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Abstract

Bovine Respiratory Syncytial virus (BRSV) and Bovine Parainfluenza 3 virus (BPIV3) are closely related viruses involved in
and both important pathogens within bovine respiratory disease (BRD), a major cause of morbidity with economic
losses in cattle populations around the world. The two viruses share characteristics such as morphology and replication
strategy with each other and with their counterparts in humans, HRSV and HPIV3. Therefore, BRSV and BPIV3 infections

vaccines are commercially available.
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in cattle are considered useful animal models for HRSV and HPIV3 infections in humans.

The interaction between the viruses and the different branches of the host's immune system is rather complex.
Neutralizing antibodies seem to be a correlate of protection against severe disease, and cell-mediated immunity is
thought to be essential for virus clearance following acute infection. On the other hand, the host's immune response
considerably contributes to the tissue damage in the upper respiratory tract.

BRSV and BPIV3 also have similar pathobiological and epidemiological features. Therefore, combination vaccines
against both viruses are very common and a variety of traditional live attenuated and inactivated BRSV and BPIV3
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Background

Bovine Respiratory Disease (BRD) affects young calves
and young stock in all parts of the world and accounts for
considerable economical losses. Outbreaks are typically re-
lated to environmental stress factors (transport, crowding,
unfavorable climate conditions) as the disease results from
the interactions between microorganisms in the respira-
tory tract and the animal’s resistance, which is affected by
such non-biological factors. The clinical picture is charac-
terized by respiratory symptoms and the severity can
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range from mild to severe with sometimes even fatal out-
comes. Co-infection with several pathogens is the rule ra-
ther than the exception. Bovine Respiratory Syncytial
Virus (BRSV) and Bovine Parainfluenza 3 Virus (BPIV3)
are two closely related viruses that are often involved in
BRD outbreaks. Having a lot of similarities in their
morphology and replication strategy, also the (patho-)biol-
ogy of the two viruses has a lot of common features. In-
tense research has led to the development of vaccines
against the two viruses, often as bi-valent vaccines or in
combination with other respiratory pathogens. Herein, the
similarities and differences between BRSV and BPIV3 are
presented to eventually provide a better understanding of
their role and importance in the BRD complex.
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Main text

The viruses: two close relatives

BRSV and BPIV3, along with their human counterparts
HRSV and HPIV3, belong to the order Mononegavirales.
Viruses belonging to this order are characterized as
enveloped viruses with non-segmented, single-stranded,
negative-sense RNA genomes. Formerly, these viruses
were classified as Paramyxoviridae, but in 2016 the fam-
ily Pneumoviridae was created and nowadays BRSV and
HRSV belong to the genus Orthopneumovirus within
this family. BRSV is therefore also referred to as Bovine
orthopneumovirus [1, 2]. The official name of BPIV3 is
Bovine respirovirus 3 as the virus is classified into the
Respirovirus genus within the Paramyxoviridae family.
Other members of this genus are the antigenically and
genetically related human parainfluenza virus types 1
and 3 (HPIV1 and HPIV3, respectively) [3].

BRSV and BPIV3 have a spherical to pleomorphic
shape at a size of 150-200 nm (Fig. 1). The virions con-
sist of a nucleocapsid surrounded by a lipid envelope
which is directly derived from the host cell membrane
by budding. Viral transmembrane glycoproteins are lo-
cated on the surface of the envelope. The major attach-
ment protein G of BRSV is synthesized as two forms, a
membrane-anchored and a secreted form, and around
80% of the G protein is produced as the secreted form
24 h after infection [4]. In addition to its role in the at-
tachment to host cells, the G-protein may have other
roles such as interacting with the immune system. It has
been proposed that the secreted form might act as a
decoy by binding to neutralizing antibodies [5].

Recombinant BRSV lacking the G protein is still compe-
tent to replicate in cell culture as well as in young calves
and to induce a protective immune response [6, 7].
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The counterpart of the BRSV G protein in BPIV3 and
other Paramyxoviruses has haemagglutinating properties
(Fig. 2), it is called the haemagglutinin-neuraminidase
(HN) protein. The BRSV G and BPIV3 HN proteins bind
to sialic acid residues present on cell surfaces throughout
the respiratory tract. Chimeric recombinant BRSV in
which the G protein was replaced by the HN of BPIV3 are
replication competent in vitro, although the two glycopro-
teins differ considerably in sequence and structure [8].

The BRSV G and BPIV3 HN proteins, together with
the fusion protein (F), which both viruses have in com-
mon, mediate attachment and entry of the virions into
the cells and delivery of the nucleocapsid into the cyto-
plasm of the host cell.

BRSV has a third glycoprotein, the small hydrophobic
protein (SH). This protein has ion-channel functions [9]
and may play a role in virus mediated cell fusion by
interacting with the F protein [10]. SH has been shown
to be non-essential for growth in vitro and in vivo, but
mutants lacking the SH protein were attenuated [11].

The helical nucleocapsid consist of the nucleoprotein
(N), the phosphoprotein (P), the viral RNA-dependent
polymerase protein (L), and the genomic RNA of around
15,000 nucleotides in length.

The non-glycosylated matrix protein M is located on
the inner envelope of the capsid and is the most abun-
dant protein in infected cells. The M proteins are in-
volved in assembly, budding and release of progeny
viruses [12]. Different from other Paramyxoviridae,
BRSV and other pneumoviruses have two additional
matrix proteins, M2—1 and M2-2 which play a role in
virus replication [13, 14].

