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Abstract

Background: Perturbed posttranslational modification (PTM) landscapes commonly cause pathological phenotypes.
The Cancer Genome Atlas (TCGA) project profiles thousands of tumors allowing the identification of spontaneous
cancer-driving mutations, while Uniprot and dbSNP manage genetic disease-associated variants in the human
population. PhosphoSitePlus (PSP) is the most comprehensive resource for studying experimentally observed PTM
sites and the only repository with daily updates on functional annotations for many of these sites. To elucidate
altered PTM landscapes on a large scale, we integrated disease-associated mutations from TCGA, Uniprot, and
dbSNP with PTM sites from PhosphoSitePlus. We characterized each dataset individually, compared somatic with
germline mutations, and analyzed PTM sites intersecting directly with disease variants. To assess the impact of
mutations in the flanking regions of phosphosites, we developed DeltaScansite, a pipeline that compares Scansite
predictions on wild type versus mutated sequences. Disease mutations are also visualized in PhosphoSitePlus.

Results: Characterization of somatic variants revealed oncoprotein-like mutation profiles of U2AF1, PGM5, and
several other proteins, showing alteration patterns similar to germline mutations. The union of all datasets
uncovered previously unknown losses and gains of PTM events in diseases unevenly distributed across different
PTM types. Focusing on phosphorylation, our DeltaScansite workflow predicted perturbed signaling networks
consistent with calculations by the machine learning method MIMP.

Conclusions: We discovered oncoprotein-like profiles in TCGA and mutations that presumably modify protein
function by impacting PTM sites directly or by rewiring upstream regulation. The resulting datasets are enriched
with functional annotations from PhosphoSitePlus and present a unique resource for potential biomarkers or
disease drivers.
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Background
Recent breakthroughs in next-generation sequencing
technologies have been accompanied by large-scale
initiatives such as the TCGA network profiling large
numbers of tumors [1] or the 1000 Genomes Project
cataloging human genetic variations [2]. Concordantly,
DNA sequencing is becoming part of routine clinical

care [3], and initiatives such as the Obama Precision
Medicine program [4] aim to profile patients or healthy
individuals at the molecular level via sequencing or
genotyping, hereby entering the era of personalized
genomics and medicine.
While these advances have outpaced our ability to

functionally characterize the plethora of molecular infor-
mation, recent studies showed the statistical significance
of perturbed signaling and altered transferase activities
at a high level [5, 6]. These results are consistent with
the established classification of PTM-mediated pathways
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as hallmarks in cancer and other diseases [7]. Conse-
quently small molecule inhibitors targeting kinases such
as HER2 [8], RAF [9], PI3K [10], or MEK [11], have been
prime targets of drug development for decades, and
several of them have advanced into the clinic. In
addition to kinases, recent sequencing efforts revealed
other significantly altered transferases, which have been
subsequently pursued as targets, including histone meth-
yltransferase EZH2 for the treatment of myelodysplastic
syndrome and cutaneous T cell lymphoma [12, 13].
However, to fully understand the impact of mutations

on PTMs and pathways, in particular at the substrate
level, the integration of genomic with proteomic data is
required [14]. Recent studies therefore thought to
identify phosphorylation network-attacking mutations in
cancer cell lines [15] or to determine significantly phos-
pho-mutated proteins and pathways in tumors [16,
17]. These analyses gave important insights into per-
turbed signaling, but focused on the interplay be-
tween somatic cancer mutations and phosphosites.
Here we extended previous approaches by expanding

the panel of cancer types for the identification of som-
atic driver mutations, and focused on hotspot mutations
instead of taking the entire mutation load into account.
In addition we analyzed disease-associated single nucleo-
tide polymorphisms (SNPs) from the population, and
investigated other PTM types such as ubiquitylation,
acetylation, and methylation. We further applied
Scansite [18], a widely used method for the prediction of
upstream kinase regulation, to identify rewired signaling
networks. Our hypotheses on specific impacted PTM
sites are backed up by functional annotations in
PhosphoSitePlus [19] to form a unique resource for fur-
ther investigation.

