instance, CHASM adopts
random forest which use alterations trained from known
cancer-causing somatic missense mutations to classify
driver mutations [6, 7]. Recently, many mathematical
and statistical methods which are based on data integra-
tion were proposed to search for driver genes, driver
pathways or core modules [8]. Bayesian network-based
methods such as CONEXIC integrated copy number
change and gene expression data to identify potential
driver genes which are located in some amplified or de-
leted regions in tumors [9].
With the developing of the research of cancer, we have

recognized that the development and progression of can-
cer can be promoted by driver mutations or gene per-
turbing signaling, regulatory or metabolic pathways [1].
Thus, several methods that use network and pathway to
understand drivers have been proposed, e.g., MEMo [10]
and Dendrix [11]. MEMo uses the mutual exclusivity of
gene mutations to detect mutated subnetworks critical
to carcinogenesis [10]. As well as Dendrix was designed
to identify subnetworks with potential driver activity
which have high coverage and high mutual exclusivity
[11]. Another method, MUFFINN measures the func-
tional impact of the network neighbors of mutated
genes, and scores the investigated genes by considering
the influence of either the most frequently mutated
neighbor or all direct neighbors [12]. Although the
aforementioned approaches have achieved great achieve-
ments in distinguishing driver genes, improving the
identification accuracy of driver genes is still a challenge.
In this work, we propose a method named MECoRank

to prioritize driver genes of single patient sample based
on their impact on the expression in the molecular

interaction. Our method not only assess mutation’s ef-
fect on gene expression, but also assess the differential
expression’s effect within a transcriptional network. We
first construct a bipartite graph model to formulate asso-
ciations between expression and somatic SNVs using
protein-protein interaction (PPI) network. A bipartite
graph is a graph whose vertices can be partitioned into
two subsets. In our work, vertices on the left partition of
the bipartite graph correspond to individual gene expres-
sion status and vertices on the right partition represent
individual mutated genes. And then an iterative process
was used to propagate the effect of somatic SNVs and
differential expression. After iteration, we will obtain a
ranked gene list for each patient sample. Finally, we ap-
plied the Condorcet voting method to determine the
most impactful drivers in a population. To test the per-
formance of our approach, we analyzed three datasets
which are breast cancer dataset (BRCA), kidney renal
clear cell carcinoma (KIRC) and lung squamous cell car-
cinoma (LUSC). From TCGA Data Portal (https://portal.
gdc.cancer.gov/), we collected the data of somatic SNVs.
And from UCSC [13], we obtained gene expression data.
Experimental results show that our method not only can
identify more driver genes that have been validated than
other methods, but also can recognize some impactful
novel genes. Although these genes are not presented in
Cancer Gene Census (CGC), some evidences show that
these candidate genes have functional roles in cancer or
cancer-related biological processes.

Methods
Method overview
The proposed MECoRank method prioritizes driver
genes based on the impact of their mutations and differ-
ential expression on the expression in the molecular
interaction during a single patient. An overview of its
workflow is presented in Fig. 1. In the following section,
we first present the bipartite graph model and then give
the iterative framework. Finally, we introduce Condorcet
voting method for rank aggregation.

A bipartite graph model
In this section, we detail the bipartite graph model used
in our work. Consider a bipartite graph G = (U ∪V, E),
where U and V represent the individual expression and
mutation respectively. Each edge in E connects a vertex
in U and one in V. Let U = {u1, u2,…, um} and V = {v1, v2,
…, vn} be the two sets of m and n genes. We use ui to
denote the i − th vertex in U, and vj to denote the j − th
vertex in V, where 1 ≤ i ≤m and 1 ≤ j ≤ n. For each pa-
tient, an edge between the nodes on the left and right
partitions of the graph is drawn if ui and vj are known to
interact according to PPI network. We constructed the
bipartite graph for each patient by the same way. The
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edges between U and V are represented as the transition
probability WVU [14]. And the edges within U are repre-
sented as WUU. If there is an edge connecting ui and vj
in PPI, wvu