Another major difference between the pneumoviruses
(such as BRSV and HRSV) and the other Paramyxoviridae

BRSV
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P: Phosphoprotein; F: Fusion protein

Fig. 1 Morphology of BRSV and BPIV3. G: G protein; HN: Haemagglutinase — Neuraminidase; L: Polymerase protein; M: Matrix protein; N: Nucleoprotein;
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Fig. 2 Cytopathic effect caused by BPIV3 virus and haemadsorption of erythrocytes onto the surface of the infected cell layer
A

is the presence of two nonstructural (NS) proteins, NS1
and NS2. There is evidence that the NS proteins are inhib-
itors of viral RNA transcription and replication and they
cooperatively  antagonize the antiviral alpha/beta
interferon-induced response of the host cell [15, 16].
These proteins are not essential for virus replication
in vitro, although recombinant BRSV lacking NS1 or NS2
was severely attenuated in IFN-competent cells and in
young calves [17].

Transcription of the negative-sense genomic template
occurs in the cytoplasm of host cells. This generates
sub-genomic positive-sense mRNAs. These are then
copied into a full-length negative-sense antigenomic
RNA which is encapsidated. The resulting ribonucleo-
protein complex is transported to the cellular surface
membrane, where budding occurs [18].

A characteristic that BRSV and BPIV3 share with
other single-stranded RNA viruses is the high mutation
rate, which confers a high adaptability of the virus. Ana-
lysis of the genetic evolution of a BRSV isolate during
in vitro passage and subsequent inoculation in calves
suggest that virus populations may evolve as complex
and dynamic mutant swarms, although they appear to
be genetically stable [19]. This likely depends on the type
of cells and number of passages and may explain, why a
loss of virulence following in vitro passage was observed
in some infection studies [20], but not in others [21].

Another consequence of the high mutation rate is the
antigenic variation. The BRSV has been classified in four
antigenic groups (A, B, AB and an intermediate group)
with six genetic groups. A continuous evolution occurs
mainly in the antigenically important G-protein, espe-
cially in geographical regions where vaccines are widely

used [22]. Studies with a new intranasal live BRSV —
BPIV3 vaccine have demonstrated cross protection
against BRSV isolates from a different geographic origin
[23].

The antigenic variation in BPIV3 viruses appear to be
less important than in BRSV. Phylogenetic reconstruc-
tions based on the nucleotide sequences for the M-
protein and the entire genome, demonstrated two dis-
tinct BPIV-3 genotypes (BPIV-3a and BPIV-3b) and
more recently, a third genotype [24, 25] has first been
described in China and it seems to geo-expand
sinceBPIV-3c has recently been reported in Serbia [26]
and Turkey [27].

Epidemiological features - infection dynamics within and
between herds
Like other respiratory viruses, BRSV and BPIV3 virus
are horizontally transmitted. Airborne transmission of
BRSV has been reproduced under experimental condi-
tions [28]. This route, in combination with regular sub-
clinical re-infection, is considered the main mechanism
for spreading of BRSV and BPIV3 within a herd [29, 30].
Persistence of BRSV in cattle has been proposed [31,
32], but attempts to reactivate putative persistent BRSV
were not successful [33]. Moreover, a Danish study
showed up to 11% of genetic diversity between BRSV
from various outbreaks in a herd, which is suggestive for
a re-introduction of a virus into a herd rather than a la-
tent re-circulating virus [34].

Also, in the case of BPIV3 it has been suggested that
subclinical infections contribute to the maintenance of
the infection in cattle populations [30].
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Inter-herd transmission of BRSV is frequent and the
virus has been detected in outbreaks in the summer
months too, indicating that virus circulation occurs
throughout the year [35]. The clustering of BRSV se-
quences according to geographical origin [22] might
suggest a role for airborne transmission or mechanical
transmission by visitors such as veterinarians.

Pathogenesis - what happens when the viruses get into
the animal?

BRSV and BPIV3 are mainly spread by air droplet trans-
mission and they enter the body via the respiratory tract.
Once inhaled, the viruses penetrate or possibly degrade
the mucous, which is the first line of defense of the in-
nate immune system and thereafter invade epithelial
cells of the upper respiratory tract by binding to sialic
acid residues on the cell membranes. BRSV and BPIV3
replicate predominantly in the respiratory tract [36, 37].
Infected animals excrete virus with nasal discharge dur-
ing several days. In general, BRSV reaches lower titers
than BPIV3 virus, both in tissue culture and after infec-
tion of animals [38]. Both viruses have been shown to
infect tracheal cells, ciliated and non-ciliated bronchiolar
cells (see Fig. 3), as well as pneumocytes [36, 39]. In con-
trast to BRSV, BPIV3 also invades and multiplies well in
pulmonary alveolar macrophages (PAM). The replication
of BPIV3 in the PAM has been linked to depression of
phagocytosis and immunosuppressive prostaglandins
[40]. Lymphocyte proliferation seems to be suppressed
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by bovine alveolar macrophages infected with the virus
[41].

In continuous cell lines, both viruses grow with cyto-
pathic effects characterized by the formation of syncytia.
In an BRSV infected animal, pro-inflammatory genes are
upregulated [42] and extensive mast-cell degeneration
was observed in peracute cases of BRSV-related disease
[43]. These findings suggest that the host’s immune re-
sponse causes further tissue damage and contributes to
the lung pathology [10, 44]. Antonis and colleagues [45]
investigated age-dependent differences in the pathogen-
esis of BRSV infection in antibody negative calves at the
age of 1 day or 6 weeks. Neonatal calves had more ex-
tensive virus replication and lung consolidation, but
lower pro-inflammatory responses, specific humoral im-
mune responses, lung neutrophilic infiltration and clin-
ical signs in comparison with 6-week-old calves. The
capacity to produce pro-inflammatory cytokines ap-
peared to increase with age and could therefore explain
the observed age-dependent differences in the pathogen-
esis of BRSV.

Also, for BPIV3 virus, the immune response seems
to be involved in the pathogenesis as supported by
the finding that increased levels of histamine were re-
leased from mast cells from the lungs of BPIV3-
infected calves [46]. Moreover, transcription of cyto-
kines related to fever and other signs of inflammation
like TNFa, IL1B, and IL6 were found to be upregu-
lated after infection with BPIV3 [47].

