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Abstract 

Background  Uterine corpus endometrial carcinoma (UCEC) is a prevalent gynecologic malignancy with a favorable 
prognosis if detected early. However, there is a lack of accurate and reliable early detection tests for UCEC. This study 
aims to develop a precise and non-invasive diagnostic method for UCEC using circulating cell-free DNA (cfDNA) 
fragmentomics.

Methods  Peripheral blood samples were collected from all participants, and cfDNA was extracted for analysis. Low-
coverage whole-genome sequencing was performed to obtain cfDNA fragmentomics data. A robust machine learn-
ing model was developed using these features to differentiate between UCEC and healthy conditions.

Results  The cfDNA fragmentomics-based model showed high predictive power for UCEC detection in training 
(n = 133; AUC 0.991) and validation cohorts (n = 89; AUC 0.994). The model manifested a specificity of 95.5% and a sen-
sitivity of 98.5% in the training cohort, and a specificity of 95.5% and a sensitivity of 97.8% in the validation cohort. 
Physiological variables and preanalytical procedures had no significant impact on the classifier’s outcomes. In terms 
of clinical benefit, our model would identify 99% of Chinese UCEC patients at stage I, compared to 21% under stand-
ard care, potentially raising the 5-year survival rate from 84 to 95%.

Conclusion  This study presents a novel approach for the early detection of UCEC using cfDNA fragmentomics 
and machine learning showing promising sensitivity and specificity. Using this model in clinical practice could sig-
nificantly improve UCEC management and control, enabling early intervention and better patient outcomes. Further 
optimization and validation of this approach are warranted to establish its clinical utility.
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Background
Uterine corpus endometrial carcinoma (UCEC) is a 
prevalent gynecologic malignancy and a major cause of 
cancer-related morbidity in women [1]. It is generally 
perceived that UCEC has a favorable prognosis dur-
ing the early stage. The 5-year survival rate for patients 
diagnosed with stage I/II endometrial carcinoma is typi-
cally between 82 and 90%, whereas for those diagnosed 
at stage III/IV, the rate significantly drops to between 34 
and 42% [2]. Consequently, the importance of accurate 
initial diagnosis and prompt treatment are key in the 
management of endometrial carcinoma. Early detection 
of UCEC allows for the utilization of minimally inva-
sive surgical techniques and diminishes the necessity for 
adjuvant treatments, thereby lowering healthcare costs, 
morbidity, and mortality rates [3, 4]. However, there 
is currently no sufficiently accurate and reliable early 
detection test for UCEC that can be applied to high-risk 
women with suspected UCEC. Transvaginal ultrasonog-
raphy (TVU), the most commonly employed method, 
exhibits high sensitivity in detecting UCEC in postmeno-
pausal women with abnormal uterine bleeding. However, 
its relatively low specificity necessitates further tests to 
definitively rule out endometrial malignancy [5]. Con-
versely, while hysteroscopy provides enhanced preci-
sion, its invasive character can lead to complications or 
patient-related issues, thereby contributing to its poten-
tial failure [6]. Therefore, the development of a precise, 
non-invasive diagnostic method for endometrial carci-
noma is of great importance.

Peripheral blood collection, a minimally invasive proce-
dure, has surfaced as a novel method for the early detec-
tion of a wide array of solid malignancies, particularly 
by providing genetic information of circulating tumor 
markers [7]. At present, several studies are analyzing cir-
culating tumor DNA (ctDNA) and microRNAs for the 
early detection of endometrial carcinoma [8, 9]. However, 
with regard to early diagnosis of endometrial carcinoma, 
the technology to diagnose this condition solely through 
gene sequencing of circulating tumor components in the 
blood is yet to be fully developed and optimized.

Currently, plasma cfDNA fragmentomics has been 
applied to numerous solid malignancies for enhanced 
diagnostic precision [10–12]. A significant advance-
ment was made with the development of DNA Evalua-
tion of Fragments for Early Interception (DELFI) [13], 
which assesses fragment coverage, size, and other sum-
mary statistics within 5 Mb windows. It was observed 
that the ratio of short to long cfDNA fragments within 
each window varies between cancer patients and healthy 
individuals, thereby providing potential discrimination 
of disease status. Studies in fragmentomics have also 
leveraged other distinguishing patterns between cancer 

and non-cancer groups, such as preferred end coordi-
nates and end motifs [14, 15]. Recently, there has been a 
research focus on the nucleosome footprint of cfDNA, 
with successful identification of patient-specific and 
tumor-specific patterns with substantial accuracy [16, 
17].

