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Abstract

Background: Livestock herds are interconnected with each other via an intricate network of transports of animals
which represents a potential substrate for the spread of epidemic diseases. We analysed four years (2012-2015) of
daily bovine transports to assess the risk of disease transmission and identify times and locations where monitoring
would be most effective. Specifically, we investigated how the seasonal dynamics of transport networks, driven by
the alpine summering and traditional cattle markets, affect the risk of epidemic outbreaks.

Results: We found strong and consistent seasonal variation in several structural network measures as well as in measures
for outbreak risk. Analysis of the consequences of excluding markets, dealers and alpine pastures from the network shows
that markets contribute much more to the overall outbreak risk than alpine summering. Static descriptors of monthly
transport networks were poor predictors of outbreak risk emanating from individual holdings; a dynamic measure, which
takes the temporal structure of the network into account, gave better risk estimates. A stochastic simulation suggests
that targeted surveillance based on this dynamic network allows a higher detection rate and smaller outbreak size at

detection than compared to other sampling schemes.

Conclusions: Dynamic measures based on time-stamped data—the outgoing contact chain—can give better risk
estimates and could help to improve surveillance schemes. Using this measure we find evidence that even in a country
with intense summering practice, markets continue being the prime risk factor for the spread of contagious diseases.
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Background

Many livestock diseases can spread through direct
contact between animals. Movement of animals from
one herd to another can, therefore, lead to the spreading
of highly infectious diseases [1-5]. The transport net-
work of individuals from one holding to another is an
important factor determining the spread of infectious
diseases like, bovine tuberculosis, bovine viral diarrhoea,
foot-and-mouth disease, and bovine coronavirus,
amongst others [3, 6, 7]. Consequently, national registers
for livestock transports have been implemented in many
countries and the incorporation of network information
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in epidemic models and surveillance schemes has
become an active area of research [8-13]. In these
models the network is characterized as a graph, where
holdings are represented by nodes and transports between
holdings are edges. This allows for the calculation of
quantitative descriptors of the connectivity (see Table 1
for definitions) and sub-structuring of the network as well
as the positions of individual holdings in that network
[14]. Dynamic approaches take into account the time se-
quence of the animal movements and allow more realistic
models of transmission processes [15—18]. For example,
Norenmark et al. [19] and Frossling et al. [20] investigated
to what extent a dynamic network measure—the ingoing
contact chain—could be a useful measure when setting up
strategies for disease control and for risk based surveillance.
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Table 1 Definition and sources of the network analysis terms used in this study
Type / Name Definition Source
Holding centrality metrics
In-degree Number of individual sources providing animals to a specific holding [14]
Out-degree Number of individual recipients obtaining animals from a specific holding [14]
Betweenness The frequency a livestock operation is in the shortest path between pairs of holdings in the network [47]
Closeness The inverse of the sum of the shortest geodesic distances from a source holding to all other reachable  [48]

holdings in the network
Static network measures of connectivity
Geodesic

Path length

The shortest path length between two holdings [49]

A path between farm A and farm C is the number of steps required to travel from A to C. In a path, [49]

holdings and animal transports cannot be repeated between a source and a destination. Related
terms are geodesic and average path length

Average path length (APL)
Density
Clustering coefficient (CC)

The shortest path, or geodesic, among two holdings averaged over all pairs of holdings in the network  [50]
Sum of the number of all links divided by the number of possible links in the network 4]

If a neighbour is defined as a the holding in direct contact with the holding of interest, the clustering [50]

coefficient represents the proportion of one’s neighbours who are also neighbours of one another

Components Maximally connected subregions of a network in which all pairs of holdings are directly or indirectly [46]
linked

Giant strongly connected The largest component in the network in which all pairs of holdings are linked via directed paths [43, 46]

component (GSCC)

Giant weakly connected The largest component in the network in which all pairs of holdings are linked regardless of the [43, 46]

component (GWCC) direction of the link

Assortativity Correlation between the degrees of linked premises [51]