é -
® L
» o ’
N
.
“
: - .
B
5
29 v
N PR e ) |
- 4
: . “,
< .
- ¥ N \, 9 - |
2 - w e L
o % ¥ -
s ; /
’ r 9
A » PR 3 ‘:70 o L\
g ¥ ol 3 e iv - ":
» - ;
% . e d ‘[
fJ 2 . . - Py
Ny .
- v . ol 2 T
’ 4 %
S 5 A 5 - )? >
. % b # k7
r % & _—ie "_ﬂ A
» &
3 -
v, > - -
3 4%
.
2 K g S
. . 5 - o @ o
¥ & e :
- ”~» 5 5 A a® Ly

Fig. 3 Formation of syncytia and immunostaining of BRSV in mucosal cells in the bronchioli of a calf infected with BRSV
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The resulting tissue damage in combination with the
host’s pro-inflammatory response favour secondary bac-
terial infections [48] leading to aggravation of the disease
[30, 49-51].

Clinical symptoms and lesions

The severity of BRD symptoms can range from sub-
clinical to fatal outcomes [52—54] depending on different
factors such as the age, and immunological status, the
presence of specific antibodies and immunosuppression.
Under experimental conditions, the severity of disease
might be related to the route and dose of infection as
well as the virulence of a particular strain or the degree
of attenuation following culture in vitro [20, 30], while
under field conditions co-infection with other pathogens
have an influence on the severity.

In the field, it is difficult to attribute the symptoms
and lesions of a BRD case to a single pathogen, but in-
formation is available from experimental infection stud-
ies with either of the two viruses.

The common clinical symptoms associated with BRSV
and BPIV3 are similar. The peak in clinical signs for
BRSV is usually reached 4 to 6 days after infection [55].
Naive calves usually develop a fever starting about 2 days
after exposure, with body temperatures reaching up to
40°C. Fever is often associated with depression, lack of
appetite or anorexia, and an increased respiratory rate.
The airways can become obstructed through the over-
production of mucous [56] that can lead to coughing
and mucopurulent nasal discharge. Upon auscultation of
the lungs, wheezing can be heard. A peracute severe
form of disease related to infection with BRSV has been
observed in beef cattle [43], but most animals recover
within 10 days, unless other respiratory pathogens are
involved [30, 57]. Clinical disease symptoms due to
BPIV3 infections have been described as less severe
compared to BRSV [58].

The results obtained at post-mortem investigation are
similar for both viruses. The most common macroscopic
lesions described are multilobular consolidation (Fig. 4),
mainly in the cranial lung lobes. Interlobular emphysema
may be seen after infection with BRSV but has not been
described after infection with BPIV3.

Histological lesions associated with both viruses in-
clude bronchiolitis with peribronchial mononuclear infil-
trates, epithelial necrosis and syncytia formation (Fig. 3)
[30, 59, 60].

Interactions between the viruses and the immune system
Modulation of the innate immune response

BRSV infection in calves is considered an ideal model to
study the pathogenesis of HRSV [61]. In this context,
the complex interactions between the virus and the
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Fig. 4 Interstitial pneumonia in a lung of a calf two weeks after
infection with BRSV

innate immune system have been extensively studied
[62, 63]. Considerably less information is available for
BPIV3.

BRSV activates the innate immune response resulting
in the induction of a variety of pro-inflammatory cyto-
kines and chemokines which contributes to the path-
ology [10, 44, 45]. Moreover, it has been shown that
BRSV can modulate the innate and adaptive immune re-
sponse to mitigate stimulation of a CD8+ T cytotoxic
cell response and instead promote a Th2 response [63].

The NS1 and NS2 proteins of human and bovine RSV
suppress the induction of type 1 Interferon (IFN), one of
the major anti-viral defence mechanisms of the innate
immune system. In addition, the NS proteins provide re-
sistance of the virus to the anti-viral effects of type I
IFNs [15]. The G protein can also modulate components
of the innate and adaptive immune response, leading to
a reduction in the BRSV specific immune response [10,
64]. These immunomodulating properties might explain
why deletion of the genes coding for either of the two
proteins leads to attenuation in calves [7, 11]. The failure
of natural infection to prevent re-infection [65] might be
related to the capacity of BRSV to suppress the host’s
immune response.

The complex interaction between virus and immune
system is depicted in Fig. 5.

Role of the adaptive immune response

The protective immune response against BRSV and
BPIV3 involves both humoral (antibody) and cell-
mediated immunity with different roles for the two
branches. While neutralizing antibodies seem to be a
correlate of protection against severe disease, cell-
mediated immunity is considered to be essential for
virus clearance following acute infection [44] (Fig. 6).
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Fig. 5 Virus infection and interaction with the innate immune system. a Virus passes the mucous layer, binds to sialic acids on the surface of the cell
membrane. b Virus and enters the epithelial cell. ¢ The virus replication in the infected cells leads to damage of the cells and to the formation of
syncytia (cytopathic effect). d The virus infection triggers an antiviral innate immune response (production of interferon). The NS1 and NS2 protein of
BRSV reduce the interferon response. e Macrophages and natural killer cells are attracted and destroy virus infected cells. f The immune response leads

to further tissue damage. BRSV and PI3 both enhance this process

The viral proteins that have been most associated with
protective antibodies are the major surface glycoproteins
G and F of BRSV or HN and F of BPIV3, respectively.
Infected cattle develop antibodies directed against these
glycoproteins as well as some of the minor viral proteins
[30, 63].

As BRSV G protein and the BPIV3 HN protein are
the major attachment proteins, neutralizing antibodies
directed against them prevent attachment to the cells.
The inhibition of haemagglutination by HN specific
antibodies contributed to the initial discovery of
BPIV3 [66].

Results with HRSV in mice, suggest that G-specific
antibodies might be neutralizing the virus, and might be
involved in antibody-mediated cellular immune func-
tions [67]. On the other hand, the soluble form of the
HRSV G protein has been shown to antagonize
antibody-mediated inhibition of virus replication [68].

