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Abstract

Background: The increasing availability of multiple types of genomic profiles measured from the same cancer
patients has provided numerous opportunities for investigating genomic mechanisms underlying cancer. In
particular, association studies of gene expression traits with respect to multi-layered genomic features are highly
useful for uncovering the underlying mechanism. Conventional correlation-based association tests are limited
because they are prone to revealing indirect associations. Moreover, integration of multiple types of genomic
features raises another challenge.

Methods: In this study, we propose a new framework for association studies called integrative regression network that
identifies genomic associations on multiple high-dimensional genomic profiles by taking into account the associations
between as well as within profiles. We employed high-dimensional regression techniques to first identify the
associations between different genomic profiles. Based on the resulting regression coefficients, a regression
network was constructed within each profile. For example, two methylation features having similar regression
coefficients with respect to a number of gene expression traits are likely to be involved in the same biological
process and therefore we define an edge between two methylation features in the regression network. To extract
more reliable associations, multiple sparse structured regression techniques were applied and the resulting
multiple networks were merged as the integrative regression network using a similarity network fusion technique.

Results: Experiments were carried out using four different sparse structured regression methods on five cancer
types from TCGA. The advantages and disadvantages of each regression method were also explored. We find
there was large inconsistency in the results from different regression methods, which supports the need to
extract the proposed integrative regression network from multiple complimentary regression techniques. Fusing
multiple regression networks by using similarity measurements led to the identification of significant gene pairs
and a resulting network with better topological properties.

Conclusions: We developed and validated the integrative regression network scheme on multi-layered genomic
profiles from TCGA. Our method facilitates identification of the strong signals as well as weaker signals by fusing
information from different regression techniques. It could be extended to integrate results obtained from
different cancer types as well.
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Background

Ongoing efforts by the The Cancer Genome Atlas (TCGA)
[1] or the International Cancer Genome Consortium
(ICGC) [2] have provided an exceptional opportunity for
biomedical researchers and practitioners to explore the
mechanisms and to identify important biomarkers under-
lying cancer. Large-scale analysis of the available datasets
that cover genomic, transcriptomic, and epigenomic, and
clinical profiles have revealed important characteristics of
genomic associations in cancer. Additionally, ‘cancer stat
fact sheets” have revealed new cases and the expected mor-
tality rate of cancer are rapidly increasing [3]. Ongoing
studies of gene expression with respect to multi-layered
genomic features are highly useful for overcoming the
poor prognosis of cancer.

In this study, we identified genomic associations using
multiple genomic profiles. Given the high level of noise
and extremely large data dimension, simple correlation-
based association tests are prone to revealing indirect or
false-positive genomic associations. Instead, we employed
high-dimensional multivariate regression techniques to
identify genomic associations between different high-
dimensional genomic profiles. Moreover, we constructed a
regression network utilizing the regression coefficient vec-
tor or matrix. The regression network was constructed
within each profile such as mRNA expression or methyla-
tion, but takes into account the association between the
two different genomic profiles. To extract more robust
and statistically significant results, we used multiple re-
gression techniques and then integrated the resultant re-
gression networks into an integrative regression network
by using a network fusion technique.

Various sparse structured regression techniques have
been proposed to address the challenges arising in a
high-dimensional regression setting, both for the input
and output variables. A widely used L;-regularized linear
regression known as Lasso [4] produces sparse regres-
sion coefficients when the number of features is large.
Variants of Lasso have been proposed to incorporate
structural information of genomic features in input and
expression traits as output. Graph-guided Fused Lasso
(GFLasso) [5], for example, utilizes the network struc-
ture among output variables in multiple output regres-
sion setting. This is particularly suitable for association
studies that consider gene expression traits as output
variables because gene expression traits are under a nat-
ural network structure. In Sparse Group Lasso (SGL)
[6], input variables (genomic features) are assumed to
behave in groups; thus, by utilizing grouping information
of the features such as pathway groups, the method
identifies important genes in common pathways of inter-
est. For problems, such as grouped covariates, this
method can impose sparse effect on the group level and
within the group level. The more recently described
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Structured Input—output Lasso (SIOL) method com-
bines structural constraints on both the inputs and the
outputs [7]. Similar to GFLasso, this method considers
output structural information, and similar to SGL, con-
siders input group information. SIOL predicts true non-
zero coefficients using both structural information and
grouping effect on the inputs and output variants.