In cattle networks, markets have been identified as
major contributors to network connectivity and thus,
potential disease spread [21, 22]. Their exclusion has
been shown to substantially reduce potential outbreak
size [22, 23]. Likewise, Webb and colleagues [15] found
that agricultural shows increase the potential for epi-
demic outbreaks in British sheep. Both markets and
shows can be described as gathering events, where ani-
mals from many holdings are brought to the same loca-
tion for a short period of time and are again distributed
to many holdings, afterwards. Gathering events of both
human and animals can drastically increase the risk
of acquiring and transmitting disease [24, 25]. In net-
work terms gathering events can be described as
‘hubs’—nodes with high in- and out-degree, connect-
ing a high number of holdings. The existence of hubs
in a network can lead to a highly skewed or heavy
tailed distribution, which has important implication
for the spread of diseases [26, 27]. Some cattle net-
works have, indeed, degree distributions which are al-
most scale-free [23, 28, 29]. Switzerland’s cattle
industry is characterized by high market activity. Even
though relatively few in numbers, cattle markets
occur at different periodicities and have a wide range
of catchment areas. They also vary in terms of veter-
inary regulations. The markets events range from
weekly or biweekly regional trade markets that last a
few hours, with a high proportion of animals being

taken to slaughter, to yearly national or international
events that last a whole weekend.

In addition to cattle markets, the practise of summer-
ing herds on high alpine pastures (alps) represents
another type of gathering event—much smaller in extent
than the markets but also much more numerous. The
annual practice of summering to access forage at high
pastures dates from ancient times and about half of all
Swiss cattle farms participate in it [30]. The animals are
walked up on foot in April/May and down in Septem-
ber/October. Usually, the animals from different farms
form a single herd that roams during the day and over-
nights in a single stable with shared milking facilities.
Thus, alps can be considered as another type of gather-
ing event where disease could be transferred [31, 32]. In
contrast to that of the markets, the periodicity of the
alps is yearly, and their duration is around three months.
As small gathering events, alps can be expected to con-
tribute to network connectivity, yet due to differences in
size and duration their contribution might differ from
that of markets. While the impact of markets on net-
work connectivity has been studied previously [21, 23],
the role of alpine summering has not yet been evaluated.

While alpine summering has a prominent role in cattle
management in Switzerland, Austria, Liechtenstein and
the alpine regions of France, Italy and Germany (Bav-
aria), the practice of bringing herds to higher summer
pastures—often leading to a mixing of herds—exist in
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the Molise, Apulia and Abruzzo regions in Italy, the Pyr-
enees, the Cantabrian mountains in Spain, the Caucasus
and Pontic mountains, the Zagros mountain range in
Iran, along the Himalaya and Hindu-Kush mountain
ranges, in Norway and Sweden, and—to a lesser extent—
also in Wales, Scotland and Ireland. In the case of a se-
vere disease outbreak, or an emergent disease, it would
be crucial to know how both types of traditional practi-
ces—markets and summering—contribute to disease
spread. Here we aim to quantify the relative importance
of alpine summering in relation to market related trans-
ports for the risk of epidemic outbreaks. We use both a
static and a dynamic network analysis approach. Add-
itionally, we investigate seasonal and long-term variation
in the network structure of the cattle transport network,
its implication for the risk of epidemic outbreaks and its
implication for disease surveillance.

Methods

(a) Data acquisition

Daily animal transports from January 1st 2012 to De-
cember 31st 2015 were extracted from the nationwide
Schweizer Tierverkehr Datenbank (Swiss registry for
animal movements) using Microsoft SQL Server 2014.
For the present analysis, every animal’s history was quer-
ied since the start of data recording in 1999 to make
sure it was complete. Double entries were excluded. As
the slaughterhouses constitute sinks and we are inter-
ested in potential disease spread between living animals,
the end transports to slaughter were excluded. As we
focus on within country transmission, import and export
from abroad were excluded.