In the present study, we developed a robust machine 
learning model that utilizes low-coverage whole-genome 
sequencing and an extensive set of genome-wide fea-
tures derived from cfDNA fragmentomics to differenti-
ate between UCEC and healthy conditions. The primary 
objective of this research is to provide a highly sensitive 
and cost-effective model for UCEC detection, which 
could potentially yield substantial clinical advantages in 
the management and control of UCEC.

Methods
Patients and sample collection
In this study, a total of 121 patients with UCEC and 119 
healthy female donors were initially enrolled at the Fujian 
Cancer Hospital (Fujian Branch of Fudan University 
Shanghai Cancer Center) from August 2021 to July 2022 
and from November 2022 to February 2023 (Additional 
file  1: Fig. S1). Participants were subsequently excluded 
if they were lost to follow-up, had post-treatment status, 
withdrew their consent, or failed to meet quality con-
trol criteria. After the exclusions, the study proceeded 
with 111 UCEC patients and 111 healthy donors for fur-
ther analysis. A minimum collection volume of 30 ml of 
peripheral blood samples was collected from patients 
before any treatment or healthy donors and proceeded 
for low-depth whole-genome sequencing (WGS). One 
participant was excluded for failed NGS quality control. 
All healthy control participants underwent a thorough 
physical examination and were monitored for a period of 
one year, with routine follow-up conducted every three 
months to promptly identify any onset of cancer. A train-
ing cohort and an independent validation cohort were 
established separately based on time of enrollment. The 
training cohort was dedicated to train a multi-dimen-
sional machine learning model, whereas the independ-
ent validation cohort set out to assess the performance 
of the model. An additional cohort of 47 patients with 
hysteromyoma was retrospectively collected to further 
validate our findings and assess the generalizability of our 
model across diverse patient populations. The genetic 
tests were performed in a centralized clinical testing 
center (Nanjing Geneseeq Technology Inc., China; Certi-
fied to CAP, CLIA, and ISO15189). The study was per-
formed in accordance with the Declaration of Helsinki 
and approved by the Ethics Committee of Fujian Cancer 
Hospital. All patients provided oral and written informed 
consent to participation and publication.
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Next‑generation sequencing and data processing
Blood samples, drawn into EDTA tubes, were centri-
fuged at 16,000 × for 10  min within 4  h post-collection. 
The QIAamp Circulating Nucleic Acid Kit (Qiagen) was 
used to extract cfDNA from the plasma samples, without 
the inclusion of carrier RNA, following the manufactur-
er’s instructions. To ensure sufficient cfDNA for fur-
ther analysis, the concentration of cfDNA in the plasma 
was determined using the Qubit dsDNA HS Assay Kit 
(Thermo Fisher Scientific) according to the manufactur-
er’s guidelines.

The extracted plasma cfDNA was then used for WGS 
with the KAPA Hyper Prep Kit (KAPA Biosystems), fol-
lowing the manufacturer’s instructions. Briefly, 5–10  ng 
of cfDNA per sample underwent a series of steps includ-
ing end-repair, A-tailing, and ligation with adapters. The 
resulting libraries were quantified using the KAPA SYBR 
FAST qPCR Master Mix (KAPA Biosystems), and then 
loaded onto NovaSeq platforms (Illumina) for paired-end 
sequencing, as recommended by the manufacturer.

To ensure data quality, the sequencing output was sub-
jected to quality control measures. Trimmomatic [18] 
was used for read trimming, followed by PCR duplicate 
removal using Picard tools (Broad Institute, MA, USA). 
The trimmed reads were aligned to the human refer-
ence genome (GRCh37/UCSC hg19) using the Burrows-
Wheeler Aligner [19]. The median coverage depth across 
all samples was 8.17 × (Additional file 2). To standardize 
the data and mitigate the effects of variable sequencing 
depth, we applied a down-sampling procedure. Cover-
age depths that exceeded 5 × were reduced to a uniform 
5 × , ensuring consistency across these samples. For sam-
ples that originally had lower coverage, no down-sam-
pling was performed; they were analyzed at their initial 
sequencing depths.

Genome‑wide cfDNA features
To construct a multi-facet machine learning model that 
differentiates UCEC and healthy individuals, fragmen-
tomics and CNV features were extracted from the pro-
cessed WGS data using an in-house script. Copy number 
variation (CNV), fragment size distribution (FSD), and 
nucleosome footprint (NF) profiling were used to con-
struct the final model (Additional file 3).