Anti-F antibodies of BRSV and BPIV3 have been
shown to prevent cell penetration and cell fusion [69,
70], but the F protein of BRSV also have epitopes that
induce non-neutralizing antibodies, which may enhance
complement activation which can be involved in the
pathogenesis as well as in recovery from BRSV [71].

Both, under field and experimental conditions it has
been shown that presence of neutralizing antibodies (ei-
ther maternally derived or due to previous infection)
does not fully prevent disease but reduces the severity of
the disease, both for BRSV [72, 73] and BPIV3 [30, 74].
In an epidemiological study with antibody positive
calves, neutralizing antibody levels were inversely related
to the severity of disease after infection with BRSV [75].
Interestingly, intratracheal application of bovine mono-
clonal antibodies directed against the BRSV F protein
24 h prior to challenge infection protected the lungs of
gnotobiotic calves from virus infection [70].

A humoral immune response consisting of local muco-
sal IgA, and systemic IgM and IgG can usually be de-
tected within approximately 1 week after infection with
BRSV or BPIV3 [75, 76]. The mucosal antibodies decline
to low levels after 6 to 8 weeks, whereas the serum anti-
bodies persist for 3 to 5 months.

A strong secondary immune response against BRSV
with mucosal and systemic IgA and mucosal IgM can be
seen already 6 days after infection [77].

Re-exposure with BRSV or BPIV3 results in a strong
serum and mucosal antibody response. It was noted that
high concentrations of mucosal antibodies protect
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Fig. 6 Role of humoral and cellular immune response in controling virus infection

against disease, whereas the serum antibodies reduce the
severity of disease once it has occurred [30].

Colostral antibodies provide partial protection against
clinical disease. On the other hand, they can hamper the
induction of an active humoral immune response after
infection or vaccination, but they do not suppress prim-
ing of the humoral and cellular immune system as indi-
cated by a rapid response systemic and mucosal IgA
response after secondary infection [75].

In several studies, clear antibody responses were mea-
sured after vaccination [38, 78], yet no information is
available, whether these responses was directly corre-
lated with protection. Moreover, the immune response
and level of protection may differ between vaccines de-
pending on the type of vaccine and the route. Results
from efficacy studies with live BRSV and BPIV3 vaccines
suggest that animals with a low or even undetectable
antibody response can be protected [38, 79-81],
Makoschey et al., unpublished observation) and protec-
tion seems rather be correlated to the ability to mount a

rapid secondary mucosal IgA response [82] or to the cell
mediated immune response [44]. Cell mediated re-
sponses can be induced by modified-live, conventional
vaccines as well as some inactivated BRSV vaccines [83—
85].

The mechanisms for initiation of cell mediated im-
munity against BRSV have been studied quite extensively
and comprehensive reviews are available [44, 62]. A few
viral proteins have been identified as T cell targets: Epi-
topes for CD4+ T cells were mapped on the F and G
proteins of BRSV [86] while M2, F and N proteins seem
to be the most important targets for CD8+ T cells [87].

Following BRSV infection there is an increase in CD4+
and CD8+ T cells in the lungs [88]. The CD8+ cytotoxic
T lymphocytes have been shown to play a major role in
the recovery from BRSV infection [89, 90]. Similar ob-
servations were made after BPIV3 challenge of previ-
ously vaccinated calves: the production of neutrophil
chemotactic factors by alveolar macrophages and the
resulting neutrophil influx into the lungs occurred more
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rapidly than in the control animals resulting in a more
rapid clearance of the virus [91].

A major difference in the immune response against
BRSV and BPIV3 is vaccine-enhanced immunopathology
that has been observed in calves vaccinated with certain
inactivated BRSV vaccines prior to natural [92] or ex-
perimental [93, 94] BRSV infection. Similar observations
were made in HRSV infected infants that had been vac-
cinated with a formalin-inactivated HRSV vaccine and
subsequently experienced a natural HRSV infection [95].
Numerous studies, both with HRSV and BRSV suggest
that a disbalanced cellular immune response is involved
in the pathogenesis of this phenomenon, yet the im-
munological mechanisms are still not completely under-
stood [44]. Such an immunopathological phenomenon
has never been reported for BPIV3.

How to get the right diagnosis?

The importance of early BRD detection is generally ac-
knowledged. Measuring of the body temperature [96,
97], auscultation, ultrasonography [98] and detection of
acute phase protein [99] have been described as suitable
methods for diagnostics based on clinical signs, yet they
do not enable distinction between different respiratory
pathogens.

Involvement of BRSV or BPIV3 in an outbreak of BRD
can either be determined based on the detection of the
virus or by measuring virus-specific antibodies.

Regarding virus detection, it is important to realize
that the viruses are only shed during a limited time-
frame. BRSV RNA was detected in nasal swab samples
starting on day one to day five after experimental infec-
tion for up to 4 weeks [100], while previous studies have
concluded that viral shedding usually begins later, and
lasts for a shorter period [38, 79, 81, 101, 102]. The ex-
planation for this discrepancy is likely related to the dif-
ference in detection methods ie. RNA detection by
polymerase chain reaction (PCR) as opposed to virus ti-
tration assay in tissue culture in the latter studies. Also,
for BPIV3, virus detection in nasal swab samples was
positive at an earlier time point and continued for a lon-
ger period when tested by PCR as compared to the re-
sults of the virus titration in tissue culture (Makoschey
et al. unpublished observations).

In the culture method, which could be considered the
gold standard, samples are incubated on susceptible cells
and virus infection is determined by cytopathic effect or
immunostaining using labelled specific antibodies or
antiserum. In the case of BPIV3, the culture plates can
also be incubated with erythrocytes and subsequently
read for haemadsorption.