Materials and methods
PTM and mutation data
PTM sites with experimental evidence in human
samples were retrieved from PhosphoSitePlus (version
August 2018). We included PTM sites determined by
low throughput methods or mass spectrometry. PTM
sites, which were identified by mass spectrometry based
on peptides corresponding to multiple homologous
proteins (defined as ‘protein groups’) were also included
in the analysis. Overall, 6.5% of the PTM sites map to
protein groups. Using the CGDSR R package from cBio-
Portal (http://www.cbioportal.org) [20, 21] missense
mutations from tumors across the following TCGA can-
cer types were retrieved: bladder carcinoma (BLCA)
[22], breast carcinoma (BRCA) [23], colorectal carcin-
oma (COADREAD) [24], glioblastoma (GBM) [25], head
and neck squamous cell carcinoma (HNSC) [26],
chromophobe renal cell carcinoma (KICH) [27], clear
cell renal carcinoma (KIRC) [28], acute myeloid leukemia

(LAML) [29], lung adenocarcinoma (LUAD) [30], lung
squamous cell carcinoma (LUSC) [31], ovarian carcinoma
(OV) [32], prostate adenocarcinoma (PRAD) [33], gastric
carcinoma (STAD) [34], papillary thyroid carcinoma
(THCA) [35], and endometrial carcinoma (UCEC) [36].
Annotated human missense variants were downloaded
from Uniprot (https://www.uniprot.org) (humsavar.txt, re-
lease 2018_02) [37]. Of these, disease-associated germline
variants that are also recorded in the dbSNP database [38]
were selected for further analyses. The vast majority of
variants in dbSNP (> 99.8%) have been classified as
germline variants, so that we define the dbSNP dataset as
the source for ‘germline’ mutations.

Mutation analyses
Hotspot mutation scores (ΔS) were calculated for each
protein as described [39]:
Where n is the total number of mutations, k is the

number of different mutation types, ni is the number of
occurrences for mutation i, and fi is the frequency of
mutation i or ni /n.

S ¼
Xk

i¼1

− f i∙ ln f ið Þ

S0 ¼
Xk

i¼1

−pi∙ ln pið Þ ¼ ln kð Þ

ΔS ¼ S0−S

For the clustering and comparison of frequencies of
amino acid changes each missense alteration type (from
one amino acid to any of 19 others) was counted in both
the somatic and germline datasets, and categorized by
the unmodified wild-type amino acid or by the impacted
PTM class. The resulting count matrix was normalized
and used as input to create heatmaps with the R package
pheatmap version 1.0.10 (https://cran.r-project.org/pack-
age=pheatmap). Default parameters (complete hierarch-
ical clustering and Euclidean distance) were used for
row- and column-wise clustering. Expected mutations
on PTM sites were calculated by taking the product of
the number of observed mutations on the unmodified
amino acid and the proportion of those amino acid resi-
dues that are a PTM site in the human proteome.

Prediction of altered upstream kinase regulation
Somatic hotspot and germline SNP mutations within 5
residues of a PTM site were compiled, and mutated
flanking sequences (+/− 7 residues) were derived. Scan-
site 4.0 [18] was used to calculate kinase-binding scores

Simpson et al. BMC Medical Genomics 2019, 12(Suppl 6):109 Page 2 of 10

http://www.cbioportal.org
https://www.uniprot.org
https://cran.r-project.org/package=pheatmap
https://cran.r-project.org/package=pheatmap


corresponding to wild type or mutated flanking se-
quences at minimum stringency. DeltaScansite scores
were defined as the difference between the Scansite
scores for mutated and wild type flanking sequences. A
second set of scores corresponding to the same wild type
and mutated flanking sequences was calculated using
RMIMP (version 1.2) [40]. Predictions were matched for
rewiring events for which both methods provided scores.

