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Abstract

The Genetic Analysis Workshop (GAW) presents an opportunity to collaboratively evaluate methodology relevant to
current issues in genetic epidemiology. The GAW20 data combine real clinical trial data with fictitious epigenetic
drug response endpoints. Considering the evidence suggesting that networks of interactions between many genes
underlie complex phenotypes, we utilize differential methylation status to identify a relevant gene set for
enrichment analysis and use this to infer potential biological function underlying drug response. We highlight the
pertinence of considering the potential for widespread epistatic interactions in the absence of main effects, and
present evidence of epistasis between single-nucleotide polymorphisms (SNPs) on the two RNA demethylases FTO
and ALKBH5.

Background
The GAW is a forum for investigators to develop and
critique new analytical methods for complex traits on a
shared data set. The GAW20 data provide simulated
replications based on the Genetics of Lipid-Lowering
Drugs and Diet Network (GOLDN) clinical trial, had
participants been subject to treatment with a fictitious
drug with a pharmacoepigenetic effect on triglyceride re-
sponse [1]. These data present a unique analysis oppor-
tunity as all phenotypes, subject covariates, genotypes,
pre-treatment methylation levels, etc. are real data from
the trial, but are accompanied by simulated
post-treatment methylation and triglyceride levels. GAW
participants choose to analyze the data with or without
knowing the simulation methods; we chose to perform

the simulated data analysis prior to attending GAW,
without knowledge of the simulation methods. Analysis
of the real data was performed following GAW attend-
ance, as it was revealed that the data simulation methods
did not consider interactions, and therefore analysis of
interactions in the simulated data was not appropriate.
Despite evidence for multi-locus underpinnings of

phenotype-genotype association, the multiple-testing
burden associated with fitting interaction models is
stringent due to the high dimensionality of genomic data
[2]. Strategies for better detecting these interactions can
aim to avoid exhaustively testing each potential inter-
action via data reduction methods, integrating expert
knowledge, and/or consolidating multiple sources of evi-
dence to narrow the search space [3–5].
In this study, we hypothesize that CpG sites that are

differentially methylated with respect to treatment are
associated with the pharmacoepigenetic mechanism of
the fictitious drug. Considering the evidence for
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multi-locus models of complex disease etiology, we
hypothesize that the drug response is better evaluated by
gene set enrichment analyses than by single locus
models. By integrating results from gene ontology,
drug-disease association, and microRNA (miRNA) target
analyses we find evidence implicating the relevance of
adenosine and miRNAs with known epigenetic regula-
tion and roles in lipid metabolism. From this, we infer
the potential importance of the N6-methyladenosine
modification in the pharmacoepigenetic response on tri-
glycerides, and consider how miRNA adenosine methy-
lation rather than CpG methylation may impact the
phenotype. Lacking direct data for miRNA adenosine
methylation, we perform a targeted epistasis search be-
tween loci on the two RNA demethylases FTO and
ALKBH5, and find evidence for statistical epistasis be-
tween one variant within each respective gene. Repeating
the analysis with the real data revealed four significant
interactions between variants across these genes. Overall,
we present an example workflow in which integration of
multiple sources of information can help uncover bio-
logical meaning in the absence of significant main
effects.

Methods
Data set
The GOLDN data and companion simulations for
GAW20 are previously described [1, 6]. Relevant to this
analysis, subject data includes fasting lipid profiles prior
to and post-treatment, methylation at more than
450,000 CpG sites prior to and post-treatment, GWAS
of more than 700,000 autosomal SNPs, and covariates
including age, center, metabolic syndrome-related traits,
and smoking status. This analysis is of the pre-defined
single representative replicate (n = 680) of the
post-treatment methylation and triglyceride levels.

Phenotype definition
We define the phenotype of interest as the log ratio of
the average post-treatment triglyceride level to the aver-
age pre-treatment triglyceride level. Due to the high cor-
relations between triglyceride levels at pre-treatment
time points 1 and 2 and post-treatment time points 3
and 4 (0.90 and 0.91, respectively), and presence of a
value for at least one of time point 1 or 2 and 3 or 4 for
each individual, we singly impute missing values via lin-
ear regression.