Each of these sparse structured regression methods
exhibits advantages and disadvantages. Rather than
selecting the single best method, we build an integrative
regression network by fusing multiple regression net-
works. We adopted the existing approach of Similarity
Network Fusion (SNF) [8] for network integration. The
final fused network could compile shared information
as well as complementary information from all different
datasets used in the fusion by identifying similarities in
all of the networks. Given the natural propagative beha-
vior of SNF, the produced output showed less noise and
captured important signals (both stronger and weaker
signals). We demonstrate the proposed approach for an
association study using methylation and gene expression
data for five cancer datasets from TCGA.

Methods

Overview of the proposed method

The complete flow of the process is depicted in Fig. 1.
Methylation data and mRNA expression traits from TCGA
were used in this study. Multiple regression methods were
performed on the data by treating methylation data as fea-
tures and expression traits as outputs. Resulting regression
coefficients matrices were used to construct affinity or
similarity networks on each profile. The constructed net-
works were finally fused as an integrative regression net-
work using the similarity network fusion technique.

Data & pre-processing
We downloaded gene expression data and methylation
data used in a previous study [8] that were collected for
five different cancer profiles from TCGA: glioblastoma
multiforme (GBM), breast invasive carcinoma (BIC),
lung squamous cell carcinoma (LSCC), kidney renal
clear cell carcinoma (KRCCC), and colon adenocarcin-
oma (COAD). Acquisition platforms of the expression
traits and methylation data are shown in Table 1 [8, 9].
The methylation features were converted into gene-
based representations by taking the average values as re-
ported previously [9]. To identify the common behavior of
genes across multiple cancer profiles, the common methy-
lation genes and expression traits across all cancer types
were collected. This was done to study the collective and
crucial genes in all cancer data types. This resultant final
datasets contained 597 methylation features and 10,299 ex-
pression traits. We focused on cancer-related genes from
COSMIC [10] and took the intersection of those genes
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with 10,299 expression traits of BIC, GBM, LSCC, KRCCC,
and COAD. Table 2 summarizes the final datasets for all
cancer types used in this experiment. The feature values of
each individual dataset were standardized such that the
mean of each feature was zero and the standard deviation
(SD) of each feature was one, which in turn resulted in the
representation of different genomic features on expression
traits without bias. For ease of understanding, the cancer
profile names are as follows: BIC as breast, KRCCC as kid-
ney, GBM as GBM, LSCC as lung, and COAD as colon.

High-dimensional regression methods

Least absolute shrinkage and selection operator (Lasso)
Lasso is a sparse regression framework that is a highly ef-
fective method for detecting associations in high dimen-
sional data with the ability for simultaneous feature
selection and regression [4]. This regression method is
used to identify methylation features that are associated
with gene expression traits. For the available methylation
features X;;, Xo;, X3, and Xj; (where J is the total number
of features and i is the index of the samples), the effect to
Y;, the expression level of a given gene in sample i is mo-
deled in a multivariate liner regression setting as follows:

Y= By + B X+ BiXoi + B X
+¢&, & ~N(0,0%) (1)

Table 1 Data acquisition platforms

The L;-penalized objective function is used to optimize
and identify comparatively lesser genomic features that
affect the expression trait.

minZ(Y,»— (ﬁo + B X1 + By Xoi + - ./;,’]X]i))z
37| )
j

The second term of equation (2) induces a sparse so-
lution by driving many irrelevant beta coefficients to
exact zeros. The result of Lasso is a set of features that
are highly affined to the given expression trait and the
implication power of each feature j is given by its re-
gression coefficient f;, which provides a measure of
how strongly or weakly each feature influences the
traits. This procedure is applied to each of the multiple
gene expression traits independently. Lasso is widely ef-
fective, when J (features) >> N (number of samples),
and only a small number of inputs are expected to in-
fluence outputs. This is implemented in R using the
glmnet package [11]. The optimal parameter 1 was
chosen by cross-validation.

Graph guided fused lasso (GFLasso)

GFLasso, an extension of Lasso for multiple output re-
gression, fuses regression coefficients across correlated
output variables, which is particularly suitable for

Cancer type Expression data Methylation data

GBM Broad Institute HT-HG-U133A Platform JHU-USC-lllumina-DNA-Methylation Platform
LSCC JHU-USC-Human-Methylation-27 Platform
BIC UNC-Agilent-G4502A-07 Platform

COAD

KRCCC UNC-llumina-Hiseg-RNASeq Platform
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Table 2 Details of all cancer profiles before and after filtration process

Cancer Total DNA Methylation MRNA Expression

type samples Before filtering After filtering Before filtering After filtering
GBM 215 1,491 597 12,042 385