Results
Integrating PTM sites with disease variants
We retrieved PTM sites from PhosphoSitePlus (https://
www.phosphosite.org), somatic mutations from thousands
of TCGA tumors from cBioPortal, and disease-associated
SNPs from Uniprot and dbSNP (Materials and Methods).
Altogether, we collected 348,570 PTM sites on 18,154
human proteins. The most frequent modification sites in-
cluded 234,058 phosphorylation sites, 62,216 ubiquityla-
tion sites, 22,712 acetylation sites, and 15,872 methylation
sites (Fig. 1a). The TCGA dataset contained 481,370
somatic missense mutations from 4440 tumors across 15
cancer types (Fig. 1b). Filtering the dbSNP dataset for
disease-associated human variants, which result in mis-
sense alterations at the protein level, yielded a set of 18,
511 non-redundant mutations on 2532 proteins linked
with more than 3000 different diseases.

Identification of somatic hotspot mutations reveals
potential cancer drivers
While the set of germline variants exclusively contained
disease-associated SNPs and hence did not require

further filtering, only a fraction of somatic mutations in
the TCGA dataset are tumorigenic. To distinguish be-
tween passenger and driver mutations, we determined
recurrent mutations and calculated entropy-based
‘hotspot mutation scores’ [39] reflecting the preferred
occurrence of specific point mutations in a protein.
Hotspot mutations are likely cancer-driving, and present
the most characteristic feature of oncoproteins [41]. As
expected, known cancer proteins BRAF, PIK3CA, KRas,
Akt1, IDH1, and NRas showed the highest hotspot
mutation scores in the TCGA dataset (Fig. 2 and
Additional file 1). However, many other proteins, whose
contributions to oncogenesis are unknown or not fully
understood, also revealed hotspot mutations. For
example, splicing factor U2AF1 showed a recurrent mu-
tation (S34F) in leukemia and lung adenocarcinoma
resulting in the 7th highest hotspot score in our analysis.
Similarly, phosphoglucomutase-like protein 5 (PGM5)
had a hotspot mutation (I98V) in stomach cancer and
the 10th highest score.
By definition, hotspot scores at the protein level cor-

relate with the degree of recurrence of corresponding
mutations. The presence of at least one recurrent muta-
tion found in three or more tumors was sufficient for a
protein to gain a hotspot score significantly higher com-
pared to proteins with less recurrent mutations (p < 0.01
based on Mann-Whitney-Wilcoxon test) (Fig. 2b). Using
this cutoff to enrich for oncogenic mutations yielded a
set of non-redundant 1783 hotspot mutations on 1369
proteins (Fig. 3, Additional file 2). The most frequent
hotspot mutations on oncoproteins included V600E in
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Fig. 1 Overview of PhosphoSitePlus and TCGA datasets. a Total number of human PTM sites by PTM type in PhosphoSitePlus. b Bar plot showing
total number of tumors and violin plot showing the distribution of the number of missense mutations per tumor for each TCGA cancer type
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BRAF (265 tumors), H1047R (160 tumors), E545K (136
tumors), and E542K (76 tumors) in PIK3CA, G12D (64
tumors) and G12 V (63 tumors), G12C in KRas (46
tumors), and Q61R in NRas (36 tumors). Strikingly, hot-
spot mutations also occurred in tumor suppressors,
which are known to be enriched for loss-of-function
mutations almost evenly distributed along the protein
sequence [39]. p53 showed the most frequent mutations
including R175H (63 tumors), R273H (47 tumors),
R248W (38 tumors), and R248Q (37 tumors), followed

by PTEN containing hotspot mutations such as R130G
(26 tumors) and R130Q (25 tumors). The unexpected
presence of hotspot mutations in tumor suppressors has
been investigated in previous studies [42], but most
cases are not fully understood. Notably the number of
tumors per cancer type varied from 65 (chromophobe
renal cell carcinoma) to 817 (breast cancer), so that the
ranking of hotspot mutations by frequency was biased
towards cancer types with larger cohorts. We therefore
included cancer type-specific scores in Additional file 1.