The profiling of copy number variations was adapted 
from the method as described by Wan et  al. [20]. Each 
sample’s genome was partitioned into bins of 1 Mb, 
resulting in a total of 2475 bins. A Hidden Markov Model 
was employed to compare the depth of each bin with the 
software baseline, generating a log2 ratio for each bin. 
This analysis allowed for the identification of copy num-
ber variations across the genome.

The fragment size distribution (FSD) feature quanti-
fies the coverage of cfDNA fragments ranging from 110 
to 220 bps in 5-bp stepwise (e.g., 110–114 bps, 115–119 
bps, …, 215–220 bps; 24 bins) at every chromosome 
arm. This creates a detailed series of 24 bins across rep-
resenting the distribution of cfDNA fragment size of 
each chromosome arm. A total of 39 chromosome arms 
are resolved into 936 discrete FSD features, contribut-
ing to the granularity of our analysis. The short arms of 
5 acrocentric chromosomes were not included as they 
remained largely unsequenced to date. To ensure a focus 
on intrinsic, biologically relevant patterns rather than 
variations introduced by whole genome sequencing, we 
standardized the raw FSD coverage values by converting 
them into z-scores. This normalization contrasts each 
value against the overall mean within each sample. This 
approach enabled the enhanced detection of high-resolu-
tion chromosome-level patterns, which could potentially 
reveal further distinctions between the cancer and non-
cancer groups.

For nucleosome footprint (NF) profiling, the frame-
work developed by Doebley et al. [17] was utilized to ana-
lyze nucleosome occupancy in cfDNA while accounting 
for GC bias. We quantified the GC-corrected coverage 
profile using three observable characteristics: the central 
coverage value 30 bp away from the location, the “average 
coverage” value within a 1000-bp distance from the loca-
tion, and the amplitude determined through fast-Fourier 
yransform. In this study, we analyzed a total of 854 tran-
scription factor binding sites to optimize the ability to 
detect cancer from low-pass WGS data.

Model construction and cross‑validation analyses
We developed a two-tiered machine learning framework 
to differentiate between cancerous and non-cancerous 
samples. The initial tier of our framework comprised a 
feature-specific module that processed one of three dis-
tinct feature sets: copy number variations (CNV), fea-
ture selection dimensionality (FSD), or nuclear features 
(NF). This module systematically applied a suite of five 
foundational algorithms, namely Generalized Linear 
Model (GLM), Gradient Boosting Machine (GBM), Dis-
tributed Random Forest (DRF), Deep Learning (DL), and 
XGBoost. A grid search methodology was employed to 
optimize the hyperparameters for each algorithm, draw-
ing from predefined candidate values. We assessed the 
efficacy of these models using a fivefold cross-validation 
scheme, ensuring consistency in fold assignment across 
all feature types for both training and validation.

In the second phase of our analysis, the ensemble 
model of each feature type was constructed by averag-
ing the outputs of the five leading models (determined by 
their cross-validation area under the curve (AUC) scores) 
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from each category. For incoming samples, the final clas-
sification score was computed as the average prediction 
score from these three top-tier ensemble models, with 
the score ranging between 0 and 1—where a higher score 
indicated an increased probability of the sample being 
cancerous.

In the training cohort, our classifiers underwent a five-
fold cross-validation, aiming for a specificity threshold 
of 95% to set the model’s decision boundary. An inde-
pendent validation cohort was subsequently employed 
to assess the efficacy of our composite machine learning 
model.

To assess the stability and generalizability of the 
ensemble model, we employed a method of repeated ran-
dom partitioning of the cohort. The entire dataset was 
randomly split into three distinct sets: a training set, a 
validation set, and a test set. This random partitioning 
was not a single event but was repeated multiple times to 
produce a comprehensive range of data subsets, thereby 
simulating a variety of potential training and testing sce-
narios. The training set was used to build the model, the 
validation set to tune the hyperparameters, and the test 
set to evaluate the model’s performance. This approach 
mitigated the risk of overfitting and provided a more 
robust estimation of the model’s performance in unseen 
data.

