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Abstract 

Background Assessing dietary phenylalanine (Phe) tolerance is crucial for managing hyperphenylalaninemia (HPA) 
in children. However, traditionally, adjusting the diet requires significant time from clinicians and parents. This study 
aims to investigate the development of a machine-learning model that predicts a range of dietary Phe intake toler-
ance for children with HPA over 10 years following diagnosis.

Methods In this multicenter retrospective observational study, we collected the genotypes of phenylalanine hydrox-
ylase (PAH), metabolic profiles at screening and diagnosis, and blood Phe concentrations corresponding to dietary 
Phe intake from over 10 years of follow-up data for 204 children with HPA. To incorporate genetic information, allelic 
phenotype value (APV) was input for 2965 missense variants in the PAH gene using a predicted APV (pAPV) model. 
This model was trained on known pheno-genotype relationships from the BioPKU database, utilizing 31 features. 
Subsequently, a multiclass classification model was constructed and trained on a dataset featuring metabolic data, 
genetic data, and follow-up data from 3177 events. The final model was fine-tuned using tenfold validation and vali-
dated against three independent datasets.

Results The pAPV model achieved a good predictive performance with root mean squared error (RMSE) of 1.53 
and 2.38 on the training and test datasets, respectively. The variants that cause amino acid changes in the region 
of 200–300 of PAH tend to exhibit lower pAPV. The final model achieved a sensitivity range of 0.77 to 0.91 and a speci-
ficity range of 0.8 to 1 across all validation datasets. Additional assessment metrics including positive predictive value 
(0.68–1), negative predictive values (0.8–0.98), F1 score (0.71–0.92), and balanced accuracy (0.8–0.92) demonstrated 
the robust performance of our model.
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Conclusions Our model integrates metabolic and genetic information to accurately predict age-specific Phe toler-
ance, aiding in the precision management of patients with HPA. This study provides a potential framework that could 
be applied to other inborn errors of metabolism.

Keywords Hyperphenylalaninemia, Diet management, Machine-learning models, Pheno-genotype relations

Background
Hyperphenylalaninemia (HPA) is characterized by 
a blood phenylalanine (Phe) concentration exceed-
ing 120 μmol/L. When the blood Phe concentration is 
between 120 and 360 μmol/L, it is termed mild hyper-
phenylalaninemia (MHP) and the child only requires 
regular blood Phe monitoring and general childcare. 
If the blood Phe concentration persistently exceeds 
360  μmol/L, the condition is classified as phenylke-
tonuria (PKU), necessitating treatment with a low Phe 
diet to reduce blood Phe levels and prevent progres-
sive neurotoxic damage [1]. Approximately 0.45 mil-
lion individuals with HPA exist worldwide, of whom at 
least two-thirds require treatment with a low Phe diet 
[2].

Phe tolerance, representing the dietary Phe intake 
that maintains a blood Phe concentration within a 
target range, is a crucial metric for guiding dietary 
management in patients with HPA [3]. Determining 
the optimal Phe tolerance range is challenging owing 
to it changes with age and stabilizes after 5 years, and 
requires frequent blood Phe monitoring [4, 5].

Variants of the phenylalanine hydroxylase (PAH) 
gene are the primary cause of HPA. One of the most 
widely used parameters in the genotype–phenotype 
relationship is the allelic phenotype value (APV) [6], 
developed using an algorithm based on pretreatment 
blood Phe concentration data from 9,336 patients with 
PAH deficiency, as recorded in the BIOPKU data-
base [7]. However, nearly one-third of PAH variants 
lack APV data, and the development of APV does not 
include the actual Phe dietary tolerance of the patients.

Therefore, this study aims to address these limita-
tions by first developing a machine-learning model 
to predict APV scores for novel variants on PAH. 
Additionally, a prediction model was developed, 
incorporating pretreatment Phe concentration, PAH 
genotypes, predicted APV, and blood Phe levels corre-
sponding to dietary Phe intake during each follow-up 
from an HPA cohort in northwestern China, where the 
incidence (1:5230 [8]) is significantly higher than the 
global average (1:23,930 [2]). Finally, the performance 
of this prediction model was validated in three inde-
pendent HPA cohorts.