BIC 105 23,094 17,814

KRCCC 124 24,532 20,532

LSCC 105 27,578 12,042

COAD 92 27,578 17,814

analyzing gene expression traits with an inherent net-
work structure as output traits [5]. The method includes
a fusion penalty along with a Lasso penalty such that the
regression coefficients across correlated traits are fused
using weighted connectivity. For any feature j, if any two
traits m and [ are connected with an edge, then an add-
itional penalty is imposed on the regression coefficients
Bim and ;. The fusion penalty encourages the sizes of
the effects B;,, and S; of each marker j on correlated
traits m and [ to be similar [12]. Experiments demon-
strated that taking output structural information im-
proved the sensitivity and specificity for recovering
sparse structure and also increased the prediction accu-
racy [13]. The method deals with multiple correlated
traits rather than multiple independent traits as Lasso.
In equation (3), yx € R” represents the expression levels
of gene k, X € R "/ is the feature matrix, and By € R is
the regression coefficient vector for gene k, A is a
regularization parameter for sparsity, y is a GFLasso
regularization parameter and f(r,,;) is the correlation be-
tween the two traits being fused. GFLasso was imple-
mented in Matlab, with the help of the code present at
‘Sailing Lab’ [14].

minz (J’k—Xﬁk)T(yk—Xﬁk) +AZ Z‘ﬁjk‘
k ko j
7 D ) |Bmsign(raby]

(m,l)eE j

(3)

To select optimal regularization parameters, we first
identified the median of non-zero beta coefficients and
multiplied it by the total count of gene expression traits.
The obtained value was assigned to lambda as an initial
value. The initial gamma was fixed as 1. The observation
was carried out using different A and y values, for ex-
ample fixing y and applying different values of A as 1/2,
A, and 21, then fixing A and changing y to y/2, y, and 2y,
to verify the mean squared error, regression coefficients
density, and time to execute the dataset. Through empir-
ical study, we derived lambda and gamma values as
those with the smallest MSE. Based on previous studies
[5], the correlation threshold was fixed as 0.7 for all
datasets throughout the experiments, and thus fir,) was

always greater than or equal to 0.7 considering only very
highly correlated gene expression features.

Sparse group lasso (SGL)

SGL in an input-structured spare regression, which utilizes
a clustering or sub-group structure in feature variables,
whereas GFLasso is based on the graph structure among
output variables [6]. Both SGL and GFLasso were developed
based on Lasso by considering the structural information in
either input or output variables. SGL is a regularized model
for linear regression with L; (Lasso) and L, penalties that
imposes sparsity both at the individual feature and group
levels [15]. In equation (4), X? is the sub-matrix of X with
columns corresponding to the predictors in group /, ¥ the
coefficient vector of that group, and p; is the length of .
The Sparse Group Lasso can be used to identify genes that
are particularly important in the pathways of interest.

.1 &
min o ||)’—Z X013 (4)
neo=

+(1-a)2> BB |l2+ad| Bl
=1

Here, a € [0, 1] is a parameter for convex combination
of the Lasso and group Lasso penalties (a =0 gives the
group Lasso fit, a =1 gives the Lasso fit). And # and m
represents the number of samples and the number of
feature groups, respectively. This is implemented in R
using the ‘SGL package [16].

To define the grouping of features, we applied clustering
techniques to feature data. The hierarchical clustering was
chosen after observing k-means and k-median clustering
techniques. The function hclust in R was used with Euclid-
ean distance measurement and Ward’s linkage method for
experiments. The number of groups was verified with dif-
ferent trials such as 10, 20, 50, and 80, and 20 groups was
chosen because of its better clustering results and MSE.
For regularization parameter selection, the minimum value
of the penalty parameter, as a fraction of the maximum
value, was chosen to be 0.8 and a was set as 0.1.

Structured input-output lasso (SIOL)
SIOL is a jointly structured input—output Lasso to sim-
ultaneously take advantage of both input and output
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structures. The method considers the occurrence of
grouping effects on the inputs and outputs, which can
be considered as a priori information [7]. Similar to
GFLasso, this method considers output structural informa-
tion; like SGL, this method considers group information.
Experiments demonstrated that the models with either in-
put or output structure were less effective for suppressing
noisy signals, resulting in many false-positives compared
to when both input and output structural information
were considered [17]. SIOL can produce significantly more
accurate and faster results compared to other models.
Grouping structure over inputs and output groups will be
available as G =1{g;, . . ., gigy and H=1thy, . . ., hyy}, re-
spectively. Group Lasso uses L;/L, penalization to enforce
that all members in each group of input/output variables
are jointly relevant or irrelevant to each output/input.
SIOL is formulated as in equation (5). SIOL is imple-
mented in Matlab, with the help of the code present at
‘Sailing Lab’ [18].