Fig. 2 Correlation of hotspot mutation score (delta S) and the number of mutations. a The logarithm of the number of mutations found in a
protein normalized by its sequence length plotted against its hotspot mutation score. b The logarithm of the number of times the most frequent
alteration occurs in a protein plotted against its hotspot score. The associated density is in blue

Fig. 3 Manhattan plot of TCGA alterations. Each alteration in the TCGA dataset is plotted by its frequency. Light green indicates a low hotspot
mutation score for the associated protein, while dark blue indicates a high hotspot mutation score. The dashed line indicates the 3-tumor cutoff
used to define hotspot mutations
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Several proteins reveal high densities or frequencies of
disease mutations
Prior to merging the PTM data with the disease datasets,
we sought to compare the characteristics of somatic can-
cer mutations versus germline mutations associated with
various diseases. Consistent with the approximately 200-
fold wider range of diseases, the germline set contained
around 10-fold (1783/18511) more mutations but only
2-fold (1369/2532) more proteins than the somatic set.
This discrepancy traces back to proteins showing
numerous disease-associated germline mutations
(Additional file 3 A and B). Protein SCN1A showed the
largest number of distinct disease variants (219 genetic
variants associated with five different diseases). Taking
the protein sequence into account protein PAH showed
the highest density of variants (213 variants within 452
residues associated with 3 different diseases). In com-
parison, in the TCGA dataset Titin showed the largest
total number of variants (2006 mutations across all pa-
tients), and p53 contained the highest density of variants
(1058 mutations across all patients within 393 residues).
Additionally, p53 contained both the largest total num-
ber and highest density of unique hotspot mutations,
with 96 unique hotspot alterations on p53 found in the
dataset.

Deleted PTM sites in diseases
Having filtered and characterized somatic hotspot muta-
tions and disease-associated mutations from dbSNP, we
set out to identify mutations directly affecting PTM
sites. For this analysis, we postulate that previously re-
ported PTM events would indeed be present in a tissue
in the absence of mutations. First, we mapped TCGA
mutations and PTM sites to the corresponding protein
sequences and investigated the overlap. We found 49
somatic hotspot mutations in TCGA, destroying 45
PTM sites in 35 proteins (Additional file 4). This overlap
between PTM sites and somatic mutations was signifi-
cantly larger than expected (p < 0.01 based on a two-
tailed Fisher exact test). While p53 (7 PTM sites)
(Fig. 4a), CTNNB1 (4 PTM sites) (Fig. 4b), and hnRNP
U (2 PTM sites) showed multiple impacted sites, all
other proteins had only one lost PTM site including
known cancer proteins such as EGFR, APC1, BRAF, or
RAF1. A total of ten affected PTM sites have been
associated with specific biological processes or molecular
functions. For example, phosphorylation of proto-
oncoprotein beta-catenin on S33, S37, and T41 by GSK-
3 beta is known to target beta-catenin towards degrad-
ation, and CK1-mediated phosphorylation of S45 func-
tions as a gatekeeper for this process [43]. Mutations of
these sites primarily occur in endometrial but also other
cancer types including lung cancer. The destruction of
these regulating PTM sites presumably prohibits the

degradation process leading to continuous and onco-
genic activity of beta-catenin. While the loss of these
PTM sites on beta-catenin are consistent with an onco-
genic model, other cases are more complex. For ex-
ample, PRMT1-mediated methylation of EGFR on R222
has been shown to enhance binding to EGF and subse-
quent receptor dimerization and signaling activation
[44]. However, the loss of this PTM site, found in 1.4%
of glioblastoma samples, would be consistent with a
tumor-suppressing role of the mutation. Overall, most
cases, such as the mutation on growth factor receptor-
bound protein 10 (T422M), found in three tumors, have
been detected by mass spectrometry without functional
characterization, forming a candidate set for further
characterization.
We also examined the set of disease-associated