Methods
Study design
A multicenter retrospective study was conducted to 
model the follow-up blood Phe test results of patients 
with HPA under dietary control. The development 
dataset for this study was collected from clinical 
records of patients diagnosed at the Neonatal Disease 
Screening Center of the Children’s Hospital of Xinji-
ang Uyghur Autonomous Region (Hospital A) between 
January 2010 and December 2021. The validation data-
sets were obtained from records of patients diagnosed 
between December 2021 and March 2023(validation 
dataset I), other outpatients with HPA at the same 
hospital (validation dataset II), and patients from the 
Children’s Hospital of Fudan University (Hospital B) 
between September 2006 and September 2022 (valida-
tion dataset III) (Fig.  1). This study was approved by 
the Ethics Board of the People’s Hospital of Xinjiang 
Uyghur Autonomous Region (GZR2017010).

Participants and data collection
Patients were diagnosed with HPA according to the 
Chinese national consensus statement and Euro-
pean guidelines [9, 10]. Blood Phe concentra-
tion > 360  μmol/L was defined as phenylketonuria 
(PKU), requiring treatment with a low-Phe diet or tet-
rahydrobiopterin, such as Sapropterin dihydrochloride, 
to lower blood Phe concentration. Without treatment, 
progressive neurotoxic damage may occur. Patients 
were further filtered based on the following inclusion 
criteria: (1) individuals with one homozygous or two 
heterozygous variants in the PAH gene, and (2) com-
plete clinical information, including pretreatment 
blood Phe concentration, diagnosis time, blood Phe 
concentration, and corresponding dietary Phe intake 
measured at each follow-up. Patients were excluded if 
they underwent any treatment other than diets such as 
Sapropterin or Pegvaliase. Included individuals were 
further reviewed for the following parameters: (1) 
demographic information, sex, value, and age at the 
re-screening test of blood Phe concentration via fluo-
rometric assay; value and age at the diagnostic test of 
blood Phe and tyrosine concentration using TMS; fam-
ily history; and consanguinity. The Phe concentration 
from re-screening test was defined as screening Phe, 
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while the Phe concentration from the diagnostic test 
was defined as diagnostic Phe.

Outcomes of model
The outcome of the model was defined as the blood Phe 
testing results from each subsequent follow-up visit. 
Normal: The target ranges for blood Phe concentra-
tions are 120–240  μmol/L for ages 0–12  months, 120–
360 μmol/L for ages 1–12 years, and 120–600 μmol/L for 
individual > 12 years [9].

High: The Phe levels exceeding 240  μmol/L for ages 
0–12  months, 360  μmol/L for ages 1–12  years, and 
600 μmol/L for individuals > 12 years. Low: The Phe levels 
below 120 μmol/L for all age groups.

Feature collection
Metabolic features
The screening Phe levels (Phe1) from dried blood spots 
and each Phe concentration from fresh peripheral blood 
during the follow-up were measured using a fluoromet-
ric assay with the Neonatal Phenylalanine kit (Fenghua, 

China). According to the protocol of the manufacturer, 
calibrators, high control, low control, and samples were 
simultaneously incubated with the extraction solution. 
After incubating for 120  min at 37  °C, 200 μL of cop-
per reagent was added into each well and incubated for 
60 min at 26 °C without shaking. Fluorescence was meas-
ured using an Auto Fluoroimmunoassay Analyzer (Auto 
TRFIA-2, Fenghua, China).

The diagnostic Phe levels (Phe2) were measured using 
TMS with the NeoBase Non-derivatized TMS S kit 
(PerkinElmer, USA). The assay was performed accord-
ing to the protocolof the manufacturer. The concentra-
tions of Phe and Tyr in samples were measured with an 
ACQUITY TQD mass spectrometer (Waters, Milford, 
MA, USA), and the data were analyzed using the Mass-
Lynx 4.1 version software.