SQL routines were used to prepare the so-called edge
lists containing origin, destination and date of transport
for the four years of data. Using information from the
Swiss holdings registry [33] holdings were categorized as
markets (including trade markets, auctions and exhibi-
tions), dealers, alps and farms. Preliminary data analysis
helped to identify one holding originally categorized as
farm that showed markedly outlying (10 times higher)
values of transports. A closer investigation showed that
the respective holder owned three different locations,
two with stables and permanent presence of animals and
one large hall regularly used for markets but also for
other purposes. We, therefore, re-classified the holding
at this last location as a market.

(b) Static network description

We created a static network for each month, where each
active holding was represented by a vertex (node) with a
directed edge between two nodes representing a move-
ment of one or more animals from the premises of ori-
gin to the destination within the respective month. We
chose one month to make our results comparable to
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those from other countries where authors have also ana-
lysed monthly networks. It has furthermore been argued
elsewhere [23] that the duration of a month will create
networks large and dense enough (but not too large and
dense) to make a network approach feasible and —at the
same time— it seems unlikely that, given the current
surveillance schemes in place, any severe disease could
spread undetected for much longer than a month. A
holding is considered as ‘active, when it occurred at least
once in the edge list —either as a holding of origin or
destination. The constructed network is directed, as ori-
gin and destination of the transport are specified, and
simple, as multiple movements from one holding to
another within a month are not reflected by multiple
edges between nodes nor in weights attributed to the
edges. The number of animals moved is also not consid-
ered, so the links are unweighted, for reasons described
in the next section. For each monthly network of the
four-year period we calculated the following network
measures: density, giant strongly connected component
(GSCC), giant weakly connected component (GWCC),
clustering coefficient (CC), average path length (APL) and
degree assortativity (Assort, see Table 1 for definitions).
Furthermore, we calculated for each holding for each
month the following nodal network measures: in-degree,
out-degree, degree product (in-degree x out-degree),
betweenness, in-degree closeness centrality, and out-
degree closeness centrality (see Table 1 for definitions).

In order to evaluate the relative importance of the
different holding categories, we constructed three fur-
ther ‘reduced’ networks by consecutively removing
markets (and all edges leading from or to markets),
dealers (and all edges leading from and to dealers),
and alps (and all edges leading from or to alps) from
the network. Hence, apart from the full network we
got one network without markets, one network with-
out markets and dealers and one network without
markets, dealers and alps (farms only).

(c) Dynamic network measures

Static networks, where edges represent the accumulated
movement activity over an extended time do not
acknowledge the temporal order of movement events. This
can be problematic, specifically when it comes to modelling
transmission processes on the network [15-17, 19]. We,
therefore, calculated for each node the so-called accessible
world [15, 34] or outgoing contact chain [19, 35, 36] over a
30-day period —taking the daily time structure stamps of
the events into account—, starting with the first day of each
month. The outgoing contact chain is constituted by all
destination holdings that can be reached from a certain
holding, with the following assumptions: 1) an outbreak
would spread undetected and uncontrolled for 30 days, 2) a
holding can reach another holding if an animal is
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transported from that holding to the other holding, 3) at
the arrival of an infected animal, all animals at a particular
holding get infected immediately and are able to further
transmit the infection when leaving the holding, 4) trans-
ports are recorded on a daily basis and a holding can only
transmit the disease to other holdings, when it was itself
infected before animals were moved from it to other hold-
ings, 5) when there were transports from and to a holding
on the same day, we assumed that animals were leaving the
holding after new animals arrived; i.e. animals arriving
transmit the disease to animals leaving on the same
day. In this respect, this calculation represents a sim-
ple Susceptible-Infectious (SI) model [37, 38] for a
worst-case scenario of an epidemic disease that is
transmitted via animal movements, only. With these
stringent assumptions, the process does not precisely
model any specific disease, but it is rather to be seen
as a generic model. Importantly, as this process does not
incorporate any stochastic element, an exact value can be
calculated for each node, given a specific network.