ij ¼ 1; otherwise, wvu
ij ¼ 0. As such, we can de-

scribe all edges weights of the graph as a m × n matrix
WVU ¼ ½wvu

ij � . Similarly, we can easily obtain the transi-

tion matrix WUU. For each vertex vj, we denote its de-
gree (sum of connected edges’ weights) as dj, and use a
diagonal matrix Dv to denote the degrees of all vertices
in V; and similarly, for di and Du. Note that in this
paper, we deal with undirected bipartite graphs.

Iterative framework
To rank vertices based on the graph structure, seminal al-
gorithms like PageRank [15] and HITS [16] have been
proposed [17]. PageRank is an algorithm used by Google
Search to rank websites in their search engine results [18].
This approach estimates the importance score of vertices
as the stationary distribution of a random walk process –
starting from a vertex, the surfer randomly jumps to a
neighbor according to the edge weight [17]. HITS algo-
rithm is similar to PageRank in some aspects. This
method assumes each vertex has two roles: hub and

authority [16]. If a vertex is linked by many vertices with
hub score, this vertex has high authority and vice versa
[17]. These two methods are focus on unipartite graphs.
Our iterative framework references HITS, PageRank and
their variants which are often used for web search. In this
work, we constructed the bipartite graph for each patient
where vertices on the left partition of the graph corres-
pond to individual gene expression status and vertices on
the right partition represent individual mutated genes.
And we utilized the iterative process which is shown in
Fig. 2 to propagate the scores on the bipartite graph.
The intuition behind the score propagation is the

reinforcement to boost co-linked entities on the bipartite
graph [14]. The scores of vertices should follow a
smoothness convention, namely that: a vertex (on the
one side of bipartite graph) should ranked high if it is
connected higher-ranked vertices (on the other side of
the bipartite graph) [17]. In our model, the impact of
mutation damaging probability and differential expres-
sion are propagated to expression on the bipartite graph.
The greater the impact is, the higher the gene ranks. In
order to incorporate content information of somatic
SNVs and differential expression in the bipartite graph,
the generalized equations can be written as

Fig. 1 A schematic of MECoRank framework. a The data we used including gene expression of cancer and normal patients, somatic SNVs and PPI
network. b The left partition of bipartite graph represents an individual patient’s expression set U where the transition matrices WUU indicates the
relations in U. The right of the bipartite graph represents the patient’s mutation set V where the transition matrices WVU indicates the interactions
between U and V. c We can obtain a score matrix in which each gene of every patient has a score. d We used the Condorcet voting to obtain
the final rank of the genes
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xi ¼ 1−λuð Þx0i þ λu 1−λvð Þ
X

k∈V

wvu
ik d

−1
2

k yk

þλuλv
X

j∈U

wuu
ij d

−1
2
j x j

ð1Þ

where λu ϵ [0, 1] and λv ϵ [0, 1] are the personalized pa-
rameters and λu + λv = 1. In this paper, we set λu is 0.9
since the impact of mutation on gene expression network
may be more significant than differential expression
within the network. x0i is the standardized expression
value of the i − th gene and yk denotes the mutation dam-
aging coefficient. And yk = 1 + pil which occurring in the i
− th sample of gene l, where pil is the sum of the probabil-
ities of damaging effects of all mutations in gene l of the i
th sample and is calculated using the PolyPhen and SIFT
scores from TCGA. The reason why adding 1 to pil in yk is
that in case of there is no mutation in the gene, while this
gene is very important in the network. dk is the degree of
gene k and dj is the degree of gene j. In order to suppress
some high-degree vertices whose mutation damage are not
so significant, we applied Laplacian normalization on degree
matrix. xj denotes gene differential expression and is calcu-
lated using tumor samples genes’ expression subtracting the
mean of normal samples gene’s expression. When vertices in
the right of the bipartite graph have 0 edges with the left, the
sum degree will be 0, arising to a divide-by-zero error.
What’s more, this may mean that the zero-vertices have no
effect on the left vertices. To address the problem, we re-
move the zero-vertices. Our method converges when there
is no longer a significant update in the ranks. That is when
the magnitude of the difference of the ranks between time
t+ 1 and the previous time point t falls below ε, which we
set to 0.0001. Iteration also stops when no solution is