Genetic features

PAH genotyping and variant annotations PAH genotyp-
ing was performed using Sanger sequencing of all PAH 

Fig. 1 Individual inclusion and exclusion process for training and validation datasets. HPA, hyperphenylalaninemia; Phe, phenylalanine; PKU, 
phenylketonuria; PAH, phenylalanine hydroxylase
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exons before 2016 and next-generation sequencing sub-
sequently. Details on sample collection, DNA isolation, 
PCR amplification, product sequencing, and data analysis 
were conducted as described previously [8]. The patho-
genicity of each PAH variant was reassessed according 
to the ClinVar annotations (https:// www. ncbi. nlm. nih. 
gov/ clinv ar/). Novel variants and variants of uncertain 
significance in the ClinVar were reassigned based on 
the guidelines of the ACMG and Phenylketonuria Vari-
ant Curation Expert Panel of ClinGen (https:// www. clini 
calge nome. org/ affil iation/ 50015). RefSeq NM_000277.1 
was used the reference transcript for PAH. Variants were 
annotated using the variant effect predictor (VEP) [11] to 
integrate information such as variant types, population 
frequencies, and computational predicting scores from 
dbNSFP [12]. Since HPA is an autosomal recessive dis-
order, biallelic effects of the PAH gene should be consid-
ered. Therefore, our model included variants from both 
alleles.

Allelic phenotype value
APV is a model used for predicting phenotypes based on 
genotypes in PKU, utilizing the frequencies of the meta-
bolic phenotypes associated with genotypes in a func-
tionally hemizygous state, as identified from the bioPKU 
databases. For novel variants lacking a known APV, a 
predicted APV (pAPV) was imputed using a regression 
machine-learning model, which involved the following 
four steps. (1) Preparing training and testing datasets: 
219 missense variants with known APV scores from Gar-
bade et al. [6] were randomly divided into training (80%, 
n = 176) and testing (20%, n = 43) datasets. (2) Processing 
feature: Initially, 41 features related to conservation, pro-
tein structure, pathogenicity, population allele frequency, 
and residue interactions in (Additional file  1: Table  S1) 
were considered for modeling. Feature selection included 
evaluating the contributions and correlations of these 
features. Features with average Shapley Additive exPla-
nations (SHAP) values [13] > 0.01 were retained, while 
highly correlated features (Spearman’s correlation > 0.70) 
were removed to reduce redundancy. This process 
resulted in a final set of 31 features for modeling. (3) 
Model development: Using the selected features, a gra-
dient boosting machine algorithm was trained. Hyper-
parameters were optimized through tenfold validation 
and grid search to select the model with the lowest root-
mean-square error (RMSE). (4) Precomputed scores for 
all missense variants: To compute the pAPV for mis-
sense variants, all possible single nucleotide variants were 
simulated in the PAH coding sequence and selected with 
those missense consequences according to VEP annota-
tion. The pAPV model was then applied to the annotated 
features to calculate the pAPV for each variant. Nonsense 

variants and variants with a SpliceAI score > 0.5 were 
assigned a pAPV of zero. Additionally, if a missense vari-
ant was predicted to impact splicing (SpliceAI > 0.5), its 
pAPV was assigned as zero.

Phe intake estimation
Based on the consensus statement [9], children with 
PKU were treated with free-Phe amino acid formula 
(Periflex® and Periflex Ad®) and low-Phe rice and flour 
(Wei Si Duo®) at different ages. The recommended Phe 
intake ranges from 130 ~ 430 mg/day for infants aged 0 to 
3 months. For other age groups, the Phe intake followed 
the guidelines outlined in the consensus statement.

The dietary Phe intake was assessed by a clinical fol-
low-up expert during each visit using sophisticated die-
tary calculation software called Rainbow Diet Calculator, 
developed by Nutricia and food composition reference 
[14]. Dietary Phe intake was managed according to the 
guidelines [9, 15] and calculated based on information 
from 24-h dietary recall for 3 to 4 days. Nutrition profes-
sionals reviewed all Phe intake in this study.