While the outgoing contact chain is a rather generic
infection process model, its assumptions are reasonably
compatible with a fast spreading disease such as Blue-
tongue, Foot and Mouth Disease or Lumpy Skin Disease —
at least for an initial stage, before effective measures are
taken. The length of the outgoing contact chain after
30 days, starting at a specific holding A, gives the number
of holdings that would get infected under such a transmis-
sion process. We refer to this number as the ‘outbreak size’
of holding A. The choice of 30 days is an arbitrary one,
though it is intended to make the results comparable to
those built on static monthly measures as they are fre-
quently encountered in the literature. This holding’s prop-
erty is not constant along time but varies with season and
year. Preliminary analysis showed that the distribution for
this nodal metric is highly skewed, so neither mean nor
median values give a sensible network-wide summary stat-
istic for the overall risk of the outbreak of a large-scale epi-
demic. Thus, to derive a network-wide measure for
outbreak risk, we calculated the proportion of the total
number of active nodes with an outbreak size of 100 or lar-
ger (which we call hubs thereafter). This measure is con-
ceptually similar to the reachability ratio proposed in [16,
39] and presented in [40], however it differs insofar as these
authors present averages and maximum reachability ratios
calculated over all nodes. Associations between different
measures were assessed by computing Spearman correl-
ation coefficients and generalized linear regression models.

(d) Stochastic outbreak simulations

To gauge the difference between predictions based on
static and dynamic network descriptors, we added a sto-
chastic simulation study that compared detection rate
and outbreak size at detection of targeted surveillance
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based on static and dynamic network measures. As a
baseline or reference, we also considered random sur-
veillance. For this simulation disease was seeded on one
randomly chosen holding out of all active holdings of
the respective year and disease spread was modelled as a
stochastic process with the disease spreading from one
holding A to another holding B on a given day with
probability p = 0.8 if a movement of animals from A to
B occurred on that day. The number of animals trans-
ported from one holding to another was not considered
here. Incubation time was assumed to be zero, meaning
that on the very day when one or more contagious ani-
mals were moved to a holding, animals on that holding
can get infected and can also spread the disease further
if animals were moved to another holding on the same
day or later. Additionally, each day the disease spreads
to a randomly chosen holding with probability g =0.05,
acknowledging that the disease can also be conveyed by
other means than movements of contagious animals.
Note that this is a very simple model, not taking into ac-
count specific infection dynamics of existing diseases.
The parameter values for p and q were arbitrarily
chosen, p being a high value and q being a low value.
The maximum time for disease spread was set to 30 days
with daily updates of infected holdings. Inspired by the
work of [41], for each simulation a small number (z =
100) of holdings was selected as surveillance targets.
Surveillance targets were either chosen randomly from
all active holdings (random surveillance), randomly
chosen from holdings with high scores for one of the six
nodal network metrics (top 5% percentile, static targeted
surveillance), or randomly chosen from all holdings with
an outbreak size of 100 or more (dynamic targeted sur-
veillance). We use outgoing measures rather than
ingoing for convenience. A similar analysis could be car-
ried out using the equivalent ingoing metrics however,
as our aim was only to compare the performance of
static versus dynamic metrics, this should be of no fur-
ther concern, here. The simulation was repeated 1000
times for each month of the study period. As measures
of the effectiveness of the surveillance scheme we evalu-
ated (i) how often the epidemic was detected at one of
the surveillance targets within 30 days, and (ii) the num-
ber of infected holdings at the time of detection.

(e) Software packages and code

Monthly static network measures were calculated using
the software R (version 3.1.2) -package igraph (version
3.2.2, https://r-project.org). The plot for the principal
component analysis was made using packages ggplot2
and ggfortify. Calculation of the outgoing contact chain
and stochastic simulations were done with the software
Mathematica version 10.2 from Wolfram Research Inc.
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Results