presented after a maximum number of iterations, which we
set as 100. The final scores of xi can be obtained through an
iterative updating process. From our empirical testing, we
find that in most cases the scores can converge after about 9
iterations.

Condorcet voting for rank aggregation
After iteration, we could obtain the rank of genes for each
patient. To determine the most impactful drivers in a popu-
lation, we applied the Condorcet voting method modified
by DawnRank [6]. The Condorcet voting method is a vot-
ing scheme in which ‘voters’ vote for the best ‘candidate’ by
submitting a rank-ordered list of candidate preferences [6].
And by comparing every possible pair of candidates A and
B, the Condorcet method selects a winning candidate and
then determines a ‘winner’ by comparing the number of
voters that preferred A to B and vice versa. We applied the
modified Condorcet method to the iteration results to de-
termine aggregate rankings of genes in a patient population.
A penalty heuristic δ, a number between 0 and 1 in modi-
fied Condorcet method was implemented to lower the
ranking of a gene in a pairwise comparison that is not
mutated.

PairwiseWinner A;Bð Þ ¼ A ifδ Að Þ � Rank Að Þ > δ Bð Þ � Rank Bð Þ
B otherwise

�

ð2Þ
where

δ Að Þ ¼ δ if A is not mutated
1 if A is mutated

�
ð3Þ

The modified Condorcet method can be accessed from
R package of condorcetRanking. We set the penalty
heuristic δ to be 0.85 as DawnRank used. We selected

Fig. 2 Score propagation on the bipartite graph: a score yk represents the mutation corresponding damaging coefficient of vk. x0i represents the
value of tumor expression of ui. Score yk is propagated to ui and uj. b xj represents the value of differential expression and score xj is propagated
to ui
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the top-100 ranked candidates as the driver genes for a
patient population.

Results
We applied MECoRank to three TCGA datasets, BRCA,
KIRC and LUSC. First, we compared our method with Dri-
verNet [5] and MUFFINN [12] to show the effectiveness of
our method. For MUFFINN, we use two different versions
MUFFINN-DNMax and MUFFINN-DNSum in the com-
parison analysis. Then, we performed Gene Ontology (GO)
term and KEGG pathway enrichment analysis for the higher
ranked genes by using the OmicShare tools, a free online
platform for data analysis (www.omicshare.com/tools). In
addition, we also summarized the distribution of the top 100
candidate-driver genes in druggable genes databases to
analyze whether they are clinically relevant genes or not.

Datasets
We applied MECoRank to 973 BRCA samples, 334
KIRC samples and 486 LUSC samples. The datasets we
used in this paper consist of gene expression data and
coding region mutation data for three cancer types. For
mutation data, MECoRank just evaluate the impact of
SNP mutation damaging. We downloaded the somatic
SNVs data of three datasets from TCGA data portal in
the version gdc-1.0.0. According to the somatic SNVs
data, we got the mutation matrix and the SNP mutation
damaging matrix. The SNP mutation damaging matrix
was calculated using PolyPhen and SIFT score. PolyPhen
and SIFT score are predictiors of the harmful effect of a
mutation occurring in DNA sequences [19]. For Poly-
Phen score, we used the key word ‘damaging’ to filter
eligible genes, as for the SIFT score, ‘deleterious’ was
used. If there are more than one mutations in different
locus in a gene, we summed those scores as this gene’s
final mutation damaging. The PPI network we used in
MECoRank was Human Protein Reference Database
(HPRD) (http://www.hprd.org).
To help evaluating the quality of our results, we ob-

tained a list of 616 cancer genes (see Additional file 1)
from the well-studied cancer gene database, CGC and
the version is (09/26/2016) [20].