Model development
After feature collection, 10 features were used including 
the blood Phe level from the initial screening (Phe1), the 
age at screening (Age1), Phe levels from the TMS test 
(Phe2), and age at TMS test (Age2), APVs for both allele 
(APV1 and APV2), alleles frequencies for both allele 
(AF1 and AF2), and Phe intake and age at each follow-
up event. Missing values of APV were imputed using the 
method described earlier (see the section of APVs). The 
values of the 10 features were normalized. They were 
then transformed using the Yeo-Johnson method. Mul-
ticlass classification models were trained on the training 
dataset using three different supervised machine-learn-
ing algorithms: gradient boosting machine, random for-
est, and supporting vector machine. Hyperparameters 
were through tenfold validation and grid search to select 
the model with the highest area under the curve (AUC). 
Additional file  1: Table  S2 shows the hyperparameters 
selected for the final models.

Model validation
To evaluate model robustness, validation was performed 
on three independent datasets (datasets I–III) using the 
overall accuracy and kappa metric. Furthermore, the 
one-versus-rest strategy was employed to assess the 
performance of the multiclass model using the receiver 
operating characteristic curve (ROC) and precision-
recall (PR) Curve for high and low classes. Sensitivity, 
specificity, positive prediction value, negative prediction 
value, F1 score, and balanced accuracy were also utilized 

https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.clinicalgenome.org/affiliation/50015
https://www.clinicalgenome.org/affiliation/50015
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to assess model performance across the three independ-
ent datasets.

Personalized optimal Phe intake estimation
To determine the upper and lower thresholds for Phe 
intake for each patient, the class boundary in the Phe 
intake versus age plot is estimated. Simulated datasets 
were generated by fixing the patient-specific features 
(Phe1, Age1, Phe2, Age2, APV1, APV2, AF1, AF2) and 
iterating through event-specific features. This process 
involved varying Phe intake from 0 to 1000  mg across 
ages ranging from 0 to 180 months. The model was then 
used to predict outcomes for each Phe intake and age 
pair. The curve connecting the lowest Phe intake that 
resulted in an H-class outcome at each age was consid-
ered the upper boundary for optimal Phe intake. Simi-
larly, the curve connecting the highest Phe intake, which 
resulted in an L-class outcome, was considered the lower 
boundary for optimal Phe intake.

Statistical analysis
The performance of pAPV models was measured using 
mean absolute error (MAE), RMSE, and  R2. All statisti-
cal analyses were performed in R (version 4.2) [R Core 
Team (2023). R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Comput-
ing, Vienna, Austria. < https:// www.R- proje ct. org/ > .]. 
Machine learning models were built using the caret pack-
age (v6.0–88) [16]. Feature significance was calculated 
with SHAP (Shapley Additive exPlanations) [17] using 
the xgboost package [18]. Plots were generated by using 
the ggplot2 package v3.3.5 [19].

Results
Characteristics of training and validation cohorts
Overall, 275 patients were diagnosed with HPA between 
January 2010 and December 2021. Of these 139 patients 
(68 male and 71 female) underwent PAH genotyping 
and their 3177 following-up blood Phe test results were 

used as developmental datasets to train the prediction 
model. To assess the prediction model, three independ-
ent validation datasets were collected from 28 outpatient 
patients (383 follow-up events) who missed newborn 
screening tests, 19 patients (168 follow-up events) diag-
nosed after 2022, and 18 patients (55 follow-up events) 
from another health center (Fig. 1 and Table 1), respec-
tively. Table  1 shows the characteristics of the training 
and testing cohorts. The follow-up Phe test results were 
categorized as high, normal, and low if the testing results 
were higher, within, or lower than the target ranges, 
respectively. Additional file 2: Fig. S1 shows the distribu-
tion of blood Phe levels for all patients at each follow-up. 
There were 1951 (61.4%) high, 831 (26.2%) normal, and 
395 (12.4%) low events in the training cohorts. There 
were 266 (69.5%), 75 (44.6%), and 22 (40%) high events, 
for the validation I, II, and III cohorts, and 26 (6.8%), 36 
(21.4%), and 5 (9.1%) low events for the corresponding 
validation cohorts.