The total number of active holdings per year decreased
slightly from 47,212 holdings in 2012 to 44,688 holdings
in 2015. Out of those holdings 84.1% were farms, 15.1%
alpine pastures, 0.24% dealers and 0.58% markets. The
decrease in the number of holdings over the years is
mainly due to a loss of active farms at a rate of about
800 farms per year, reflecting the general consolidation
trends in the European livestock economy. In total, the
Tierverkehr Datenbank recorded between 619,273 trans-
ports of animals from one holding to another in 2012
and 598,659 transports in 2015 (Table 2). During the
four-year study period 52.4% of Swiss cattle farms partic-
ipated in the summering practice. Overall 20.2% of the
alps hosted animals from a single farm, while the
remaining 79.8% of alps hosted animals from several
(median: 4 farms, inter quartile range: 2—8) farms. Like-
wise, 44.2% of cattle farms participated in markets by ei-
ther selling or purchasing animals at markets. At a
typical market, one can find animals from 120 (median;
IQR: 44-262) different farms. The number of active
holdings (Fig. 1) shows a clear seasonality with one peak
in early summer and a second one in autumn, coinciding
with the summering pattern. The seasonal pattern mainly
disappears after excluding alps except for a trough in sum-
mer that is still visible for the farms-only data.

(@) Monthly static networks

For each month of the four-year study period we calcu-
lated static network measures for the directed transport
networks. The monthly degree distributions are highly
skewed towards minimum values, (Fig. 2). Deviations
from a linear trend in these double-logarithmic plots can
be observed. Specifically, the in-degree distributions
declined faster than a power-law distribution, similar to
the networks described in [42]. With respect to the
monthly static network measures (Fig. 3, panels a and c),
both GSCC and GWCC vary strongly with season show-
ing a trough during the summer months of July and Au-
gust when the summering practice keeps animals high
up in the pastures. The exclusion of the markets and
dealers almost halves the GSCC from 8.64 to 4.54% and
reduces the GWCC only slightly from 90.2 to about 85.9%.
For both GWCC and GSCC the seasonal pattern largely
disappears with the additional exclusion of the alps.

Table 2 Average number of animal transports between holding
categories per year

Farm Alp Dealer Market
Farm 415,170 45,690 6066 67,028
Alp 64,808 4342 1M1 483
Dealer 2730 26 129 100
Market 7070 61 50 22

Page 5 of 11

With very low values, the density increases in winter
and in the farms-only network in summer (Fig. 3, panel
b). The clustering coefficient increases in spring and
autumn, especially after having excluded the markets
and dealers. The seasonality also disappears with the
additional exclusion of the alps (Fig. 3, panel d). Accord-
ingly, the APL increases from a mean of 8.77 for the full
network to 9.95 for the farm subnetwork (Fig. 3, panel
E). The negative values of the disassortativity index indi-
cate a tendency of high degree nodes to be linked to low
degree nodes. The full network (Fig. 3, panel f, blue line)
shows a clear seasonal pattern with maximal disassorta-
tivity each September. These spikes of highest disassor-
tativity accentuate further when excluding markets and
dealers (Fig. 3, panel f, green line), but disappear after
exclusion of the alps, suggesting that the markets might
render the network overall less disassortative. In any
case, the values become closer to zero for the network
composed of farms only. In conclusion, the alps are
responsible for the marked seasonality in network prop-
erties and this trend becomes stronger when excluding
markets and dealers. The farms only subnetwork is de-
void of a clear seasonal fluctuation except in summer
when the density shows maximum values.

The seasonality in the network characteristics becomes
also apparent in a principal component analysis (PCA)
of network-wide measures and numbers of active hold-
ings per category over the 48 months of the study. The
first two components explained together 78.9% of the
variation (PC1: 50.8%, PC2: 28.1%) and the bi-plot shows
that these two components together clearly discern the
different seasons of the yearly cycle, with the winter
months (November—April) loading low and Spring
(May-June) loading high on PC1, while Summer (July —
August) loading high and Autumn (September—October)
loading low on PC2 (Fig. 4).