The comparison with DriverNet and MUFFINN
We evaluated the performance of three methods by exam-
ining the proportion of candidate-driver genes found in
CGC. For DriverNet, we directly ran the package to find
driver genes. And we ran MUFFINN in the online website.
To facilitate the comparison, we applied the Condorcet
rank for MECoRank result based on individual samples to
provide the consensus population-level driver scores. The
genes ranked within the top k score results were considerd
as candidate driver genes. The proportion of known driver
genes in the top k ranked results were calculated to obtain

a criterion of performance evaluation called rank cutoff
curves [21]. The range of k was set to [10,100] in interval
10. The rank cutoff curves of three methods were shown in
Fig. 3a. In general, our method outperforms DriverNet and
MUFFINN in all three cancer datasets with respect to
CGC. On the other hand, to test the robustness of our
method, we used a sub-sampling approach to evaluate the
precisions of top 100 candidate-driver genes on BRCA,
LUSC and KIRC [22]. The sub-sampling approach is the se-
lection of a subset from cancer samples randomly to repre-
sent the population. We selected 10 to 90% samples from
cancer samples as subset to run sub-sampling test. From
the Fig. 3b, it can be seen that although the precisions are
sensitive in small sample sizes, the precisions of our method
are generally stable in three datasets. To assess more details
of our methods on the precision, we adopt a measurement
to denote the performance for predicting the driver genes,
i.e. P =mean (pk), where pk denotes the fraction of the top k
(k = 1, 2, …, 100) predicted driver genes within the cancer
census genes list [22]. The results of average precision of
our method and comparison methods are listed in Table 1.
From this table, we can see that our method outperforms
DriverNet and MUFFINN in all three cancer datasets in
general.
When we applied MECoRank to all the three cancer

datasets, we finally got a ranking list for each dataset,
and the top 100 ranked mutations in the population
were selected as the candidate-driver genes. The list
of the 100 genes in three datasets is shown in
Additional file 2.
For BRCA, there are 35 genes presented in CGC on the

BRCA top 100 candidate-driver genes, which are more
than DriverNet, MUFFINN-DNMax and MUFFINN-
DNSum. Although MUFFINN-DNMax found 3 and 2
more genes in top rank 50 and 60 respectively, in general
our method could find more driver genes. The top 10
ranking genes in BRCA are listed in Table 2. TP53, EP300,
RB1, ESR1, CTNNB1 can be found in CGC. These five
genes are known directly contribute to breast cancer pro-
gression according to IntOGen-mutational cancer drivers
database [23]. COSMIC reported mutations in breast can-
cer most frequently in PIK3CA and TP53 while occasion-
ally in CREBBP. However, a literature has pointed out that
the gene CREBBP is also involved in the same function as
Breast Cancer and Reported Genes by studying the function
and pathway of the new gene [24]. Thus, we may conclude
that CREBBP can also be said to be responsible for the dis-
ease. The rest four genes (YWHAG, ATXN1, UBQLN4, and
SMAD9) also ranked high because of its high degree in tran-
sition probability W. Although they are not presented in
CGC, some evidences show that these four candidate genes
have functional roles in cancer or cancer-related biological
processes. For example, miR-181b-3p promotes epithelial–
mesenchymal transition in breast cancer cells through Snail
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stabilization by directly targeting YWHAG [25]. And
ATXN1 is the target of miR-221 in regulating normal and
malignant breast stem-like cells [26]. This is one of the few
reports about ATXN1’s role in breast cancer. And for
UBQLN4, there are few reports about it. But recently, a re-
searcher found that a novel variant in UBQLN4 is associated
with amyotrophic lateral sclerosis (ALS) and show that its
expression compromises motor axon morphogenesis in
mouse motor neurons and in zebrafish [27]. And SMAD9 is
a new type of transcriptional regulator in bone morphgenetic
protein signaling [28]. If SMAD9 have heterozygous muta-
tions, it will cause heritable pulmonary arterial hypertension
(HPAH), a serious lung vascular disease [29]. We also did
Drug-Gene analysis on the top 100 genes of BRCA. We used
the Drug-genes Interaction Database (DGIdb) online tool to
analyze our data [30]. The results were shown in Fig. 4.