T K
mm5||Y—BX||,2,~+A1HB||1 +AzzZ||ﬁ;§||z

k=1 geG
J .
+Asz Z 18312

j=1 heH

(5)

Similar to SGL, the number of clusters/groups was
chosen as 20. Parameter tuning was performed
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individually on each dataset through cross-validation.
The identified A; was 0.1, A, ranged from 0.25 to 0.35,
and A3 ranged from 0.15 to 0.25 for all cancer profiles.

Construction of regression network and its integration

Considering that two features with similar regression co-
efficients over expression traits have equally prominent
weightage for the traits, or the traits affected by a similar
set of features may be regulated by common biological
processes, we constructed a regression network based
on regression coefficient similarity. To obtain an un-
biased result, the regression coefficient weights were
normalized in SNF. Suppose that both gene g; and gene
gj have similar regression coefficients with respect to the
considered features as illustrated in Fig. 2. We thus de-
fined an edge between g; and g;. This led to a network
among the output variables, in our case a gene expres-
sion network. We defined the methylation feature net-
work using a similar idea. The edge weight was defined
as the affinities of the regression coefficient vectors in
SNF. In this study, to obtain more reliable true-positive
signals, the results of all regression methods were com-
bined as the integrative regression network, which easily
revealed highly influential features, genes, and their as-
sociations. The final fused network was constructed by
identifying such gene pairs, as shown in Fig. 2. SNF was
mainly used for integration of different similarity net-
works into a single network [8]. The final fused network

Beta coefficient vectors Induced correlation edges
of two genes for each single network
Lasso
LT o 5
LT (e
\\ 8i
GFLasso o~
SENNRRRENE \&
j | | | | | | | I | | E> / Fused network edge
& Similarity 5, —
Network » [ g — g |
SGL ~ Fusion ~
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|:> \\gi/
SRR EER
{ g'. '/1
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SIOL N
dHNERENEEN &)
aiiNEREENR O
Fig. 2 lllustration of regression network construction from regression coefficients. Two beta coefficients with similar effects for two different
genes were fused using similarity measurement
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can be used to apprehend shared information as well as
complementary information of all datasets used for fu-
sion by observing similarities of each network. Weaker
similarities disappeared in the fused network, which in
turn decreased noise, while also allowing for low weighted
edges supported by all networks, increasing the signal
strength.

In SNE, the edge weight matrix W is converted into a
full kernel normalized weight matrix P = D™'W, where D
is the diagonal matrix whose entries D(j, j) = X;W(i, j). The
local affinity S is measured using K nearest neighbors on
the weight matrix W. For the given two similarity matrices
in a general SNF setting, an important step is to iteratively
update the matrix corresponding to each of the affinity
matrices as in equation (6).

P =5 5 PP x (s1)"

2 T
P2, = 5 x B{Y x (5 ©

1 2
) _ P+ PP
2

ple

where PV, is the similarity matrix for the first data type
after t iterations, P{?, is a similarity matrix of second data
type, and P is overall status matrix. Note that the equa-
tion (6) determines the similarity fusion of two data types,
and the method ensembles are equally good for more than
2 datasets. In our experiments, we used four datasets, one
from each regression result, and 20 iterations (t=20) for
applying a propagating effect on the fused network. Given
the propagation effects of SNE, if two nodes do not have
greater similarity in one network but possess strong simi-
larity in another network, then the pairs will be propa-
gated by SNF to the final fusion network. SNF was
implemented in R using the ‘SNFtool’ package, and both
the affinity measurement and fusion techniques were sup-
ported by this package [19]. Network fusion was carried
out using a non-linear method that works on message-
passing theory [20]. The number of neighbors (K) and
hyper parameter (alpha) are the two parameters deter-
mined by SNF. We considered the range of K to be 2-20
and for a to be 0.3-0.8. For all combinations of K and «,
affinity measurement was performed using SNFtool and
correlation was measured using equation (7).

Z SIM(wf7 w,')
SWowp) == (7)

b EN: (1-SIM (wi, w))

=1 j=ipy

)
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where N =4, w;, wy, ws, and wy are the affinity sets mea-
sured using SNFtool and wy is the final fused set ob-
tained by fusing w;, w,, w3, and wy. SIM (ws w;) is the
correlation measurement between affinity sets wyand w;.
Finally, the highest correlation and its respective K and
a for each cancer dataset were identified. Using the
regression coefficient matrix as-is gives a similarity
measurement of methylation features, while transposing
the regression coefficient matrix gives the similarity
measurement of expression traits. Using the affinity
matrices and fusion techniques, we computed the opti-
mal value of K and « for all cancer profiles.