Tumor fraction calculation
To quantify the proportion of ctDNA within the cell-
free DNA (cfDNA) and to evaluate copy number varia-
tions (CNVs) characteristic of tumor-derived DNA, we 
utilized the computational tool ichorCNA[20]., which 
is designed to work with high-throughput sequencing 
data. Each sample’s genome was partitioned into bins of 
1 Mb, resulting in a total of 2475 bins. A Hidden Markov 
Model was employed to compare the depth of each bin 
with the software baseline, generating a log2 ratio for 
each bin. This analysis allowed for the identification of 
copy number variations across the genome. The model 
also integrates several data features, including total 
read depth, B-allele frequency, and the distribution of 
cfDNA fragment lengths. Through this integrated analy-
sis, ichorCNA provides estimates of the tumor fraction, 
defined as the proportion of cfDNA attributable to tumor 
cells. The clinical limit of detection was further calcu-
lated following the approach described by Jamshidi et al. 
[21], defining it as the tumor fraction corresponding to a 
50% probability of detecting a cancer signal.

Nucleosome footprint differentiation analysis 
and corresponding gene‑enriched pathways
To ascertain nucleosome footprint (NF) features 
that exhibited unique signatures in uterine corpus 

endometrial carcinoma (UCEC) relative to healthy indi-
viduals, we engaged in a comparative study of NF pro-
files from both cohorts. Employing the multiple t-tests, 
we pinpointed NF features with significant variances 
in central coverage, average coverage, and amplitude. 
Features with adjusted p-value < 0.01 (Benjamini–
Hochberg method) were retained for further analysis. 
These selected features were presumed to be reflec-
tive of UCEC-specific chromatin organization. Sub-
sequently, we mapped the genes associated with these 
NF features to their respective biological pathways via 
the Encyclopedia of Genes and Genomes (KEGG) path-
way analysis. We then rigorously evaluated the connec-
tions between these genes and their related biological 
functions and pathways, adopting a significance cutoff 
(P < 0.05) to identify pathways potentially implicated in 
the pathogenesis or progression of UCEC.

Pre‑analytical and physiological variables analysis
To evaluate the potential effect of various pre-analytical 
variables and physiological variables on model robust-
ness, a subset of true positive or true negative partici-
pants, specifically 21 healthy participants and 4 UCEC 
patients in the validation cohort were further analyzed. 
Blood samples were collected and tested multiple times 
to assess consistency and reproducibility, with the Posi-
tive Percent Agreement (PPA) calculated for each set of 
results. The impact of different transportation (24, 48, 
and 72 h post-collection) and storage conditions (room 
temperature and with an ice pack) were examined, with 
the reference condition defined as the state of the sam-
ple within 2 h of collection. The effect of freezing dura-
tion of plasma (3 days, 7 days, 1 month, and 6 months) 
on the test outcomes was also studied. Additionally, the 
influence of different physiological states, specifically 
before and after meals and exercise, was also evalu-
ated by repeated blood collection. For each set of con-
ditions, the PPA was calculated, and a 95% confidence 
interval was computed, using the stability of the PPA 
under different conditions to gauge the robustness and 
reliability of the test outcomes.

Clinical benefit analysis
To evaluate the potential clinical advantages of our 
model in practical settings, we employed a method-
ology proposed by Hubbell et  al. [22], which involved 
integrating their interception model with the predic-
tions generated in our current study. This approach was 
applied to assess the impact on colorectal cancer inci-
dence in a Chinese cohort.
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Statistical analysis
Multivariate analysis was performed with clinical vari-
ables that were statistically significant in univariate analy-
sis. All P values were based on two-sided testing unless 
specified, and differences were considered significant at 
P < 0.05. For the calculation of 95% confidence intervals 
(CIs) for sensitivity and specificity, we applied Wilson’s 
score interval formula. To estimate the 95% CI for the 
AUC, we employed the bootstrap resampling technique. 
Specifically, 1000 bootstrap samples were generated from 
the validation dataset, and the AUC was recalculated for 
each sample to create an empirical distribution of AUC 
values. The 95% CI was then determined by identifying 
the 2.5th and 97.5th percentiles of this distribution. Posi-
tive Percent Agreement (PPA) is measured between the 
agreement between the results of optimal condition and 
test condition. Statistical analysis was performed using R 
software, version 4.2.3.

Results
Patient characteristics
A total of 111 UCEC and 111 healthy individuals were 
included in the study. The demographic and clinical char-
acteristics of all participants were provided in Additional 
file 4. The training cohort dataset, comprising 66 UCEC 
patients and 67 healthy individuals, was exclusively used 

for training the model. To validate the model, an inde-
pendent cohort was utilized, which was distinct from the 
training dataset in terms of temporal recruitment. This 
validation cohort consisted of 89 participants, includ-
ing 44 UCEC patients and 45 healthy individuals (Fig. 1; 
Additional file 1: Fig. S1).