germline SNPs, and identified 420 genetic variants
overlapping with 402 PTM sites on 276 proteins
(Additional file 5). A total of 73 proteins showed two or
more overlaps between PTM sites and germline muta-
tions. Lamin A/C (20 overlaps), CTNNB1 (10 overlaps),
and p53 (9 overlaps) showed the largest number of
intersects. The observed number of SNP mutations on
K-acetylation, T-phosphorylation and Y-phosphorylation
sites was significantly greater than expected (p < 0.01
based on a two-tailed Fisher exact test) (Fig. 5a). A total of
48 destructed PTM sites have been functionally character-
ized by previous studies (Additional file 5). Among these,
the best-described PTM site is S32 on NF-kappa-B inhibi-
tor alpha (IkB-alpha). Overall, 127 references have de-
scribed the functional impact of phosphorylation of IkB-
alpha at S32 leading to proteasome-mediated degradation
and consequent activation of NF-kappa-B/Rel transcrip-
tion factors via translocation from the cytosol to the nu-
cleus [45]. Mutation on this residue has been shown to be
associated with autosomal dominant anhidrotic ectoder-
mal dysplasia and T cell immunodeficiency [46]. As ob-
served for the overlap with somatic mutations, most
dbSNP-overlapping PTM sites have been experimentally
validated without functional characterization including
PTM sites on cancer proteins. For example, phosphoryl-
ation of RAF1 on T310 has been validated in six high-
throughput experiments. While the function of this PTM
site is unknown, variation on the residue (T301A) is asso-
ciated with childhood-onset dilated cardiomyopathy [47].

Mimicked phosphorylation sites in diseases
While the destruction of PTM sites in diseases might
imply the loss of tumor-suppressing functions in the cell,
constant activation of PTM sites points to the promo-
tion of oncogenic processes. Focusing on phosphosites,
we scanned the data for residues mutated to the nega-
tively charged amino acids aspartic (D) and glutamic
acid (E). This was based on the idea that diseases might
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Fig. 5 Comparison of alterations found on PTM sites and all alterations. a Barplot comparing the number of observed (orange) to expected
(green) mutated PTM sites in the SNP dataset. b Heatmap of the frequencies of alteration types within the germline datasets on PTM sites and
their unmodified counterparts, normalized by row. Mutation residues are annotated by residue type

Fig. 4 PhosphoSitePlus lollipop plots of (a) p53 and (b) CTNNB1. Circles indicate PTM sites with a height reflecting the number of references
describing the site. Squares indicate hotspot mutations with a height reflecting the number of TCGA tumors containing mutations on that residue
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utilize the same trick that scientists use in experiments
to mimic constantly active phosphosites [48]. While
none of the overlapping somatic hotspot mutations con-
tained mimicking alterations, eleven SNPs intersected
with phosphosites in their wild type form and mimicked
them in diseases (Additional file 6). Interestingly, all of
these were phosphorylated tyrosines mutated to aspartic
acid. Strikingly, phosphorylation of non-receptor-type
protein tyrosine phosphatase SHP-2 on Y62 has been
detected in 2115 mass spectrometry experiments, but
not functionally characterized to the best of our know-
ledge. The overlapping mutation (Y62D), however, has
been associated with Noonan Syndrome [49].
In addition to the identification of phosphosites that

are phosphorylated in the wild type state and mimicked
in mutated form, we identified 31 somatic hotspot and
1230 germline mutations that mutated to aspartic and
glutamic acid – irrespective of whether they present
PTM sites in their wild type origin. Besides well-known
cases such as BRAF (V600E), KRas (G12D, G13D) or
PIK3CA (G118D), we derived previously uncharacterized
hotspot mutations such as SF3B1 (K700E) found in eight
breast tumors and one leukemia sample.
We also looked into the distributions of each kind of

missense mutation on PTM sites compared to un-
modified residues. Clustering of these frequencies
showed that mutation patterns for PTM sites were
similar to their unmodified counterparts in the TCGA
(Additional file 7) and the dbSNP sets (Fig. 5b).