Identifying a cutoff for edge filtering in regression networks
A cutoff was computed to choose the gene pairs with
more significance from each individual affinity matrix
and from the final fused matrix as in [21]. The affinity
matrix of each method was randomly permuted 100
times and a cutoff value was determined using equation
(8). The identified cutoff is a point at which the total
number of edges in the permuted network is less than
the real network and the largest connected component
is larger than any other connected component. W de-
notes a real network and WP is the A permutation net-
work. E(X) and C(X) are the number of edges and
largest connected components in the network X. In
equation (8), the numerator is the average of permuted
network’s total number of edges and largest connected
components, while the denominator is the number of
edges and largest connected components of the real
network.

1 |WP| |wPp|
E(WP{ C(WPg
F(W. WP) = argmin 1 \WP\; ( k)+|Wp|; (WPy)
P WE) = argmiieelon) 5 E(W9) c(wo)

where
we = {(i,)|(i,/))eW and w;;=c}

WP = {(i,j)\wp(k),_je\/VP;< and wp(k)i_iZC}

Results
Performance investigation of different regression methods
We first compared the performance of each regression
method considered in this study. To evaluate each
method, 2/3 of the dataset was used as training data and
the remaining 1/3 was used as test data. Figure 3 shows
the MSE of all methods for the five types of cancer data-
sets. A smaller MSE implies better performance.

Because of its structural information in consideration
of SIOL, this method significantly outperformed all
other regression methods, whereas GFLasso, SGL, and
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Fig. 3 Comparison of regression methods in terms of mean squared error (MSE)

RegressionMethods

Lasso tend to produce comparable results, while Lasso,
which uses no structural information, produces the lar-
gest MSE. The overall performance in terms of MSE in
decreasing order was SIOL, GFLasso, SGL, and Lasso.
The procedure was applied for multiple cancer profiles
as shown in Fig. 3 and the behavior was observed to be
similar for all cancer data types.

Discovering common genomic features of all methods
without fusion technique

We further investigated the combined results of all four
methods to identify influential predictors of cancer. The
common predictors that were retrieved using all regres-
sion methods were collected. We focused on genomic
features identified using all methods, as they are the
strongest predictors of the expression traits. As the /3

value is the measure of how strongly each predictor vari-
able influences the response variable, highly impacted
gene pairs (top 200) based on the S values were collected
for each of the four regression methods.

Figure 4 shows the Venn diagrams for the common
methylation features associated with expression traits
between different regression methods. Figure 1(a) to (e)
shows the result using the top 200 regression coefficients
on the five cancer profiles. Overall, the number of com-
mon features is very small across all cancer types, and
between any pair of regression methods. The common
genomic features found using the methods GFLasso and
SIOL, which showed higher values than any other com-
bination, are 29, 43, 24, 30, and 21 for breast, colon,
GBM, kidney, and lung cancer profiles, respectively.
Consideration of structural information (GFLasso and

Breast Cancer Colon Cancer GBM Cancer Kidney Cancer Lung Cancer
GFLasso GFLasso GFLasso GFLasso GFLasso
55 36 31 A -

\ A T
\ 4 Lﬁ/

Lasso ol
63 73

(@)

(b) (©) (d)
Fig. 4 Venn diagram of methylation features associated with expression traits. Methylation features found by top 200 regression coefficients is
depicted for (a) Breast, (b) Colon, (c) GBM, (d) Kidney, and (e) Lung cancer

(e)
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SIOL) appeared to be the main cause of this behavior.
The fusion penalty applied for output variants was com-
mon in both methods.

Figure 5 is the summary of the common genomic fea-
tures identified by at least 3 regression methods. The
largest number of identified genomic features was the
combination of GFLasso and SIOL, ie. sets 1 and 4. As
observed earlier, considering structural information
made the methods operative for identifying the strongest
predictor signals of response variables. The total num-
bers of genomic features identified from the top 200
regression coefficients using three or above regression
methods were 21 for the breast, 30 for colon, 20 for
GBM, 24 for kidney, and 27 for lung cancer datasets.

Figures 4 and 5 show that the results from different re-
gression methods are very inconsistent. A naive combin-
ation of the results would lead to a biased and inconsistent
study. We also observed that selecting the top 50,100, or
150 regression coefficients showed a common trend of 0
(zero) common genomic features identified by all four re-
gression methods (see Additional file 1). Figure 4 shows
that the common genes identified by all regression methods
from the top 200 regression coefficients were negligible,
such as 3, 2, 4, 2, and 1 for the breast, colon, GBM, kidney,
and lung cancer data sets, respectively. Therefore, rather
than selecting a single regression method, we integrated the
results obtained using various regression methods.