CpG site filtering
Significantly differentially methylated CpG sites are iden-
tified via paired t-tests for pre- and post-treatment
methylation levels (α = 0.05 for 463,995 hypotheses
yields Bonferroni cutoff of 1.08 × 10− 7).

Modeling the relationship between phenotype and CpG
site methylation
Linear models are fit to test the relationships between
the phenotype and methylation status of the significant
CpG sites identified above, characterized as a single pre-
dictor: the log ratio of post-treatment to pre-treatment
methylation (α = 0.05 for 212,018 hypotheses yields Bon-
ferroni cutoff of 2.36 × 10− 6).

Gene set enrichment analyses
All CpG sites that pass the initial t-test filter and have a
p-value ≤0.05 for the phenotype ~ methylation predictor
model are used to curate a list of corresponding genes
with evidence for both differential methylation and associ-
ation with the phenotype. This gene list is used for gene
ontology, drug association, and miRNA target enrichment
analyses using the WEB-based GEneSeTAnaLysis Toolkit
(WebGestalt, http://www.webgestalt.org/) [7].

Targeted epistasis search
We investigate potential epistasis between the two RNA
demethylases FTO and ALKBH5 by calculating p-values
for the likelihood ratio tests, comparing the linear
models containing each FTO-ALKBH5 SNP-SNP pair,
with and without their interaction term (α = 0.05 for 340
hypotheses yields Bonferroni cutoff of 0.00015 for the
simulated data; 255 hypotheses yields a cutoff of
0.000196 for the real data).

Results
CpG site filtering
We tested 463,995 CpG sites for differential methylation
prior to versus post-treatment; 212,018 CpG sites passed
the Bonferroni threshold of 1.08 × 10− 7.

Modeling the relationship between phenotype and CpG
site methylation
None of the 212,018 CpG sites that are significantly dif-
ferentially methylated reached genome-wide significance
for association with the phenotype (Fig. 1).

Gene set enrichment analyses
Our gene set is constructed from all CpG sites with
p-values ≤0.05 for the models above for which corre-
sponding gene annotations are available (5413 of the
212,018 differentially methylated sites). Some CpGs
have more than one corresponding gene listed, and
many genes have multiple CpGs, for a total gene list
length of 4443. The top result from the drug association
analysis is adenosine (number of reference genes in the
category = 477; number of genes in the gene set and also
in the category = 126; expected number in the category =
49.14; ratio of enrichment = 2.56; raw p-value from hyper-
geometric test = 1.31 × 10− 23; p-value adjusted by multiple
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test adjustment = 8 × 10− 21). The top result from the
miRNA target analysis is miR-124a (number of reference
genes in the category = 542; number of genes in the gene
set and also in the category = 175; expected number in the
category = 55.84; ratio of enrichment = 3.13; raw p-value
from hypergeometric test = 7.82 × 10− 45; p-value adjusted
by multiple test adjustment = 1.70 × 10− 42).

Targeted epistasis search
The GAW20 GWAS data with the simulated phenotype
include complete observations for 68 SNPs on FTO and
5 SNPs on ALKBH5 for the 680 subjects. We only test
for epistatic interactions between SNPs across the two
genes (and do not test for interactions between SNPs on
the same gene), for a total of 340 tested interactions and
therefore a Bonferroni threshold of 0.00015. One pair of
SNPs, rs2192872 from FTO and rs8068517 from
ALKBH5, have a significant p-value for the likelihood

ratio test comparing the models with and without the
interaction (p = 2.01 × 10− 5).
The analysis of the real phenotype and GWAS data

was performed in the same manner for 778 subjects for
51 SNPs on FTO and 5 SNPs on ALKBH5 (Bonferroni
threshold of 0.000196). Four pairs of SNPs have signifi-
cant p values for the likelihood ratio test comparing the
models with and without the interaction (Table 1). Fig-
ure 2 visually summarizes the distribution of phenotype
by genotype for the two SNPs involved in the most sig-
nificant identified interaction.