The mean age for the UCEC patients was 54.5 years 
in the training cohort and 56.7 years in the validation 
cohort, compared to the mean age of healthy participants 
as 57.3 years in the training cohort and 51.5 years in the 
validation cohort (Table  1). The distribution of cancer 
stages was similar across both cohorts, with the major-
ity of participants being in stage I. In the training cohort, 
77.3% (n = 51) of participants were in stage I, while in the 
validation cohort, 60.0% (n = 27) were in stage I. In the 
context of histological grade, a substantial proportion 
of patients in both cohorts were classified as low risk, 
encompassing both Grade 1 and Grade 2. Specifically, in 
the training cohort, 81.8% (n = 54) of the patients were 
categorized as low risk, while the validation cohort had 
71.1% (n = 32).

UCEC detection classifier performance
The constructed model demonstrated excellent predic-
tion power, with an area under the curve (AUC) of 0.991 
(95% CI (0.9788, 0.999)) in the training cohort. This 

Fig. 1  Schematic diagram illustrating the study design
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model was then validated in the independent cohort, 
where it achieved an AUC of 0.994 (95% CI (0.9810, 
1.000)) (Fig.  2A). To highlight the superiority of the 
ensemble model, the base model using individual features 
generated AUCs ranging from 0.881 to 0.986 (Additional 
file 1: Fig. S2). Moreover, the stacked model demonstrated 
enhanced robustness, maintaining its performance with 
lower sequencing coverage depth (Additional file  1: Fig 
S3). This demonstrates that the ensemble model outper-
formed the base model in terms of predictive power. As a 
cancer classifier, a specific threshold of 0.423 was applied 
to the cancer scores to target a specificity of 95.0% in the 
training dataset. The established threshold maintained 
specificities of 95.5% (95% CI (87.5%, 98.8%)) within the 
training cohort and 95.5% (95% CI (84.4%, 99.2%)) within 
the validation cohort (Fig. 2B). The corresponding sensi-
tivities were 98.5% (95% CI (91.9%, 99.9%)) in the training 
cohort and 97.8% (95% CI (88.2%, 99.9%)) in the valida-
tion cohort. The stacked model exhibited robust perfor-
mance with a mean sensitivity of 0.97 (95% CI: 0.96, 0.98) 
and a mean specificity of 0.96 (95% CI: 0.94, 0.97) across 
multiple repeated random cohort splits (Additional 
file  1: Fig. S4), indicating stable and reliable diagnostic 
accuracy.

Furthermore, cancer patients had significantly higher 
predicted cancer scores compared to healthy individu-
als (p < 0.0001; Fig.  2C), further supporting the supe-
rior prediction power of the ensemble model, which 

incorporated multiple cfDNA fragmentomics features. 
Additionally, a retrospective analysis performed on a 
separate cohort of 47 patients diagnosed with hystero-
myoma revealed that the model retained a commend-
able accuracy of 91.5% (95% CI: 80.1–96.6%; Additional 
file 1: Fig. S5).

We conducted further analysis in the validation 
cohort to assess the model’s performance across various 
UCEC subgroups. Notably, the classifier demonstrated 
high sensitivity, accurately identifying cancer patients 
with a sensitivity of 96.4% (95% CI (82.5%, 99.8%)) at 
the early stage (stage I) and maintained a sensitivity 
of 100% in later stage (Fig.  2D). Moreover, the cancer 
scores exhibited an upward trend in correlation with 
advancing stages (p = 0.06; Jonckheere Terpstra test; 
Fig.  2E). This trend is likely attributable to the higher 
tumor fractions typically present in later-stage disease 
(Additional file 1: Fig. S6A). In line with this, there was 
a significantly positive correlation between the can-
cer scores and the tumor fraction (Additional file  1: 
Fig. S6B). Samples with a tumor fraction exceeding 1% 
yielded significantly higher cancer scores compared to 
those with a lower tumor fraction (Fig. 2F). This obser-
vation highlights the biological relevance reflected by 
the cancer scores, suggesting that they may indeed cap-
ture the extent of tumor-derived cfDNA present in the 
plasma. Nevertheless, there were no significant differ-
ences observed in cancer scores among samples with 

Table 1  Patient characteristic

All Train Valid

Healthy UCEC Healthy UCEC Healthy UCEC

(N=111) (N=111) (N=67) (N=66) (N=44) (N=45)

Age
  Mean [Min, Max] 56.0 [44, 72] 55.4 [33, 76] 57.3 [45, 72] 54.5 [33, 69] 51.5 [44, 67] 56.7 [35, 76]