Integrative regression network

Permutation scheme to select significant pairs in regression
networks

Regression coefficients measure the association strength
of genomic features and expression traits. Fusion of these
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beta coefficients using similarity measurement was ob-
served for different cancer profiles. A similar study can be
conducted using correlation measurement, but this correl-
ation is highly prone to identifying additional indirect gen-
omic associations, which may redundantly appear across
different types of genomics. We measured the affinities or
similarities of methylation features (using the beta matrix)
and mRNA expression (by transposing the beta matrix).
The four affinity matrices from four regression
methods were fused using SNF. The final integrative
network was constructed with the strongest affined
pairs from each network and from those pairs that
were acknowledged by all networks (either stronger
or weaker affinity value). Additionally, the affinity of
each individual regression method versus the final
fused network was examined.

We computed the cutoff for identifying significant
pairs in the network using equation (8). Figure 6 shows
the network properties with respect to varying cutoffs
on the fused breast cancer network in comparison with
randomly permuted networks. Figure 6a shows the
‘number of edges’ in the real network (red line) and in
the network of 100 times randomly permuted datasets
(gray lines) and Fig. 6b shows the size of the ‘largest
connected component’ in the real network (red line) and
the network of 100 times randomly permuted datasets
(gray lines). The cutoff obtained using equation (8) for
Fig. 6 was 0.0027. Cutoff points were acquired for the af-
finity matrix of each regression method, and for the
fused matrix. For example, the cutoffs found for each af-
finity matrix and fused network of the colon cancer
dataset were 0.2 for GFLasso, 0.225 for Lasso, 0.334 for
SGL, 0.175 for SIOL, and for 0.003 fused networks.
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Fig. 5 Common methylation features identified by at least three regression methods for each cancer profile
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Using the cutoff found for all regression methods of all
cancer profiles, genomic pairs above the identified cutoffs
for both methylation and mRNAs were collected. The
overall genomic pairs of methylation and mRNAs are
shown in Table 3. It is clear that for each cancer profile,
the fused pairs were lower (the total number of genomic
feature pairs identified using the four regression methods
above the cutoff for breast cancer profile was 19,283 +
5296 + 237 + 1218 = 26,034, but the identified genomic
pairs in the fused network was only 238). Hence, the fused
network discarded these spurious values and identified
stronger affined pairs from each dataset.

Regression network properties

Using the selected pairs shown in Table 3 we con-
structed and examined networks. The constructed net-
work revealed that obtaining a less spurious association
was possible only because of combining and integrating
the effects of all regression methods. The final fused net-
work showed high confidence, linearity, and modularity.
In our experiments, networks were constructed for all
cancer profiles, and we studied network properties such
as the number of nodes, clustering coefficient, network
density, and R of node degree distribution, among other
properties, in Cytoscape [22]. For comparison, the

correlation network using methylation and expression
data was constructed separately. The edges in this cor-
relation network were those having a p-value less than
0.01 divided by the total number of possible pairs in the
correlation test. The resulting network properties are
summarized in Table 4 for lung cancer, which showed
that the fused network was more efficient for identifying
a lower number of nodes in association, had a greater
number of connected components and exhibited a better
R? of node degree distribution. We found similar proper-
ties for all other cancer types studied. The R* value for
the power-law distribution of all networks (all cancer
profiles) showed strong scale freeness [23]. Hence, the
proposed technique is effective for identifying crucial
cancer-causing genes and discarding unwanted genomic
features.

Particularly, the fused network showed a better scale-
freeness compared with the conventional correlation
network. Figure 7 compares the R* values between the
integrative regression network denoted by “Fused” and
the conventional correlation network measured on the
data matrix, not the regression coefficients. For nearly
all datasets, except for the kidney dataset in the methy-
lation network and the colon dataset in the mRNA
network, the R* measure of the integrated network

Table 3 Number of edges after filtering by the identified cutoff in each individual and the fused network

Cancer DNA Methylation features mMRNA Expression traits

pe Fused GFlLasso Lasso SGL sioL Fused GFlLasso Lasso SGL sioL
Breast 238 19,283 5296 237 1218 742 182 21,162 811 69
Colon 348 4496 903 288 3260 784 15 18,287 195 104
GBM 584 737 14,925 581 5165 1272 317 22,767 299 480
Kidney 266 4656 3299 1072 2284 1089 44 20,213 4 393
Lung 364 43,752 4497 345 942 696 12 20,589 324 232
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Table 4 Network properties of methylation features and mRNA expression trails of Lung cancer profile
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Type Properties Lasso GFLasso SGL SIOL Corr. Fused