Due to the nature of the test, the titration method only
detects infectious virus particles, while also non-
infectious virus particles can lead to a positive PCR
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result. As both viruses are very labile and easily killed,
samples might lose infectivity during transport and stor-
age. Those samples are then found (false) negative in the
virus titration assay, but positive in the PCR test. More-
over, also in samples harvested from in vitro cultures
BRSV virus titers were significantly lower than RNA
copy numbers [103]. As the pattern of values obtained
from the two assays over the infection time course cor-
related closely, the results suggest that, incomplete viral
genomes that occur during virus replication might also
contribute to the difference between infectious virus titer
and RNA copies.

Prior to the widespread application of PCR methods in
veterinary diagnostic laboratories, commonly used
methods for the detection of BRSV and BPIV3 were
fluorescent antibody testing (FAT) on frozen tissue sec-
tions [104-106], lung lavage samples [107] or nasal swab
samples [108, 109] and Enzyme-Linked Immunosorbent
Assay (ELISA) testing of organ homogenates [110]. In
general, PCR testing has a better sensitivity than the
traditional methods like virus isolation, ELISA and FAT
[111, 112]. Currently, different multiplex formats that
allow testing of BRSV and BPIV3 together with other
agents within the BRD complex have been developed.
Some of those are commercially available [113-116].
The testing is commonly applied on nasal swab samples,
transtracheal aspiration or bronchoalveolar lavages
(BAL). When comparing different sampling methods, re-
sults obtained from nasal swabs or BAL were in moder-
ate agreement [117]. BRSV levels in BAL samples from
experimentally infected animals were found to be slightly
higher than levels in nasal swab samples taken at the
same day (Makoschey et al. unpublished observations).
Moreover, BAL samples might provide more reliable re-
sults for diagnostics of bacterial infections [118].

When testing calves that have been administered an
intranasal vaccine, caution must be taken for the inter-
pretation of results as the virus can be detected for more
than a week after vaccination [119, 120] and the signal
can be derived from vaccine virus or from a mix of wild
type and vaccine virus.

As for other viruses, also for BRSV and BPIV3 the
traditional methods of antibody testing by neutralization
test, complement fixation and in the case of BPIV3, also
haemagglutination inhibition (HI) have been described
[106, 121-124].

Several ELISA tests for detection and quantification of
BRSV and BPIV3 antibodies have been described [125—
127]. The ELISA technique is fast, cost-effective, large
numbers of samples can be handled, the method can be
standardized and as opposed to virus neutralization test,
an antibody ELISA does not require handling of live virus.
Moreover, the isotype- and subclass of the antibodies can
be determined using the ELISA technique [76, 77, 128].
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In naive animals, primary infection with BRSV or
BPIV3 can be confirmed using serum samples collected
5-10days after the appearance of the clinical signs of
disease [76, 77]. However, as the viruses are endemic in
most herds, the diagnostic value of single serum samples
are highest for IgM and IgA that are indicative of a re-
cent (re-)infection [76].

Several commercially available ELISAs used in routine
diagnostics and research can be used in serum or milk,
and levels of antibodies in serum correlates well with
levels of antibodies in milk in individual cows, although
the antibody titers are generally lower in milk than in
serum [129]. However, the levels of antibodies in bulk
tank milk can remain high for several years, and this
limits the ability to use the bulk tank milk to determine
evolution of disease within a farm [130].

On the other hand, a negative test result in serum or
(bulk milk samples) can be used to exclude BRSV or
BPIV3 as potential cause in a BRD outbreak on a par-
ticular farm.

In herds with recurrent disease, paired samples might
be useful to establish a diagnosis. An increase in titer of
at least four-fold is considered indicative for an infec-
tion. The fact that calves that become infected in the
presence of passively derived antibody may not serocon-
vert [75] should be taken into consideration for the in-
terpretation of results.

In addition to the diagnostic purposes, antibody testing
of serum samples taken from calves at the arrival in a fat-
tening unit can provide useful information for the predic-
tion of the risk to develop BRD later in life [131, 132].

Another application might be the monitoring of the
immune response after vaccination. In this case, the type
of vaccine must be taken into account. In a direct com-
parison of an inactivated BRSV-BPIV3-M. haemolytica
vaccine and a modified live BRSV-Bovine Viral Diar-
rhoea vaccine, the neutralizing antibody profiles were
similar, while the antibody levels measured by ELISA
were higher for the group vaccinated with the inacti-
vated vaccine [83]. Also, the route of vaccination influ-
ences the antibody response. As mentioned earlier,
especially live BRSV vaccines applied via the intranasal
route have been shown to be efficacious even in the ab-
sence of detectable levels of serum antibodies [38, 79—
81], Makoschey et al., unpublished observation).

Last but not least, it should be mentioned, that meta-
bolomic profiling might offer new approaches to deter-
mine markers for the systemic immune response [133]
following virus infection or vaccination.

Measures against the disease

Treatment of sick animals

As for other virus infections, treatment of BRSV and
BPIV3 infected animals is mostly limited to supportive
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measures to keep the affected animals well hydrated and
to maintain proper energy and electrolyte balance. If the
affected animals do not recover, and the involvement of
secondary bacterial infections has been diagnosed, treat-
ment with antimicrobials, for which the bacteria are
susceptible, may be required. Furthermore, anti-
inflammatory medications can reduce fever, reduce dam-
aging inflammatory response in the lungs and improve
the animal’s welfare and thereby feed and water intake.
Corticosteroids are not recommended for use in the
treatment of BRD due to their immunosuppressive na-
ture. Non-steroidal anti-inflammatory drugs (NSAID)
are preferable. Promising results with a combination of
antiviral and nonsteroidal anti-inflammatory treatment
have recently been obtained in a bovine model of re-
spiratory syncytial virus infection [134].

General preventive measures

Vaccination is the most efficacious preventive measure
to control BRSV and BPI3V and will be discussed in
more detail below.