Mutations triggering rewiring of signaling networks
While mutations on central PTM sites trigger their loss
or in some cases even mimic their active states,

mutations in their flanking regions could rewire regu-
lation by changing the substrate sequence motif.
Scansite uses scoring matrices derived from peptide
library experiments to identify short protein se-
quence motifs [18]. For the first time we applied
Scansite on wild type and mutated flanking regions
of PTM sites to derive ‘Delta-Scansite’ score as a
measure of rewiring (Materials and Methods). We
also compared the results with the machine learning
method MIMP [40].
In the TCGA dataset, Delta-Scansite and MIMP calcu-

lated 149 matching rewiring scores for 87 mutations on
83 flanking regions across 73 proteins. Among these
paired scores, 138 (93%) agreed in sign (Fig. 6a and
Additional file 8 A). For example, both Delta-Scansite
and MIMP predicted a loss phosphorylation of T284 on
p53 by Aurora B due to the alteration R282W found in
30 tumors across multiple cancer types. Aurora B-
mediated phosphorylation on T284 has been shown to
compromise p53 transcriptional activity [50].
Similarly, both methods predicted a loss phosphor-

ylation of T254 on MTF1 by Akt1. Dephosphorylation
of T254 by phosphatase PP2A PR110 has been shown
to regulate MTF1 activity [51]. To our knowledge the
corresponding kinase, however, has not been reported.
Furthermore, in addition to mutations leading to
direct loss of regulating PTM sites of beta-catenin as
described above, both approaches predicted reduced
phosphorylation on S33 by GSK, triggered by three
hotspot mutations on a flanking residue that is itself
a phosphosite (S37C, S37F, and S37A). These muta-
tions were found in primarily endometrial cancer
tumors.
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In the SNP dataset, 590 scores were calculated for 318
mutations on 283 sites across 188 proteins (Additional
file 8 B). In total, 494 (84%) of these scores agreed in
sign (Fig. 6b). For example, the S112 phosphosite on
PPAR-gamma plays a role in cell differentiation, growth,
and transcription as described by multiple studies
curated in PhosphoSitePlus, and the flanking SNP on
P113Q has been associated with obesity [52]. Both our
approach and MIMP predicted a loss of MAPK and
CDK binding to S112, but a gain of ATM Kinase
binding, indicating a possible rewiring event.
While most predictions were concordant between Del-

taScansite and MIMP, we also observed contradictory
predictions. For example, MIMP predicted that muta-
tions of arginine to histidine on the − 3 position relative
to AKT1 substrate sites induce loss of phosphorylation
by AKT1. In contrast DeltaScansite predicted gain of
phosphorylation. The canonical sequence motif for AKT
substrates requires an arginine on the − 3 position.
However, AKT has been indeed reported to potentially
phosphorylate SP1 at T679 despite histidine on the − 3
position [53]. Thus it is difficult to determine which
prediction method is correct in such cases.
Altogether we found that DeltaScansite and MIMP

predictions are consistent. The rewiring events suggested
by these methods provide a unique resource for studying
perturbed signaling in diseases.

Concluding remarks and future plans
The convergence of our knowledge about missense mu-
tations and PTMs has opened up a new approach for
analyzing and understanding the interplay between
disease mutations and cellular signaling networks. This
interplay provides a unique framework for investigating
pathogenesis initiated by missense mutations, and
conversely for understanding the cellular processes and
signaling networks influenced by the posttranslational
status of a modification site.

We have analyzed the union of somatic mutations in
15 different cancer types, disease-associated germline
mutations, and PTMs. To our knowledge this is the first
study to include acetylation, methylation, ubiquitylation,
and other non-phosphorylation PTM sites in the analysis
of the intersection with mutations. In fact we found
more than one hundred non-phosphorylation PTM sites
overlapping with disease mutations. In addition to
disease-associated germline variants we included somatic
cancer mutations. Distinguishing between passenger and
driver mutations based on recurrence revealed a number
of somatic hotspot mutations previously not linked with
tumorigenesis. While mutations on central PTM sites
presumably result in the destruction or even mimicking
of their active states, mutations in the flanking sequence

motif could rewire regulation as predicted by Scansite
and MIMP.
We discovered mutations that may impact posttransla-

tional signaling, modifying protein function and network
dynamics. Our datasets serve as unique resources for
potential biomarkers or disease drivers. The concord-
ance between DeltaScansite and MIMP makes clear that
altered upstream regulation can be estimated in-silico
and extended for any PTM type in the future.
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