Methylation network Number of nodes 557 418 338 468 552 394
Network density 0.03 0.50 0.006 0.009 0.12 0.005
Network diameter 11 5 26 29 7 17
Clustering coefficient 0.52 0.73 0.28 0.23 0.60 0.14
Average number of neighbors 16.1 2093 20 40 66.8 1.8
Connected components 16 42 79 50 1 85
R’ of node degree distribution 0.52 0.28 0.87 040 037 0.87

mRNA expression network Number of nodes 372 17 239 232 276 342
Network density 0.29 0.09 0.011 0.009 0.04 0.012
Network diameter 7 3 10 21 9 17
Clustering coefficient 0.74 0.06 0.29 0.16 037 027
Average number of neighbors 110.7 14 271 20 103 4.1
Connected components 2 6 39 46 12 6
R’ of node degree distribution 0.13 047 0.79 098 0.79 0.81

was significantly larger than that for the correlation
measurement.

Functional characterization of the identified genes

The functional annotation test was performed using
Gene Ontology (GO) Biological Process (BP) for the col-
lection of feature genes and expression traits identified
in the largest connected component of each network
using the tool DAVID [24, 25]. Our studies revealed that
(GO: 0042127) regulation of cell proliferation and tyro-
sine protein kinase and cancer pathway genes, which are
overexpressed in high percentages of human cancers,
were recognized. The top 5 significantly enriched terms
for common methylation features are shown in Table 5.

The enriched GO BP terms with the lowest FDR cor-
rected p-values were mainly associated with the GBM
cancer profile for (GO: 0042127) regulation of cell
proliferation, signal, and signal peptide with FDR cor-
rected p-values as 1.52E-38, 7.73E-26, and 1.66E-25,
respectively. Similarly, functional enrichment studies
were performed for expression traits (see Additional
file 2). These traits were greatly similar and highly
connected in the fused network. The lowest FDR p-
values were mostly related to chromosomal rearrange-
ment, in nearly all cancer profiles with FDR corrected
p-values as 5.79E-127 (minimum among all), and
hsa05200: pathways in cancer with FDR corrected p-
values as 4.22E-28.
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Table 5 Significantly enriched GO BP terms (top 5) for the largest connected component of integrative regression network of
methylation features

Cancer type Category Term N p-value FDR
Breast GOTERM_BP_FAT GO:0006468 ~ protein amino acid phosphorylation 11 1.32e-07 2.05e-04
INTERPRO IPRO08266:Tyrosine protein kinase, active site 6 2.35e-07 2.55e-04
UP_SEQ_FEATURE binding site:ATP 9 2.81e-07 3.32e-04
INTERPRO IPR0O01245:Tyrosine protein kinase 6 6.25e-07 6.80e-04
GOTERM_MF_FAT GO:0004672 ~ protein kinase activity 10 6.90e-07 7.94e-04
Colon SP_PIR_KEYWORDS tyrosine-protein kinase 12 1.86e-12 2.33e-09
INTERPRO IPRO08266:Tyrosine protein kinase, active site 12 191e-12 2.50e-09
INTERPRO IPR0O01245:Tyrosine protein kinase 12 1.6%-11 2.21e-08
SP_PIR_KEYWORDS signal 40 2.90e-10 3.63e-07
UP_SEQ_FEATURE signal peptide 40 3.51e-10 4.94e-07
GBM GOTERM_BP_FAT GO:00042127 ~ regulation of cell proliferation 88 857e-42 1.52e-38
SP_PIR_KEYWORDS signal 128 5.54e-29 7.73e-26
UP_SEQ_FEATURE signal peptide 128 1.03e-28 1.66e-25
GOTERM_BP_FAT G0:0008284 ~ positive regulation of cell proliferation 54 5.23e-28 9.28e-25
INTERPRO IPRO01245:Tyrosine protein kinase 27 351e-22 521e-19
Kidney GOTERM_BP_FAT GO:0010033 ~ response to organic substance 19 4.24e-08 6.99e-05
GOTERM_BP_FAT GO:0043067 ~ regulation of programmed cell death 18 1.30e-06 0.00214
GOTERM_BP_FAT GO:0010941 ~ regulation of cell death 18 1.37e-06 0.00225
GOTERM_MF_FAT G0:0032403 ~ protein complex binding 10 1.61e-06 0.00215
KEGG_PATHWAY has05200:Pathways in cancer 14 1.65e-06 0.00174
Lung GOTERM_BP_FAT GO:0042127 ~ regulation of cell proliferation 25 6.24e-13 1.02e-09
SP_PIR_KEYWORDS Proto-oncogene 14 4.78e-12 5.92e-09
KEGG_PATHWAY has05200:Pathways in cancer 22 6.02e-12 6.56e-09
GOTERM_BP_FAT GO:0007169 ~ transmembrane receptor protein tyrosine kinase 14 1.24e-10 2.02e-07
signaling pathway
GOTERM_BP_FAT GO:000716 ~ enzyme linked receptor protein signaling pathway 16 2.06e-10 3.37e-07