Thirty-one BRCA candidate driver genes are found to be ac-
tionable targets. In addition, 30 other candidate driver genes
are druggable.
For KIRC, there are 31 genes presented in CGC on the

KIRC top 100 candidate-driver genes, which is more than
DriverNet, MUFFINN-DNMax and MUFFINN-DNSum
found. And from the rank cutoff curve, we can see that our
method is better than the other methods in top 100 genes.
The top 10 ranking genes are listed in Additional file 3.
Among the top 10 genes, TP53, EP300, CTNNB1,
CREBBP, SRC and AR can be found in CGC. We have
pointed out that TP53, EP300, CTNNB1 and CREBBP are
directly related to BRCA or other cancers. And SRC is

Table 1 The performance of our method and the other three
comparison methods of the average precision in BRCA, KIRC
and UCSC

BRCA KIRC LUSC

MECoRank 0.544526362 0.55994818 0.523352895

DriverNet 0.526221857 0.390001192 0.305236274

MUFFINN_DNMax 0.533024334 0.244094534 0.325148101

MUFFINN_DNSum 0.44190754 0.472425214 0.193487171

Table 2 The top10 candidate driver genes in BRCA

Rank Gene Score CGC gene

1 YWHAG 1 NO

2 TP53 0.999877321 YES

3 CREBBP 0.997637253 YES

4 ATXN1 0.997369452 NO

5 EP300 0.997363952 YES

6 RB1 0.996963919 YES

7 ESR1 0.996358809 YES

8 UBQLN4 0.995461351 NO

9 SMAD9 0.99541726 NO

10 CTNNB1 0.995314479 YES

Fig. 3 Performance comparision of driver gene predictions according to the cancer census genes set. a The performance of three methods
(MECoRank, DriverNet, MUFFINN-DNMax and MUFFINN-DNSum) on LUSC, KIRC and BRCA datasets. b Precisions of MECoRank when we evaluate
prediction from the CGC as a function of the size of the dataset

Hui et al. BMC Medical Genomics 2019, 12(Suppl 7):140 Page 6 of 10



human proto-oncogene, which was reported as a novel
therapeutic target in renal cell carcinoma [31, 32]. The role
of AR in KIRC progression is not clear, but it has been
shown that in prostate and breast cancer cells AR binds to
IGF1R promoter and thus increases IGF1R expression [33,
34]. The expression of IGF1R is inhibited by miRNA-223
[35] and miRNA-let-7i [36] that negatively associate with
KIRC survival [37]. Although ATXN1, SMAD9, UBQLN4
and GRB2 are not included in CGC, we have already men-
tioned that ATXN1, SMAD9 and UBQLN4 are all relate to
cancers or pathway in the last paragraph. As for GRB2, this
gene participates in multiple cancer related pathway [31],
such as chemokine signaling pathway, ErbB signaling path-
way, MAPK signaling pathway and Jak-STAT signaling
pathway. Among the top 100 genes in KIRC rank list, 29
genes are actionable targets and other 35 genes are at least
druggable (Fig. 4).
For LUSC, there are 33 genes presented in CGC