Discussion and conclusions
Our gene set enrichment analyses were motivated by the
goal of making inferences about the mechanism of ac-
tion of the fictitious drug, assuming that differential
methylation could reveal a set of genes associated with a
drug that is functionally similar to the fictitious one in

Fig. 1 Manhattan plot of triglyceride phenotype ~ CpG site methylation log ratio

Table 1 Summary of significant interactions, Variant annotations are from Ensembl [29]. Base model covariate selection is based on
significance at the 0.05 level and includes average pre-treatment triglyceride level, age, center, current smoker status, and sex

SNP Alleles MAF Location Gene Consequence type LRT
p-value

rs1362571 G/T 0.34 (G) 16:53877858 FTO Intron variant 2.76 × 10− 6

rs11655588 A/G 0.18 (G) 17:18204137 ALKBH5 Intron variant

rs10521304 T/C 0.41 (C) 16:53874745 FTO Intron variant 8.80 × 10− 6

rs11655588 A/G 0.18 (G) 17:18204137 ALKBH5 Intron variant

rs1421090 A/G 0.29 (G) 16:53816258 FTO Intron variant 0.000158

rs8071834 T/C 0.45 (C) 17:18196677 ALKBH5 Intron variant

rs17820875 A/G 0.12 (G) 16:53892878 FTO Intron variant 0.000177

rs8068517 G/A 0.24 (G) 17:18192664 ALKBH5 Intron variant

Abbreviations: LRT likelihood ratio test, MAF minor allele frequency
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question. Upon attending GAW, it became apparent that
interaction analysis of the simulated data was not appro-
priate given the nature of the simulation, and the inter-
action identified can therefore be considered a false
positive. However, reimplementing the same analytic
pipeline using the real data produced largely comparable
results and identified four pairs of loci between FTO and
ALKBH5 with significant interactions. The joint evidence
implicating adenosine as the top result from the drug as-
sociation gene set enrichment analysis and numerous
miRNAs involved in metabolic traits from the miRNA
target analysis, taken with the assumption that the drug
has some unknown epigenetic mechanism, lead us to
consider that mRNA or miRNA adenosine methylation,
rather than CpG methylation, may be associated with
drug response. miRNAs in general are known important
regulators of lipid metabolism [8–10]. The top miRNA
hit, miR-124a, has evidence for both its role in metabolic
traits [11–14] and for its epigenetic regulation in the
context of risk of diverse diseases [15–19]. N6-Methyla-
denosine (m6A) is a reversible, dynamic posttranscrip-
tional modification that is regulated by miRNAs, and its
demethylation has been shown to regulate adipogenesis
[20–25]. Recent work demonstrates that RNA conform-
ational changes induced by m6A determine substrate
specificity for the two RNA demethylases, FTO and
ALKBH5 [26–28]. If miRNA adenosine methylation ra-
ther than CpG methylation affects the phenotype, al-
though the available data lacks observations on miRNA
adenosine methylation, interactions between the two
genes that demethylate miRNAs may be biologically
relevant and can be assessed with the GOLDN SNP
data. Given the evidence for physical interactions

between RNA with the m6A mark and these demethy-
lases, we were motivated to check for epistasis between
SNPs on these genes. Although we did find four pairs of
loci with statistically significant interactions, the small
sample size means that some SNP-SNP genotypes have
few observations, warranting investigation of this inter-
action in a larger study and further molecular clarifica-
tion of the distinct and mutual roles of FTO and
ALKBH5. Rather than attempting to explain complex
phenotypes solely in terms of single locus main effects,
we posit that interaction models better represent the
underlying regulatory nature of the genome, and that
the joint effect of perturbations to multiple interacting
partners can help better explain complex phenotypes.
This analysis of epistatic interactions between loci on
two genes serves as an illustrative example of how inter-
actions can be significant in the absence of significant
main effects, and highlights the need for analyses that
integrate multiple sources of data to narrow the search
space for plausible interactions.
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