In enrichment study using gene expression networks,
the cancer-related terms were prominently observed,
which may be because of the procedure of intersecting
expression genes with COSMIC cancer census genes. To
cross-verify this result, we randomly selected 30 genes
from COSMIC, performed a gene enrichment test, col-
lected the top 5 terms, and repeated the same procedure
for 30 iterations. Seven of the top 10 terms were
chromosomal rearrangements, but their smallest FDR
corrected p-values were multiple times larger than the
p-values obtained from enrichment test of expression
traits. A similar trend was identified for other significant
terms, such as disease mutation, nucleus, and hsa05200:
pathways in cancer, among others.

From the fused networks of methylation features, we
collected hub genes that are with highest node degrees
(see Additional file 3). Crucial cancer-causing genes were
identified from the fused network, including AKT,
KRAS, fibroblast growth factor receptors, anaplastic
lymphoma kinase, and ERBBs. Previous studied

demonstrated that the PI(3)K/AKT pathway is a strong
therapeutic target in cell renal cell carcinoma [26]. The
KRAS oncogene is mutated in approximately 35-45 %
of colorectal cancers and KRAS mutations are consid-
ered to be more predominant in pancreatic, thyroid,
colorectal, and lung cancers [27, 28]. The anaplastic
lymphoma kinase gene was also found to be a relevant
term for lung cancer [29]. Overexpression of FEFRs can
lead to multiple cancer types and higher levels of fibro-
blast growth factor receptor was found in prostate,
breast, lung, brain, gastric, sarcoma, head and neck, and
multiple myeloma cancers [30]. ERBB2 is typically amp-
lified in tumors and overexpressed in breast cancer, and
ERBBs are very important in cancer studies [31, 32].

Discussion and Conclusion

In this study, we presented an integrative regression net-
work by combining the results of different regression
methods. Given the highly correlated nature of genomic
profiles, the association analysis of conventional
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correlation tests or multiple regression methods can
produce inconsistent results. To address this issue and
construct a more reliable association network from gen-
omic profiles, we constructed a regression network by
measuring the similarity of regression coefficient vectors
in a high-dimensional multivariate multiple output re-
gression setting. The results from different regression
methods were further fused using a similarity fusion
technique. The fused network facilitated identification of
the strongest possible signal and as well as weaker sig-
nals, which increased the signal to noise ratio.

The GO enrichment test revealed that the final fused
network could identify genes with the lowest FDR cor-
rected p-values, and numerous cancer-related features
were recognized using the fusion technique. The genes
identified using the fusion technique were highly similar
behavioral genes for the cancer profile, i.e. if gene g; and
&> has nearly the same magnitudes of the regression co-
efficient and were identified by two or more regression
methods or by a single regression method but with a
very higher magnitude of similarity, then the SNF allows
for the propagation of genes g; and g, as nodes in the
final network with their affinities (similarities) as edges.
Understanding cancer using this process can provide
guidance for predicting the prognosis, developing effec-
tive therapies, and identifying subtypes [33] of cancer.

We developed an effective method for analyzing genes
involved in cancer that integrates results from different
regression methods. Although our analysis was done on
each of the different cancer types separately, the result
can be easily applied to integrate the results from mul-
tiple cancer types that can lead to common behavior
across cancers. Based on the ease of the fusion tech-
nique (SNF), this method can be conveniently adopted
to different types of studies in different domains. The
properties of SNF such as propagation effect over itera-
tions, robustness against noise and scaling to a large
number of genes enables application of this method to
many domains.

Additional files

Additional file 1: Venn Diagram of top 100 regression coefficients.
Combining different regression methods results led the study with
inconsistent results. To study this we choosed top 200 coefficients, as
selecting top 50,100, or 150 regression coefficients showed a common
trend of 0 (zero) common genomic features identified by all four
regression methods. This file shows the same scenario with top 100
coefficients. (JPEG 135 kb)

Additional file 2: mRNA Network Properties. Significantly enriched GO
BP terms (top 5) for the largest connected component of integrative
regression network of mRNA expressions. (JPEG 282 kb)

Additional file 3: Genes With Node Degree 4 and above. This file
provides a list of methylation and mRNA genes, those were collected
from the highly connected networks (fused) of different cancer profiles.
(ZIP 32 kb)
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