on the LUSC top 100 genes, but in DriverNet and
two different MUFFINN version (MUFFINN-DNMax,
MUFFINN-DNSum), they identified 21, 25 and 11
respectively. It shows that our method performs better.
The top 10 ranking genes are given in Additional file 4.
Among them, TP53, CREBBP, EP300, RB1, SMAD4 and
ESR1 are presented in CGC. And of these six driver genes,
TP53, RB1 and SMAD4 are directly related to LUSC ac-
cording to IntOGen-mutational cancer drivers database
[23]. ESR1 is known to play a very important role in cancer,
and previous research found that ESR1 methylation is asso-
ciated with concurrent methylation of a group of tumor
suppressors [33]. And TGFBR1 involved in the

transforming growth factor beta (TGF-β) signaling pathway
had a significantly increased risk for cancer development
[38]. The Drug-genes result (Fig. 4) shown that 29
genes are actionable targets and in addition 31 genes
are druggable genes. From Fig. 4, we can see that al-
most 60% or more are druggable targets in top 100
genes in these datasets.

Enrichment analysis
To test whether the top 100 candidate-driver genes for the
three investigated cancers are collaboratively working for
particular biological functions or pathways, we performed
Gene Ontology (GO) term and KEGG pathway enrichment
analysis by using the OmicShare tools, a free online platform
for data analysis (www.omicshare.com/tools). Here we only
listed GO term enrichment analysis result on BRCA. The re-
sults of other two datasets were shown in Additional file 5.
Go enrichment analysis revealed that the top100 candidate-
driver genes of BRCA were significantly enriched in 35 GO
terms which is shown in Fig. 5a. The most enriched GO
terms were “cellular process” in the biological process, “cell”
in the cellular components and “binding” in the molecular
function. And the KEGG pathway results were shown in Fig.
5b-c. In Fig. 5b, the ordinate is the A level and the B level an-
notation of KEGG, the black typeface is the A level annota-
tion name, and the color font is the B level. From this figure
we can see that the largest number of genes enriched path-
way is Signal transduction in Environmental Information
Processing. And the most significantly enriched pathway in
Human Diseases is Cancers. According to the pathway en-
richment table, we selected the top 20 most significant

Fig. 4 Distribution of three datasets’ top100 candidate-driver genes in druggable genes databases
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pathways and displayed them in Fig. 5c. Among the
top 20 pathways, the most significant pathway is
Pathways in cancer. That means the top 100 genes in
BRCA we identified were significantly related with
cancer. Other pathways (e.g., Pancreatic cancer, Pro-
teoglycans in cancer, Colorectal cancer and so on)
were related to other cancer. What’s more, Hippo sig-
naling pathway plays crucial roles in organ size con-
trol and cancer development. And it can interplay
with mevalonate to regulate RHAMM transcription
via YAP to modulate breast cancer cell motility [39].

Discussion and conclusions
In this work, we proposed a method named MECoRank
to prioritize driver genes of single patient sample based
on their impact on the expression in the molecular
interaction. The important contribution of our MECoR-
ank is that we not only assess mutation’s effect on gene
expression network, but also measure the differential ex-
pression’s effect within gene expression network. We ap-
plied MECoRank to three datasets (BRCA, KIRC and
LUSC) which were obtained from TCGA and UCSC.
Through evaluation of the benchmarking driver genes,

Fig. 5 GO term and KEGG pathway enrichment analysis on BRCA rank list. a GO term enrichment analysis result of top100 candidate-driver genes
in BRCA rank list. b KEGG pathway annotation result of top100 driver-candidate genes in BRCA. c Top 20 of pathway enrichment result of the
top100 driver-candidate genes
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MECoRank detected more known cancer driver genes
than DriverNet and two different MUFFINN versions.
That means MECorank yielded better performances
than the other competing approaches.
However, there are also some limitations in our work.

One is that the network we used is not complete, which
will affect the construction of bipartite graph and even-
tually affect the result. So in the following work we will
to construct a more completely network or use other
methods to construct the bipartite graph. What’s more,
we will try to integrate more information like CNVs and
gene fusion by using a more completely network.
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