Stage
  I (%) - 78 (70.3%) - 51 (77.3%) - 27 (60.0%)

  II - 17 (15.3%) - 9 (13.6%) - 8 (17.8%)

  III - 10 (9.0%) - 4 (6.1%) - 6 (13.3%)

  IV - 4 (3.6%) - 2 (3.0%) - 2 (4.4%)

  Not available - 2 (1.8%) - 0 (0%) - 2 (4.4%)

Grade
  G1 - 35 (31.5%) - 26 (39.4%) - 9 (20.0%)

  G2 - 51 (45.9%) - 28 (42.4%) - 23 (51.1%)

  G3 - 16 (14.4%) - 8 (12.1%) - 8 (17.8%)

  Not available - 9 (8.1%) - 4 (6.1%) - 5 (11.1%)

MSI status
  dMMR/MSI-H - 24 (21.6%) - 41 (62.1%) - 26 (57.8%)

  MSS - 67 (60.4%) - 12 (18.2%) - 12 (26.7%)

  Not available 20 (18.0%) 13 (19.7%) 7 (15.5%)
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varying histological grades or MSI status (Additional 
file 1: Fig. S7).

Biological significance of Fragmentomics pattern in UCEC 
cancer
Furthermore, we investigate the biological implica-
tions of fragmentomics patterns in UCEC cancer. We 
observed genome-wide variation in Copy Number Var-
iation (CNV) features (Fig.  3A; Additional file  1: Fig. 
S8A). A noteworthy proportion of these CNV features 
exhibited statistically significant differences (adjusted 
P-value < 0.05; Additional file  1: Fig. S9A). Our frag-
ment size distribution (FSD) analysis revealed fragment 
length patterns with remarkable resolution (Additional 
file 1: Fig. S8B), even at the level of chromosomal arms. 
The FSD features pointed to a significant differential 
distribution across chromosome arm (Additional file 1: 
Fig. S10), with notable alterations in chromosomes 1, 
10, 6, 11, and 17 (Fig. 3B). These chromosomes intrigu-
ingly align with five of the top ten chromosomes with 
the highest mutation frequencies in the TCGA-UCEC 

database (Additional file  1: Fig. S9B). Such a correla-
tion hints at a potential interplay between disrupted 
nucleosome organization and mutation-prone genomic 
regions in UCEC.

Moreover, a total of 104 NF features that displayed 
distinct characteristics in UCEC patients versus healthy 
controls were selected (Additional file 5). The genes cor-
responding to these features were subjected to KEGG 
pathway enrichment analysis (Fig.  3C). A number of 
pathways related to cancer and immune response, such 
as transcription misregulation in cancer, viral or chemi-
cal carcinogenesis, and Th17 cell differentiation, were 
identified in the UCEC patients in comparison to healthy 
participants. Intriguingly, the enrichment of pathways 
related to cancer and immune responses was consist-
ent across various stages of UCEC (Additional file 1: Fig. 
S9C), indicating that certain key pathogenic processes are 
persistently disrupted irrespective of disease progression. 
These findings underscore the biological relevance of the 
NF features used in our study, suggesting that the frag-
mentomics patterns identified are not merely numerical 

Fig. 2  A ROC curve of ensemble stacked model of training and independent validation datasets. B Validation ROC curve of base models 
constructed upon individual features (CNV, FSD, and NF) and their ensemble stacked model. C Violin plots illustrating ensemble stacked model 
predicted cancer score distribution in the UCEC and healthy groups in the training and validation cohorts. D Sensitivity of the classifier in identifying 
cancer patients at different stages. Error bar represented 95% confidence intervals. E Boxplot showing the correlation between cancer scores 
and advancing stages. F Boxplot comparing cancer scores in samples with different tumor fraction. Tumor fraction was measured utilizing ichorCNA
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abstractions but are deeply rooted in the complex biology 
underlying cancer development and progression.