(b) Dynamic network measures

For each holding we evaluated the outgoing contact
chain over 30 days, starting at the first day of each
month. The length of this chain can be interpreted as a
measure for the maximal outbreak size after 30 days
considering a highly contagious disease requiring close
proximity between individuals for transmission. The out-
break sizes per holding within a single month varied
considerably from one, indicating that there was no
transmission from this holding within 30 days, to 3754.
Outbreak sizes for holdings also varied in the course of
the year: 90.7% of all those holdings which had an out-
break size of 100 or larger during one month had an
outbreak size of only one during another month of the
same year. The distribution of outbreak sizes is highly
skewed, with on average 54.5% of the holdings having an
outbreak size of one (i.e. there was no transport to any
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other holding in that respective month) and 85.1% had
an outbreak size of less than ten, meaning that even
within 30 days of undetected transmission, a highly con-
tagious disease would not have spread to more than ten
holdings. We refer to holdings with an outbreak size of
100 or larger as ‘hubs; as such holdings have the poten-
tial to convey a disease to many holdings at any time of
an epidemic outbreak. Note, that the categorization of a
node of being a hub or not can change from month to
month depending on the actual transports and, conse-
quently, the contact chain of the respective month. The
percentage of holdings qualifying as hubs is given in Fig. 5.
Depending on the month, only between 2.1 and 12.0% of
the holdings qualify as hubs, suggesting that in most cases
an outbreak starting at a single holding would spread only
to a limited number of other holdings within the focal
period. Figure 5 shows, further, a strong seasonality, with
peaks in spring and autumn and low numbers in summer
and around Christmas and New-year.

In our attempt to quantify the contribution of the
different holding categories to the overall connectivity
of the network and the risk of epidemic outbreaks we
consecutively removed all markets and all transports

from- and to markets from the network, then all
dealers and finally all alps and all transports from
and to alps. The number of hubs for these reduced
networks is also shown in Fig. 5, and can be inter-
preted as an estimate for outbreak risk if, for disease-
control or other reasons, a certain practise, like the
conduct of markets or the summering on alpine pas-
tures, would have been banned or given up. As indi-
cated by the light blue area, removing markets from
the network has a substantial impact on the number
of hubs, despite making up only a tiny proportion of
all holdings. In contrast, dealers, who make up a
similar small proportion of the population of hold-
ings, have a much smaller impact (light grey area).
Simulated removal of alps from the transport network
further reduced the number of hubs during late
spring and autumn -at the times when animals were
brought to the summer pastures and when they
returned to the farms. On the other hand, it had no
effect during winter, when the alps were closed and during
the summer months, when summering practice seems
to lead to an overall reduction of movements and,
hence, outbreak risk.
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Fig. 2 Cumulative probability distributions of unweighted indegree (upper panels) and outdegree (lower panels) for the four networks
considered (A full network, and successively excluding B markets, C dealers and D alps (farms only))
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(c) Associations between different metrics

(i) Network-wide measures

A linear regression model with the number of hubs
(i.e. holdings with an outbreak size of =100) as
dependent variable and the monthly network-wide
measures GSCC, GWCC, clustering coefficient, aver-
age path length and assortativity and their interac-
tions as independent variables could explain over 80%
of the total variance (adjusted R? =0.805, n =48).
The best single predictor for the number of hubs was
the GSCC with R* =0.551. The absolute number of
movements between holdings and the number of ac-
tive holdings per month were less reliable predictors
for the number of hubs with R* =0.208, and R*> =
0.576 respectively. The number of active farms was
the single best predictor: R* =0.437. Most of the
static monthly network measures were correlated with
the number of active holdings per month and the
number of hubs per month (Table 3).

(ii) nodal network measures
Given the heterogeneity of the transport network and
the wvariation in outbreak size between individual
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N

holdings, we asked to what extent nodal network mea-
sures (i.e. measures attributed to individual holdings)
can be predictive of the outbreak size for a holding in a
given month. A generalized linear model with outbreak
size as the dependent variable, a log-link function (family
Poisson), month and all six static monthly nodal mea-
sures (see below) and their interactions as independent
variables resulted in an adjusted R* = 0.199, while post-
hoc models with a single network measure, each, deliv-
ered even lower proportions of variance explained: in-
degree R* = 0.003, out-degree R* = 0.021, degree product
R* =0.003, betweenness centrality R* = 0.008, in-degree
closeness R* =0.038, out-degree closeness: R* =0.108.
All these associations between static nodal measures and
outbreak size are far too weak for making them reliable
predictors for the outbreak size to be expected for a dis-
ease spreading from a specific holding. In conclusion,
simple network measures as the monthly number of ac-
tive holdings as well as monthly static network measures