pAPV of novel variants of PAH
Thirteen variants were detected in our cases without 
APVs, including one splicing, two stop-gained, and 10 
missense variants. Considering most null variants are 
severe, an APV of 0 was assigned to the stop-gained 
variants. A model incorporating 31 features was trained 
using 174 missense variants with known APV from the 
BIOPKU database, to predict the pAPV for the ten mis-
sense variants without APV (Additional file 1: Table S3). 
The performance of the prediction model, based on the 
test datasets yielded an RMSE of 2.38 (Fig.  2B). SHAP 
values revealed the contributions of various features to 
the pAPV model (Fig.  2A). Among all the features, the 
EVE score, an unsupervised deep learning model that 
captured evolutionary patterns of protein sequences 
from 140,000 species, contributed the most to the 
pAPV, followed by the EVM epistatic score, which con-
siders sequence co-variation through evolution, allele 

Table 1 Demographic and clinical characteristics of patients

Data type: median (IQR), IQR interquartile range, Phe phenylalanine, TMS tandem mass spectrometry

Developmental set Validation set I Validation set II Validation set III

Number of cases 139 19 28 18

Screening test age (days) 37[20, 70] 21[15, 79] 1186.5[829.5, 1708.5] 16.5[11, 55]

Diagnosed age (days) 109[76, 179] 132[61, 245] 1272[886.5, 1720] 67[34, 407]

Sex-female (%) 71 (51.1) 8 (42.1) 11 (39.3) 13 (72.2)

Family history (%) 25 (18.0) 2 (10.5) 14 (50.0) 0 (0)

Consanguinity (%) 30 (21.6) 0 (0) 9 (32.1) 0 (0)

Screening Phe (μmol/L) 697.9[414, 1160.4] 644.4[193.2, 1200] 1224[1101.3, 1664.7] 420[174, 846]

TMS Phe (μmol/L) 733.7[339.1, 1147.8] 483.1[179.3, 990.4] 953.4[753.8, 123.4] 426[178, 980]

https://www.R-project.org/
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frequencies in the gnomAD database, changes in amino 
acid isoelectric point and the GERP score.

The pAPV was computed for 2965 missense variants 
to interpret the severity of all possible missense vari-
ants in PAH. The landscape of pAPV along the protein 
sequence was shown in Fig.  2. The variants that cause 
amino acid changes in the region between residues 200 
and 300 are more likely to have lower pAPV, indicating 
that this is a functionally important region of PAH. This 
region includes residues 281–292, which are annotated 

as iron/copper binding sites (IPR018301) in the InterPro 
database (Fig. 2C).

Phe model prediction and validation
To predict age-specific Phe tolerance, machine-learning 
models were developed using data from 3177 follow-up 
events with 10 features (Fig.  3A), including the initial 
blood Phe level age at screening, Phe levels from the 
TMS test, age at TMS test, APVs and allele frequencies 
for both alleles, Phe intake, and age at each follow-up 

Fig. 2 pAPV model of missense variants in PAH. A Feature contributions of the pAPV model. B Comparison of predicted pAPV score and known APV 
score of variants from the test dataset. C Red dots indicate the variants with known APV in the BIOPKU database, while green dots represent variants 
with pAPV predicted in this study. The blue line illustrates the trend of pAPVs along the protein sequence. The iron/copper binding sites (IPR018301) 
within residues 281–292 residues are highlighted in yellow
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Fig. 3 Model development and evaluation. A Study design: Data collected during clinical procedures for each sample, spanning from birth 
to the last follow-up, were used to construct the model. B–D ROC and precision-recall curves: These curves demonstrate the efficacy of the model 
in predicting events above (H) and below (L) the target region in validation datasets I, II, and III, respectively. Phe1: Blood phenylalanine 
concentration from re-screening, measured by a fluorometric assay. Age 1: Age of the individual at the time of the re-screening test. Phe2: Blood 
phenylalanine concentration from diagnosis, measured by tandem mass spectrometry. Age 2: Age of the individual at the time of the diagnostic 
test. APV1: Allelic phenotype value score for the first allele. APV2: Allelic phenotype value score for the second allele. AF1: Variant allelic frequency 
from the gnomAD database for the first allele. AF2: Variant allelic frequency from the gnomAD database for the second allele