Evaluation of preanalytical and physiological variables 
on cancer detection
The influence of physiological variables during blood 
collection and preanalytical procedures on the out-
comes of the classifier was also assessed. Repeated 
blood collection from both the healthy and cancer-
affected participants consistently yielded reproducible 
results. The PPA was remarkably stable, registering at 
100.0% with a 95% confidence interval statistically rang-
ing between 67.6% and 100.0% (Fig. 4A). In the case of 
the healthy participants, the transportation conditions 
of the samples—whether they were transported within 
24 h, 48 h, or 72 h, and regardless of whether they were 
stored at room temperature or with an ice pack—did 
not affect the test outcomes. All samples consist-
ently aligned with the reference condition, defined as 
the state within 2  h of collection (Fig.  4B). This was 

reflected in a PPA of 100.0%, with a 95% confidence 
interval ranging from 51.0 to 100.0%. Furthermore, 
most samples that were frozen for various durations 
(3  days, 7  days, 1  month) exhibited the same level of 
agreement with the reference condition as non-frozen 
samples, with a PPA of 100.0% and a 95% confidence 
interval ranging from 56.6 to 100.0%. However, samples 
frozen for 6 months deviated from this pattern, show-
ing a higher risk score and thereby becoming a posi-
tive signal. The PPA for these samples was 60.0%, with 
a 95% confidence interval ranging from 23.1 to 88.2% 
(Fig.  4C). Physiological conditions, including states 
before and after meals as well as before and after exer-
cise, did not influence the test outcomes. All samples 
under these conditions remained in agreement with the 
reference condition, with a PPA of 100.0% and a 95% 
confidence interval ranging from 51 to 100% (Fig. 4D). 
This suggests a high level of robustness and reliability 
in the test outcomes, irrespective of various physiologi-
cal and preanalytical conditions.

Fig. 3  A The ratio of CNV in 1 Mb bins across the genome in UCEC patients and healthy controls. B Violin plots showing the difference of FSD 
distribution of each chromosome arm in UCEC and healthy participants. C KEGG pathway enrichment analysis of genes corresponding to NF 
features that displayed distinct characteristics in UCEC patients versus healthy controls
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Discussion
In this study, we first developed and evaluated a classifier 
for the detection of UCEC using cfDNA fragmentom-
ics features. The constructed ensemble model demon-
strated excellent predictive power, as evidenced by high 
AUC values in both the training and independent valida-
tion cohorts. The AUCs achieved by the ensemble model 
were significantly higher than those of the individual 
base models, indicating the superiority of the ensemble 
approach in terms of predictive performance. The estab-
lished cut-off value for the cancer scores yielded high 
specificities in both the training and validation cohorts, 
while maintaining high sensitivities. This suggests that 
the classifier utilizing cfDNA fragmentomics features 
can efficiently differentiate between cancer patients 
and healthy subjects with a minimal false-positive rate, 

accomplishing a significantly higher specificity than 
conventional transvaginal ultrasonography [5], and a 
superior sensitivity than circulation tumor DNA meth-
odologies [23, 24]. The significantly higher cancer scores 
observed in UCEC patients compared to healthy indi-
viduals further support the robustness and accuracy of 
the classifier. Importantly, the classifier demonstrated 
remarkable sensitivity in detecting UCEC at early stages, 
with a sensitivity of 96.4% in stage I patients. Addition-
ally, the prediction of the stage shift in UCEC diagnosis 
revealed that our model could identify approximately 20% 
of UCEC patients, who would otherwise be diagnosed at 
a more advanced stage (stage III/IV) under conventional 
care, at an earlier stage. This could result in enhanced 
5-year survival rates, underscoring the classifier’s clinical 
utility in expediting diagnosis and intervention.

Fig. 4  A The repeated test score of UCEC and healthy participants. B The impact of various transportation conditions on the test outcomes 
for healthy participants. C The impact of frozen durations on the test outcomes for healthy participants. D The impact of physiological conditions 
(states before and after meals as well as before and after exercise) on the test outcomes
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The fragmentomics patterns employed as features are 
not arbitrary mathematical constructs, but rather are 
embedded in the intricate biology of cancer [25–27]. 
cfDNA fragmentation patterns are not uniformly dis-
tributed across the genome. These patterns are pos-
tulated to be influenced by chromatin organization, 
offering valuable insights into nucleosome positioning 
and gene expression [26]. The observed differential dis-
tribution of fragment length patterns in several chro-
mosomes, particularly in chromosomes known to be 
frequently mutated in UCEC, suggests that the FSD 
fragmentomics features used in the classifier may reflect 
the degree of openness of chromosomal DNA. The path-
way enrichment analysis further revealed the involve-
ment of cancer-related pathways and immune response 
in UCEC patients, providing insights into the molecular 
mechanisms associated with the disease. The pathway 
enrichment analysis of differential NF features further 
revealed the involvement of cancer-related pathways 
and immune response in UCEC patients. The pathways, 
such as transcriptional misregulation in cancer, highlight 
the aberrant control of gene expression central to tumor 
development. Viral carcinogenesis underscores the role 
of viral infections, particularly HPV, in genomic instabil-
ity, while chemical carcinogenesis points to the impact of 
environmental factors on DNA integrity. Lastly, Th17 cell 
differentiation emphasizes the influence of the immune 
system in the tumor microenvironment. Collectively, 
these pathways provide a comprehensive view of the 
molecular mechanisms driving UCEC, suggesting poten-
tial therapeutic targets and offering insights into the 
persistent nature of these pathogenic processes across 
all stages of the disease. The correlation between cancer 
scores and advancing stages of UCEC and tumor fraction 
further supports the clinical relevance of the classifier in 
capturing disease progression.