In addition, general measures should be taken to
minimize risk factors for the development of BRD in-
cluding ensuring optimized environmental conditions
[135] and reduction of stress factors [136].

Basic cleaning and hygiene procedures should be ap-
plied to prevent or at least reduce the infection pressure.
As both viruses have a low tenacity, they are readily
inactivated with common disinfectants.

Direct transmission from infected animals, indirect
transmission by individuals visiting farms vectoring the
viruses [137] or not providing boots for visitors [138]
have been identified as risk factors for inter-herd trans-
mission of BRSV. On the other hand, herds can remain
seronegative despite proximity to seropositive herds if
herd biosecurity is appropriate [139]. Biosecurity mea-
sures are also the most important tool within the
Norwegian control program for BRSV and Bovine Cor-
onavirus [140].

Good colostrum management is an important pre-
ventative measure as low levels of IgG in general and
low levels of BRSV specific antibodies were found to be
associated with a higher risk of BRD [131].

Novel approaches to BRD disease control and preven-
tion that are currently investigated are innate immuno-
modulation [141] and the identification of genes and
chromosomal regions that underly genetic variation in
disease resistance and response to vaccination. Analysis
of the genetic variation of animals in a BRSV infection
trial suggest that certain motifs in genes related to im-
munity were associated with high or low antibody and T
cell responders [142]. Eventually, this research could
lead to selection of animals that are more resistant to
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disease caused by BRSV and BPIV3 and open new ways
to improve vaccine efficacy.

Vaccination against BRSV and BPIV3

Traditional vaccines

Shortly after the discovery of BPIV3, the first inactivated vac-
cines against this virus were developed [143] followed some
years later by modified live virus (MLV) vaccines [144].

Due to the observation of disease enhancement in chil-
dren vaccinated with a formalin-inactivated HRSV vac-
cine [145] attempts to develop a BRSV vaccine initially
focused on live vaccines [146]. Some years later, promis-
ing results were achieved with a BRSV vaccine derived
from glutaraldehyde-fixed cells, which did not cause dis-
ease enhancement, but even provided better protection
than two live-attenuated vaccines tested in the same
study [147]. Several inactivated BRSV vaccines have been
available and widely used since then, and only inciden-
tally severe courses of BRSV infection have been re-
ported in calves that had previously been vaccinated
with formalin-inactivated vaccines [93, 148].

An incident of vaccine associated disease enhancement
has also been reported for a beta-propriolactone-
inactivated, alum- and saponin-adjuvanted BRSV vaccine
[92]. The results from a field trial with a similarly formu-
lated vaccine of which the identity was not disclosed
suggested a failure to protect and this vaccine was with-
drawn from the market in the late 1990’s [53].

It should be noted that vaccination with a modified
live vaccine during the course of a natural infection may
also enhance the severity of disease [149].

Interestingly, vaccine associated disease enhancement
has only been reported for BRSV and HRSV vaccines,
but not for BPIV3 and HPIV3. The immunological
mechanisms have not been fully unraveled, but it has
been proposed that the inactivation process is able to
alter BRSV epitopes and thus the induction of cytotoxic
T lymphocyte activity [150] and functional antibodies
[151]. This can lead to high levels of non-neutralising
antibodies in combination with relatively low levels of
neutralising antibodies [148, 152] and increased levels of
IgE [153]. Moreover, it has been observed that Interferon
gamma production following BRSV infection is reduced
in calves previously vaccinated with formalin-inactivated
BRSV [154].

Several commercially available live attenuated BRSV
and BPIV3 vaccine strains have been obtained using
traditional approaches such as passaging in cell culture
[146] or selection of temperature-sensitive mutants [78,
155]. In general, the mechanisms of attenuation are un-
known, but in a recent study it was shown that tran-
scriptions of cytokines related to fever and inflammation
were not upregulated in the nasopharyngeal mucosa
after vaccination with a new live attenuated intranasal
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BRSV-BPIV3 combination vaccine, while these factors
were upregulated after infection with BPIV3 field virus
[47].

Also, the “Jennerian” approach of using an antigeneti-
cally related virus from another species has been tested
in the past when calves were vaccinated with a
temperature sensitive HRSV strain [147] or a BPIV3 vac-
cine was evaluated in infants and children [156].

Experimental vaccines

Multiple approaches using contemporary vaccine tech-
nologies have been investigated with the intention to de-
velop better vaccines for use in cattle, or to use the
bovine viruses in their natural host as model for vaccines
against their counterpart in humans. The number of ap-
proaches is higher for BRSV compared to BPIV3, prob-
ably because improved vaccines for use in young
children and elderly people are still needed for HRSV
while there is less need for new HPIV3 vaccines.

Subunit vaccines based on the major glycoproteins of
BRSV have been tested with good results, both for par-
enteral [80, 157] and intranasal application [158]. After
intranasal application of BPIV3 antigen formulated in
nanoparticles, a mucosal IgA response was measured
[159], yet protection against infection was not tested.

The development of a reverse genetic system for BRSV
[160] enabled the engineering of recombinant viruses.
Several viruses lacking one or more proteins induced at
least partial protection in calf models [7, 11, 17, 80]. A
further development of a BRSV virus lacking the G and
the F protein was a chimeric virus in which these pro-
teins were replaced by BPIV3 HA and F protein [8].
Such a virus might potentially be a bivalent vaccine
against both, BRSV and BPIV-3, but to our best know-
ledge, this has not yet been demonstrated in calves.

Promising results with human recombinant RSV-
vaccine candidates in which the F glycoprotein is stabi-
lized in its prefusion state could be reproduced with re-
combinant BRSV in the calf model initially in animals
without maternal antibodies [161] and more recently
also in animals with maternal antibodies [162].

Last but not least, chimeric vaccinia viruses [163, 164]
or bovine herpesviruses [165] expressing BRSV proteins
have been developed as vaccine candidates. One major
advantage of these viruses for vaccine development
would be that they grow much better in cell culture than
the BRSV viruses.