Page 8 of 12Su et al. BMC Medicine          (2024) 22:377 

event. These data were collected from screening, genetic 
tests, and follow-up processes. Three commonly used 
machine learning algorithms, including gradient boost 
machine (GBM), random forest, and support vector 
machine (SVM) were employed. The GBM model was 
selected as the final model based on validation results 
from three independent datasets (Additional file  1: 
Table S2). In the validation dataset I (Fig. 3B), the model 
achieved an area under the receiver operating character-
istic curve (ROC-AUC) of 0.965 and an area under the 
precision-recall curve (PR-AUC) of 0.965 for predict-
ing high events versus normal and low events. It also 
showed high performance with a ROC-AUC (0.955) and 
PR-AUC (0.834) for predicting low events versus nor-
mal and high events, indicating strong predictive abil-
ity for abnormal blood Phe test results in outpatient 
cases. The model performed well when used in pre-
dicting high (ROC-AUC = 0.943, PR-AUC = 0.976) and 
low (ROC-AUC = 0.974, PR-AUC = 0.868) categories 
in the validation dataset II (Fig. 3C). The model showed 
robust performance in the validation dataset III (Fig. 3D) 
which consists of patients from a different health center 
(high: ROC-AUC = 0.909, PR-AUC = 0.909; low: ROC-
AUC = 0.912, PR-AUC = 0.835). With a probability cutoff 
of 0.5, the model achieved sensitivity between 0.77 and 
0.91 and specificity between 0.8 and 1 across all valida-
tion sets. Additional metrics, including positive predic-
tive value (0.68–1), negative predictive values (0.8–0.98), 
F1 score (0.71–0.92), and balanced accuracy (0.8–0.92), 
further confirmed the strong performance of the model 
(Table 2).

Sensitivity analyses
To evaluate the influence of metabolic and genetic factors 
on the prediction model, alternative models were con-
structed using subsets of the full feature set. The baseline 
model comprised only Phe intake and age at each follow-
up event as features. The metabolic model expands on 
this, by incorporating additional features such as Phe lev-
els from the initial screening, age at screening, Phe levels 

from TMS tests, and age at TMS tests. The genetic model 
has augmented the baseline model by integrating APVs 
and allele frequencies for both alleles. Validation results 
showed that the full model is generally more accurate and 
robust than models using only metabolic or genetic fea-
tures. However, the metabolic model had slightly higher 
ROC-AUC (0.947) and PR-AUC (0.978) values com-
pared to that of the full model (ROC-AUC = 0.943, PR-
AUC = 0.976) for predicting events above the target range 
in validation dataset I. For predicting events below the 
target range, in validation dataset II, the full model per-
formed best on all other metrics across the three valida-
tion datasets.

Validation and explanation for model performance 
on three independent datasets
We showed the prediction results of individual cases 
under three different conditions from the training 
cohorts. For patients requiring low-protein diet ther-
apy during long-term follow-up, the model predicts the 
upper and lower bounds for the ideal Phe intake over 
time, using inputs such as pretreatment blood Phe con-
centration and PAH genotypes. Figure 4A illustrates the 
bounded curves that successfully distinguish between 
historical high and low events. For a patient who did 
not require a restricted diet, the model generated only a 
lower bound, as the blood Phe concentration was below 
360  μmol/L during follow-up (Fig.  4B). The patient in 
Fig. 4C received low-protein diet therapy for a period and 
was able to maintain blood Phe concentration between 
120 and 360 μmol/L after discontinuing the treatment. In 
this case, two curves are shown during the diet therapy 
period, while only the lower limit curve is displayed after 
the diet treatment is stopped. Figure 4D–F presents cases 
from the validation datasets. For example, the predicted 
upper and lower bounds accurately reflect the actual diet 
tolerance for case p167, who required dietary Phe intake 
control of 200–250 mg/day at the age of 1 year, between 
220 and 400  mg/day at the age of 2  years and less than 

Table 2 Validation effect of different metrics on three validation datasets

H predicted as high blood Phe concentration, L predicted as low blood Phe concentration

Class Sensitivity Specificity Pos Pred value Neg Pred value F1 Balanced 
accuracy

I H 0.95 0.9 0.89 0.95 0.92 0.92

L 0.75 0.9 0.68 0.93 0.71 0.83

II H 0.91 0.8 0.91 0.8 0.91 0.86

L 0.77 0.99 0.83 0.98 0.8 0.88

III H 0.77 0.82 0.74 0.84 0.76 0.8

L 0.8 1 1 0.98 0.89 0.9
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450 mg/day after 7 years. The analyzed data was provided 
in (Additional file 1: Table S4).