The analysis of preanalytical and physiological vari-
ables revealed the robustness and reliability of the clas-
sifier under various conditions. The reproducibility of 
results in repeated blood collections and the consistency 
of outcomes regardless of transportation conditions or 
physiological states highlight the stability of the classi-
fier’s performance. These findings are important for the 
practical implementation of the classifier in clinical set-
tings (Fig. 4).

In this study, the test was designed to target for an 
average sequencing depth of 5X with the consideration 
of cost-effectiveness and data uniformity in practical 
applications. Inevitably, technical variations during the 
sequencing process can lead to some samples achieving 
coverage that exceeds our target of 5 × . To ensure uni-
formity across all samples and to ensure that the model 
predicts based on genetic data rather than on an artifact 

of the sequencing process (i.e. variation in sequencing 
coverage)., we chose to down-sample any sample with a 
coverage higher than 5 × to a fixed depth of 5 × . Nota-
bly, based on our analysis (Fig. S3C), models trained 
with data at varying raw sequencing depths did not show 
improved performance at higher depths. It is important 
to highlight that our established threshold for down-
sampling was 5 × , yet our analyses suggest the potential 
for obtaining reliable results even at sequencing depths 
below this threshold. This underlines the robustness of 
our findings against variations in sequencing depth, a fac-
tor that is of critical importance for the practical appli-
cation of these methods in clinical settings. Specifically, 
while individual models such as FSD and NF show vari-
ability and diminished performance at reduced sequenc-
ing depths, our ensemble model exhibits a remarkable 
resilience, consistently maintaining reliable detection. 
The resilience of the ensemble model likely stems from 
its ability to compensate for the reduced informational 
content that comes with lower sequencing depths, thus 
ensuring stable performance.

We employed a previously established test [22] to esti-
mate the potential clinical advantage our model could 
provide. According to these estimates, our approach 
could increase the detection of early-stage UCEC, poten-
tially improving the 5-year survival rate from 84 to 95% 
when compared to the detection rates of advanced-stage 
disease under standard care (Additional file 1: Fig. S11). 
However, these findings are speculative and based on 
mathematical modeling rather than clinical outcomes. 
The study acknowledges specific limitations that must 
be considered. The sample size, while adequate for ini-
tial exploration, is relatively modest and might not fully 
represent the efficacy of our model. Consequently, the 
impact of our model on patient outcomes requires thor-
ough validation in a larger and more diverse clinical set-
ting. To address potential batch effects stemming from 
variations in sample processing and sequencing, we 
established an independent validation set based on the 
timing of patient enrollment and sample collection. This 
measure was critical to reduce confounding influences 
and to ensure that our model is trained and validated on 
temporally distinct data sets, which more accurately mir-
rors the variability present in clinical environments. A 
multi-site study design would be ideal for future research 
to provide a more varied and comprehensive assessment 
of our model’s performance.

Therefore, our findings should primarily be inter-
preted as a proof of concept, highlighting the impor-
tance of further research to validate and potentially 
expand the utility of our model across different clini-
cal contexts. Prospective clinical trials are needed to 
ascertain if the early detection strengths of our model 
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correlate with a significant improvement in patient sur-
vival. These trials would also offer valuable insights into 
the cost-effectiveness, practicality, and overall enhance-
ment of patient care that our model could bring about.

Conclusions
Summary, the results of our study underscore the 
promising performance and clinical potential of our 
classifier for the detection of UCEC. The high predic-
tive accuracy, sensitivity in detecting early-stage dis-
ease, robustness against preanalytical and physiological 
variations, and the biological relevance of the fragmen-
tomics patterns collectively affirm the classifier’s poten-
tial as a non-invasive tool for UCEC screening and 
diagnosis. Our results may initiate further research and 
potentially contribute to the advancements in the early 
diagnosis and improved prognosis of UCEC patients.
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