Another advantage is that some of these vaccines offer
DIVA properties, which allow to differentiate between
infected and vaccinated animals by serological testing.
Such vaccines would be helpful for monitoring efficacy
of biosecurity measures or for countries with BRSV con-
trol programs such as Norway.
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Although the results obtained with several of the
above-mentioned vaccine candidates were promising,
none of them clearly outperformed the currently avail-
able commercial vaccines with regards to all the require-
ments for yields, process robustness, safety and efficacy.

Completely novel approaches to vaccine development
might become available in the future thanks to the pro-
gress in the understanding of host pathways involved in
the innate anti-viral response, together with the capabil-
ity to generate substances that can interfere with these
processes [166].

Efficacy testing of commercial vaccines

Prior to commercialization, the efficacy of any new vac-
cine must be demonstrated, under both experimental
and field conditions as prescribed in relevant regulations.
Given the multifactorial nature of the disease, it is rather
demanding to reproduce clinical signs under experimen-
tal conditions [167]. A comprehensive overview of the
literature concerning challenge models for BRSV, BPIV3
and other common BRD pathogens was prepared by
Grissett and colleagues [168].

In the first infection studies with cell-culture-passaged
BRSV only mild disease or no disease at all was observed
in the unvaccinated control animals [169], even in colos-
trum deprived or gnotobiotic calves. The suggestion that
the viruses attenuate rapidly upon culture in vitro has
been supported by several studies in which clinical signs
of respiratory disease were reproduced by inoculation of
low-passage BRS virus [20, 170].

Early studies investigated different administration proto-
cols for the BRSV and BPIV3 challenge strains including
multiple application [171] and invasive (intratracheal)
routes [172, 173], which are not representative of natural
transmission. Aerosolization, a delivery method that
mimics the natural route of transmission, was found to
produce more consistent results [148, 170, 174]. The same
method has also been successfully applied in BPIV3 infec-
tion studies [175].

Many efficacy studies with commercially available
BRSV and BPIV3 vaccines both under experimental and
field conditions have been published and comprehensive
reviews are available [167, 176]. Most of these studies es-
timated clinical efficacy from results of experimental
challenge studies. Interpretation of the results requires
caution as some of the models are not representative for
natural exposure.

An important requirement for live BRD vaccines is an
early onset of immunity. Studies with a live marker vac-
cine against Bovine Herpesvirus have shown that the an-
imals were protected as early as 3 days after intranasal
vaccination [177]. Studies to determine the onset of im-
munity of the currently available BRSV and BPIV3 vac-
cines were hampered by the fact that the commonly
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applied methods for virus detection in nasal discharge
do not discriminate between vaccine and field strains. By
consequence, vaccine virus interferes with the detection
of wild-type virus if the experimental infection is done
too shortly after vaccination. For intranasal BRSV-BPIV3
combination vaccines commercialized in Europe, an on-
set of immunity was seen 5 days after vaccination with
regards to BRSV [175, 178] and 7 [175] or 10 days [155]
with regards to BPIV3.

The onset of immunity has also been studied for an
inactivated BRSV-BPIV3-M. haemolytica vaccine. A sin-
gle dose was shown to prime the cellular immune re-
sponse in calves around 2 weeks of age with maternal
antibody [85] and provided partial protection against ex-
perimental BRSV infection [179], yet complete protec-
tion can only be expected after completion of the two-
dose vaccination course. Moreover, it should be noted,
that not all inactivated BRSV-BPIV3 vaccines have dem-
onstrated protection in face of maternally derived
antibodies.

In field studies, efficacy is typically evaluated by general
parameters for disease such as mortality, morbidity, treat-
ments and growth rate while no or only limited informa-
tion is available about the involvement of specific
pathogens in the disease outbreak. Several studies in
which commercially available MLVs with and without
BRSV were compared, indicated a reduction of respiratory
disease [180, 181], or improved (milk) production and re-
productive parameters [182] in the groups vaccinated with
BRSV. In a recent field trial performed with a new BRSV-
BPIV3 live vaccine for intranasal use, the prevalence of
eight different BRD pathogens was monitored by PCR
testing of nasal swab samples. BRSV infection occurred in
several farms, and the nasal shedding of BRSV was signifi-
cantly lower in the vaccinated animals [183].

How to make best use of BRSV and BPIV3 vaccines
In our current production systems young calves are as-
sembled under stressful conditions in high numbers,
which at the same time increases the infectious pressure
and weakens the immune system of the calves. Early in
live, calves depend on the colostral immunity for protec-
tion against infectious agents. Unfortunately, the amount
of specific maternal antibodies is very variable and the
duration of protection by colostral antibodies is difficult
to predict. By consequence, vaccines must be applied
early in live and have an early onset of immunity to pro-
tect those calves that have received low levels of colos-
tral antibodies. On the other hand, the vaccines should
also be efficacious in the face of maternal antibodies
(IFOMA) to provide immunity to those calves that have
received high levels of colostral antibodies.

The first commercially available BRSV and BPIV3 vac-
cines (live and inactivated) were licensed for parenteral
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use. The difficulties and opportunities for vaccinating
calves IFOMA have recently been reviewed by Windeyer
and Gamsjager [184]. They concluded that parental vac-
cination IFOMA is unlikely to result in seroconversion,
and other immune responses are inconsistent, but the
presence of antibodies may be prolonged and immuno-
logical memory might be induced. Moreover, reduction
of clinical signs was reported by Chamorro and col-
leagues [185].

The potential advantages of intranasal vaccination with
a live vaccine IFOMA by stimulation of a local immune
response and priming the systemic immune response
prompted Ellis and colleagues to determine the efficacy
of a live vaccine for parental delivery after intranasal ad-
ministration [81]. That study suggested that similar
levels of protection were provided by intranasal and par-
enteral administration. However, it should be noted, that
the calves in that study had low levels of colostral
antibodies.