Discussion
Managing HPA is a major challenge owing to the time 
required to determine appropriate dietary Phe intake. 
High Phe levels can damage the brain through several 
mechanisms: Phe causes disturbances of neuronal den-
dritic outgrowth, leading to white matter disruption 
[20], Phe-mediated inhibition of pyruvate kinase or other 
enzymes of glycolysis, leading to cerebral metabolism 
disorder [21], and Phe-mediated competition for bind-
ing to LAT1 and impair the flux of the other large neutral 
amino acids into the brain, leading to their deficiency in 
the brain [22]. Alternatively, low Phe levels can affect skin 
and growth [23]. Our machine learning model addresses 
this challenge by providing personalized recommenda-
tions for the dietary Phe tolerance ranges in children with 
HPA over 10 years following diagnosis. With accuracies 
of 0.81, 0.85, and 0.78 across three external validation 

datasets, our model demonstrated robust performance. It 
achieved a mean AUC of 0.94 for distinguishing between 
high and low blood Phe concentrations, highlighting its 
effectiveness in facilitating dietary management and its 
potential to enhance patient outcomes. By offering pre-
dictive results, our model can alleviate the burden on 
clinicians, who would otherwise need to calculate each 
dietary Phe intake, monitor blood Phe concentrations, 
and adjust diets iteratively during long-term follow-up.

With the widespread application of artificial intelligence 
(AI) and big data in the medical field, machine-learning 
models play important roles in disease management 
and prognosis. Some machine learning approaches can 
be used to predict glucose trends in hospitals, helping 
to mitigate and prevent suboptimal hypoglycemic and 
hyperglycemic outcomes [24]. Additionally, AI-based 
nutritionist programs that utilize advanced language 
and image recognition models have been developed. 
These programs can identify ingredients from images of 
meals of patients and provide nutritional guidance and 

Fig. 4 Upper and lower bounds for optimal Phe intake. A–C Model results for three different conditions of training sets. D–F Model results 
for three validation datasets of patients undergoing dietary therapy. The X-axis represents age, and the Y-axis represents dietary Phe intake. Dashed 
lines illustrate the upper (red) and lower (green) bounds for dietary Phe intake calculated from the full model. Phe intake within these bounds 
indicates a safe intake amount to maintain blood Phe levels within the target range. Dots represent actual Phe intake records from follow-up visits, 
categorized high (red), low (green), or normal (blue) based on Phe levels relative to age-specific reference ranges. MHP = 0: the patient required 
long-term low-protein diet therapy. Mild hyperphenylalaninemia (MHP). MHP = 1: the patient did not require low-protein diet therapy. MHP = 2: 
the patient initially accepted low-protein diet therapy, however, eventually discontinued it
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dietary recommendations [25]. For some rare diseases, 
prediction models using clinical and genetic biomark-
ers can aid in the early diagnosis of SCN1A-related epi-
lepsies, such as Dravet syndrome, which is characterized 
by drug-resistant seizures and intellectual disability, or 
milder genetic epilepsy with febrile seizures plus, which 
is characterized by normal cognition [26]. In summary, 
for diseases that require long-term control through diet 
or medication, machine-learning models offer significant 
advantages.

Our results showed that the full model performs best 
in most scenarios, while alternative models remain use-
ful in certain situations where metabolic or genetic data 
are inaccessible (Fig.  3). The strong performance of the 
full model may be related to the automatic inclusion of 
patients with potential interallelic complementation of 
PAH genes and responsiveness to BH4. The widespread 
implementation of metabolic-based newborn screening 
for PKU highlights the broader applicability of the meta-
bolic model [10, 27]. The metabolic model achieves ROC-
AUC scores exceeding 0.883 and PR-AUC scores above 
0.88 for predicting events above the target range across 
all validation sets. Similarly, for predicting events below 
the target range, the model achieves ROC-AUC scores 
above 0.94 and PR-AUC scores exceeding 0.80 across all 
validation datasets.