Table 3 Correlation coefficients between the monthly (n = 48)
number of active holdings (total, number of active farms, alps,
dealers and markets) and static monthly network measures
(GSCC: Giant strongly connected component, GWCC: giant
weakly connected component, CC: clustering coefficient, APL:
average path length, Assort: degree assortativity)

Total Farm Alp Dealer Market
Total 0.25 0.88 -0.64 -0.67
Farm -0.23 0.18 0.25
Alp -0.73 -0.81
Dealer 0.52
GSCC -0.03 0.76 -0.40 0.29 040
GWCC 0.72 0.69 039 -027 -023
Density -0.90 -0.02 -0.89 0.68 0.66
CcC 0.94 0.06 091 -0.69 -073
APL 0.35 —047 0.58 -041 -044
Assort -0.01 -0.34 0.16 -0.06 -0.28

are informative about the overall outbreak risk in a given
month. However, nodal measures of monthly networks
do not inform about the danger emanating from a
specific holding.

(c) Surveillance examples

In order to gauge whether holding characterization
based on dynamic network measures can be of prac-
tical importance, we ran a simulation where sentinel
holdings were either selected based on the outgoing
contact chain, static network measures of monthly
networks, or randomly selected from all active hold-
ings. Surveillance based on dynamic measures (ran-
domly selecting 100 holdings from all holdings with
outbreak size of 100 or more) detected an epidemic
on average in 83.5% of the simulations, while the
detection rate was markedly lower for both static tar-
geted surveillance, and random surveillance. Further-
more, the median outbreak size at the time point of
detection was lower for the dynamic targeted surveil-
lance than for any other scheme (Table 4). The higher
efficiency of surveillance based on the outgoing con-
tact chain is according to our expectations: as out-
break size reflects the accessible world, taking into
account the temporal structure of the movements,
this measure allows to identify those holdings from
which a disease would spread rapidly. Surprisingly,
surveillance based on monthly network measures was
even less effective than surveillance based on ran-
domly selected sentinel holding. At the moment we
do not have an explanation for this finding. This
simulation does not constitute a systematic investiga-
tion into surveillance strategies, as we employed only
a rather simple transmission model and because we
confined our investigation to a single set of parameter
values instead of exploring the parameter space more
broadly. However, these results can at least deliver a
proof of concept.
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Table 4 Comparison of the effectiveness of different surveillance schemes. IQR: interquartile range

Sentinel selection Detection rate % (median) QR Outbreak size (median) IQR
outgoing contact chain 83.5 724-929 50 35-89
in-degree 54.7 32.2-67.2 104 56-173
out-degree 526 40.7-66.4 132 49-214
degree prod 56.0 424-776 114 54-158
betweenness 54.6 31.7-68.7 91 34-159
in-closeness 64.5 38.7-81.2 85 47-151
out-closeness 52.1 359-70.3 118 41-208
random 70.3 57.7-856 112 57-143

Epidemic outbreaks were simulated using stochastic simulations with 1000 repetitions for each months and each scenario. Surveillance was based on 100
holdings which were either randomly selected from all holdings with an outgoing contact chain larger than 100, from all holdings in the top 5% percentile for
one of the static network measures in the respective month, or from all active holdings

Discussion

We found strong seasonality for several network mea-
sures —both static measures for monthly networks and
dynamic measures like the proportion of hubs. For
example, in autumn the risk of larger outbreaks is five
times larger than in summer. Fluctuations in monthly
static network measures such as the GSCC are in line
with this picture.

The alpine summering practice has a strong impact on
the seasonal changes in the transportation network. Sim-
ulated removal of alps from the network reduces sea-
sonal variations in the connectivity (GWCC), clustering
and assortativity substantially. Yet, when it comes to the
risk of epidemic outbreaks, markets play a much more
prominent role than the alps. This has an important im-
plication with respect to outbreak control interventions,
such as transport bans.