Nowadays, several MLV BRSV and BPIV3 vaccines for
intranasal application are commercially available. Typic-
ally, spraying devices generating a kind of aerosol are re-
quired for administration of these vaccines, however, in
a recent study with a new BRSV-BPIV3 live vaccine, ani-
mals vaccinated without spraying device (directly from
the tip of the syringe) were protected against experimen-
tal BRSV and BPIV3 infection [186].

An alternative approach to protect the calf early in life
is the vaccination of the pregnant dam to achieve higher
and more homogenous levels of antibodies in the colos-
trum [187, 188] and also specific memory cells in the
calves [189]. Calves fed colostrum from vaccinated dams
were partly protected against BRSV infection [73].
Therefore, cow vaccination in combination with good
colostrum management might be considered to comple-
ment an active immunisation program against BRD.

Given the involvement of multiple different pathogens
in BRD, an important selection criterion for a vaccine is
the range of antigens against which protection is pro-
vided. Multivalent vaccines have been available since
more than three decades [190] and most commercially
available BRSV and BPIV3 vaccines contain both viruses
together with one or more other viruses and/or bacteria.
In comparative field trials an inactivated BRSV-BPIV3-
M. haemolytica vaccine provided better protection
against BRD than MLV BRSV-BPIV combination vac-
cines [191, 192]. These observations illustrate the fact
that BRD outbreaks in the field are often a combination
of viral and bacterial pathogens.

Several studies have been performed to investigate the
possibility to combine BRSV-BPIV3 vaccines with other
vaccines, for example the combination of a live BRSV-
BPIV3 vaccine with an M. haemolytica vaccine [193] or
the combination of an inactivate BRSV-BPIV3-M.
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haemolytica vaccine with a live Bovine Herpesvirus vac-
cine [194] or an inactivated vaccine against neonatal
diarrhea [195].

A general concern especially with BRSV vaccines is
the rather short duration of immunity as compared to
other viruses [79, 101, 175, 178, 196]. The observation
that re-infections are common [65] suggest that also the
immunity following field infection is of relatively short
duration. Therefore, re-vaccination of animals is advised
to achieve lasting herd immunity [197].

The timing of vaccination/re-vaccination can also have
a direct impact on the clinical benefit [198]. In a com-
parative study, vaccination of calves with an inactivated
BRSV-BPIV3-M. haemolytica vaccine prior to transport
to the fattening units resulted in better protection
against BRD than vaccination in the fattening unit [199].
In the current complex economic structure of the cattle
industry, cow-calf producers often do not have economic
incentive to vaccinate the calves [200]. This might
change in the future if technologies to unambiguously
identify properly vaccinated animals become available.

Different re- vaccination schedules have been investi-
gated including e.g. the antibody response after a single
booster vaccination with an inactivated BRSV-BPIV3-M.
haemolytica vaccine given up to 12 months after com-
pletion of the primary vaccination course was found to
be similar than the levels after the primary vaccination
course [201].

Good results in terms of protection against experimental
BRSV infection were obtained with a combined vaccin-
ation schedule of a primary vaccination course with a live
vaccine applied intranasally followed by parental applica-
tion of an inactivated vaccine [202]. On the other hand, an
intranasal booster dose of a BPIV3 following a priming by
the subcutaneous route produced slightly better protec-
tion than the subcutaneous dose alone [203].

Control of BRSV and BPIV3
In Norway, a program to control BRSV and Bovine Cor-
onavirus was initiated [140] with monitoring and biose-
curity measures as the main tools. A similar approach
has given good results in the control of Bovine Viral
Diarrhoea Virus (BVDV) and Bovine Herpesvirus Type 1
(BHV-1). The success of the latter control programs in
Nordic countries had prompted other European coun-
tries to also embark in control initiatives for these vi-
ruses [204], but in most countries, vaccination is also
used as a tool. Initially, the prevalence of BVDV and
BHV1 remained more or less constant although vaccines
were available. Significant progress in the control of
these viruses was only achieved once vaccination was ap-
plied widely and in a systematic matter.

Currently, the vaccine coverage for BRSV and BPIV3
is rather low: A survey of cattle farmers in Ireland and
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the UK revealed that two-thirds of the farmers do not
vaccinate at all and only 20% or 7% vaccinate all calves
retained/brought onto the farm under 3 and 9 months
of age, respectively [205], similar results have been ob-
tained for other countries (Vertenten unpublished data).
Such a low vaccination rate is unlikely to lead to a re-
duction of the prevalence of the two viruses.

On herd level, the best benefit of the vaccines can be
achieved with a tailormade herd immunisation program
which addresses all relevant herd-specific aspects such as
the age distribution and origin of the animals, the epi-
demiological situation and the level of maternal immunity.
For example, early calthood vaccination is particularly im-
portant in herds with poor passive immunity, but it should
be taken into consideration, that the immunological
changes during the first few weeks of a calf’s life [206] and
nutritional deficiencies [207] might negatively affect the
level of protection that can be achieved by vaccination.

Conclusion

BRSV and BPIV3 are important pathogens in cattle and
related to outbreaks of respiratory disease. The two vi-
ruses share a lot of morphological and biological charac-
teristics between each other as well as with their
counterparts in humans, HRSV and HPIV3. Intense
studies on BRSV and BPIV3 have not only lead to the
development of vaccines for use in cattle, but also im-
proved our understanding of the disease in cattle and
humans. Based on this knowledge, we can conclude that
the viruses BRSV and BPIV3 are only two out of mul-
tiple factors that lead to BRD. Especially in some of our
production systems where we assemble high numbers of
calves from various sources under stressful conditions,
the BRD problem can only be solved by a holistic ap-
proach in which systematic vaccinations programs, pref-
erably also at the herd of origin are supported by state-
of-the-art herd management and biosecurity measures.
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