Various factors such as feeding, preterm birth, and 
uterine environments can influence screening Phe levels 
[28, 29]. In cases heavily influenced by these factors, the 
genetic model could be useful [30]. The genetic model 
demonstrated predictive efficacy, with ROC-AUC val-
ues of 0.928, 0.937, and 0.707 for events above the tar-
get range, and PR-AUC values of 0.970, 0.936, and 0.689 
across validation sets I, II, and III, respectively. It also 
predicted events below the target range with ROC-AUC 
values of 0.959, 0.932, and 0.922 and PR-AUC values 
of 0.85, 0.677, and 0.837 for validation sets I, II, and III 
respectively. Moreover, the advancements in sequencing 
technology have made it possible to resolve genotypes 
in prenatal cases through genetic testing [31]. However, 
metabolic phenotypes may not be observable in such 
cases. Our genetic model can predict Phe tolerance, 
which reflects disease severity, based on genotypic infor-
mation. By obtaining the genotype of the fetus from a 
prenatal genetic test, our model can forecast Phe metab-
olism. Therefore the genetic model holds a potential util-
ity for prenatal screening [32] for HPA.

This study utilized an APV as a key genetic index, 
derived from metabolic phenotype frequencies observed 
in functionally hemizygous states. Despite the significant 
contributions from the BioPKU database, many variants, 
including 13 from the cohort, remain uncharacterized. 

To address this gap, we developed a novel machine-
learning model was developed, leveraging information 
from known BioPKU variants to assign APV scores to 
novel variants. Alterations in protein sequences are 
hypothesized to directly reflect phenotypic variations 
in hemizygous states. Consequently, protein sequence 
and structural data were used to impute APV scores for 
novel variants. This approach enhances the predictive 
utility of in silico scores for assessing phenylalanine tol-
erance, particularly in large-scale genetic testing scenar-
ios where novel PAH variants are identified.

However, since PAH is a recessive genetic disorder, 
metabolic phenotypes should ideally be considered in 
their biallelic states. Quantifying the combined effects 
of two alleles is a well-recognized challenge in genetic 
studies. Garbade et  al. introduced the genotypic phe-
notype value (GPV) as APVmax, which represents the 
higher APV of the two alleles [6]. Fang et al.incorporate 
allelic interactions using features derived from allelic 
mutation linkage graphs [33]. The reliance on weighted 
contributions from known variant combinations in 
this method raises questions about its applicability to 
novel variants and uncharacterized genotype combina-
tions. In developing our phenylalanine tolerance model, 
potential complex interactions between alleles were 
considered. Instead of, using integrated GPV, sepa-
rate APVs were selected for each allele. This approach 
avoids assuming allele dominance and enables the 
model to learn the potential additive contributions of 
individual alleles to phenotypic variation.

Studies have reported the phenomenon of interallelic 
complementation in PAH [34, 35], however, this study 
did not comprehensively explore its influence. Our 
models may capture patterns of allelic interaction by 
treating the APVs of the two alleles as separate features. 
Furthermore, integrating metabolic phenotype data 
could partially account for the phenotypic variability 
resulting from genetic interactions. However, the cur-
rent data are insufficient for a thorough investigation 
and reliable conclusions on allelic interactions. More 
data are needed for future research in this area.

This study had two other limitations. Firstly, the 
model did not account for geographical factors and 
variations in dietary patterns. However, testing the 
model on datasets from two hospitals in distinct geo-
graphical regions yielded robust results, indicating its 
applicability to patients from diverse backgrounds. Sec-
ondly, the model was developed exclusively using PAH 
pathogenic variants and did not account for the varied 
genetic backgrounds of patients or the potential impact 
of undiscovered modifier genes related to the PAH gene 
[34, 35].
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Conclusions
In this cohort study, we employed 10-year follow-up 
data from 264 children with PAH deficiency. The model 
integrates metabolic and genetic information to predict 
age-specific Phe tolerance, aiding in the precise man-
agement of patients. This approach serves as a model 
for developing similar strategies to improve dietary 
management in other inherited metabolic diseases, 
including maple syrup urine disease (leucine restric-
tion) [36] or glutaric aciduria type 1 (lysine restriction) 
[37].
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