By using unweighted data, our focus is on fast spread-
ing and highly contagious diseases, where the transport
of a single contagious animal would be sufficient to in-
fect all other animals in the holding of destination. Dis-
ease specific models that take the transmission dynamics
and etiopathology of the specific disease into account
would be required to evaluate the contribution of hold-
ing types in the case of slow spreading diseases [18, 43].
Furthermore, we would like to mention that our ap-
proach (simulated removal of nodes, see also [12, 29, 44,
45] for further use of this approach) does not account
for any potential increased activity of the holdings that
remain in the network when excluding a particular hold-
ing category. This is, of course, a simplification and a
study by Robinson and colleagues [46] reported that
after the introduction of mandatory standstill periods in
Great Britain (a response to the foot and mouth disease
epidemic in 2001), movement patterns have shifted con-
stantly resulting even in an increase of the GSCC and
hence the potential size of the next epidemic outbreak.

The prominence of markets as potential hubs for dis-
ease transmission, as it is suggested by their contribution

to the overall outbreak sizes, is well in line with results
found in other studies [22, 23]. It is important to keep in
mind that large market events are subject to strict regu-
lations to prevent disease spread, including medical sur-
veillance and spatial structuring to minimize contact
between animals from different holdings. Thus our find-
ings should be interpreted as potential risk, if no control
measures and regulations were in place, but not as a
measure for the actual risk given current best practice.
In this respect, our results clearly stress the importance
of the precautionary measures taken at large markets
and auctions. Network-wide metrics of monthly trans-
port networks were clearly correlated with the propor-
tion of hubs (i.e. outgoing contact chains with a length
of 100 or more), which we took as a risk measure. How-
ever, the number of active holdings, specifically markets
and alps, also showed a strong seasonal pattern that was
correlated with outbreak risk. From a mechanistic per-
spective, it is clear that changes in the risk of epidemic
outbreaks are a consequence of changes in connectivity
of the network, which is a consequence of the seasonal
cycle. Thus, while several network measures allow pre-
dictions about times of increased outbreak risk, the same
feat could be achieved by simply counting holdings per
category, or —even more simply— consulting the calen-
dar. Nodal static network measures of the monthly
transport networks give only poor predictions for the
risk emanating from a specific holding. Of the six static
nodal measures considered, only out-degree closeness
had a noteworthy predictive value for outbreak risk.

The reason for this discrepancy can be found in the
temporal dynamics of the network. If a transport from
holding B to holding C is recorded for time point ¢, and
another transport from holding A to holding B for the
time point ¢ + 1, then holding A is connected to both
holdings B and C in the monthly static network. How-
ever, due to the temporal order of the connections a dis-
ease could not spread from A to C. The outgoing
contact chain takes this temporal dynamic into account
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and, as such, it gives a more sensible network metric
reflecting its potential contribution to an epidemic out-
break. We simulated outbreaks with a simple model,
which contained two stochastic components: one for the
transmission of the disease due to animal transports
from one holding to the other, and a second one for
transmission due to environmental contamination or
other unknown reasons. Yet, targeted surveillance based
on the dynamic outgoing contact chain could detect
epidemics more often and more effectively than both
targeted surveillance based on holdings selected based
on static network properties and random surveillance.
Our results are in line with recent propositions for selec-
tion criteria of surveillance targets based on cluster ana-
lysis of the transport network [18, 41]. Even though the
methodologies differ in details, all these studies accumu-
late evidence of how promising dynamic or temporal
approaches are for risk evaluation and surveillance.

Conclusions

We provided a detailed description of the Swiss cattle
transport network. Static descriptors of monthly trans-
port networks give only poor predictors for the outbreak
risk emanating from individual holdings; yet a dynamic
measure based on time-stamped data—the outgoing
contact chain—can give better risk estimates and could
help to improve surveillance schemes. Using this meas-
ure we find evidence that even in a country with intense
summering practice, markets continue being the prime
risk factor for the spread of contagious diseases.
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