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Abstract 

Background  During the COVID-19 pandemic, a variety of clinical decision support systems (CDSS) were developed 
to aid patient triage. However, research focusing on the interaction between decision support systems and human 
experts is lacking.

Methods  Thirty-two physicians were recruited to rate the survival probability of 59 critically ill patients by means 
of chart review. Subsequently, one of two artificial intelligence systems advised the physician of a computed 
survival probability. However, only one of these systems explained the reasons behind its decision-making. In 
the third step, physicians reviewed the chart once again to determine the final survival probability rating. We 
hypothesized that an explaining system would exhibit a higher impact on the physicians’ second rating (i.e., higher 
weight-on-advice).

Results  The survival probability rating given by the physician after receiving advice from the clinical decision support 
system was a median of 4 percentage points closer to the advice than the initial rating. Weight-on-advice was not sig-
nificantly different (p = 0.115) between the two systems (with vs without explanation for its decision). Additionally, 
weight-on-advice showed no difference according to time of day or between board-qualified and not yet board-
qualified physicians. Self-reported post-experiment overall trust was awarded a median of 4 out of 10 points. When 
asked after the conclusion of the experiment, overall trust was 5.5/10 (non-explaining median 4 (IQR 3.5–5.5), explain-
ing median 7 (IQR 5.5–7.5), p = 0.007).

Conclusions  Although overall trust in the models was low, the median (IQR) weight-on-advice was high (0.33 
(0.0–0.56)) and in line with published literature on expert advice. In contrast to the hypothesis, weight-on-advice 
was comparable between the explaining and non-explaining systems. In 30% of cases, weight-on-advice was 0, 
meaning the physician did not change their rating. The median of the remaining weight-on-advice values was 50%, 
suggesting that physicians either dismissed the recommendation or employed a “meeting halfway” approach. Newer 
technologies, such as clinical reasoning systems, may be able to augment the decision process rather than simply 
presenting unexplained bias.
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Background
Decision support systems are designed to aid human 
decision-making processes. In healthcare, the term clini-
cal decision support systems (CDSS) is used to refer to 
a system that “provides clinicians, staff, patients or other 
individuals with knowledge and person-specific infor-
mation, intelligently filtered or presented at appropriate 
times, to enhance health and health care” [1]. CDSS have 
a wide range of applications which can include support-
ing therapeutic decision-making and estimating progno-
sis, as well as diagnostics and even triage [1, 2].

While under normal circumstances triage systems are 
designed to prioritize patients, during episodes of acute 
shortage of treatment capacities, triage may also be used 
to differentiate between patients who will receive curative 
care and those who will receive only palliative care [3]. As 
such, most triage systems used in mass casualty situa-
tions have a category for patients who are only expected 
to make a recovery if a large amount of resources is 
allocated to them [4]. While this is intended to achieve 
the best outcome for most patients, it poses an ethical 
dilemma [3, 5].

The outbreak of the SARS-CoV-2 pandemic spiked 
both public and healthcare professional interests in the 
process of triage [6, 7]. Numerous decision support sys-
tems have been developed, validated or modified specifi-
cally for COVID-19, many of which are based on novel 
machine-learning technologies and algorithms [2]. In 
the face of failing and overwhelmed healthcare systems, 
some authors have considered the use of diagnostic and 
prognostic models in  situations requiring triage [8, 9]. 
While to the best of our knowledge no CDSS have been 
used as the primary method for triaging patients to date, 
advances in technology are likely to pose similar use 
cases in the future. Most recently, newer machine learn-
ing models have fuelled public discussion about the ethi-
cal use of these systems in medicine [10, 11]. Against the 
background of experiments suggesting obedient human 
behaviour in stressful situations influenced by robots 
and machines [12–14], it is vital to understand the inter-
actions between CDSS and professional healthcare pro-
viders. Triage decisions must be made quickly, exposing 
the physician to a significant level of stress [15]. There-
fore, we set out to examine the effects of different CDSS 
on healthcare providers’ decision-making processes in a 
simulated triage situation.

We hypothesized that critical care physicians are more 
likely to accept the recommendation of a CDSS which 

provides an explanation of the underlying decision-mak-
ing process.

Methods
This study recruited 32 physicians, all residents (n = 21) 
or staff physicians (n = 11) at the Department of Anaes-
thesia, Intensive Care Medicine, and Pain Medicine at 
the Medical University of Vienna. This is Austria’s largest 
tertiary care centres, with 134 intensive care units (ICU) 
beds and 59 operating theatres. The study was approved 
by the Medical University of Vienna ethics board (EK 
2293/2020) in December 2020. Anaesthesiologists and 
intensivists were then recruited on a first-come first-
served basis via mailing lists and department-wide mes-
saging groups.

Briefing and supervision of the study sessions were 
all performed by the same person (DL). All study ses-
sions were structured equally. First, the physician was 
informed about the study procedure and duration of the 
experiment before providing written consent. Then, the 
participant was given time to complete the initial ques-
tionnaire before receiving their detailed study briefing. 
This qualitative questionnaire, with open-ended, written 
answers, asked the participant about their knowledge of 
triage in their profession, as well as previous and cur-
rent triage experience. In the subsequent study briefing, 
the participant was informed that 59 patients—currently 
admitted to normal wards—were critically ill and needed 
to be evaluated for intensive care admission. They were 
informed that “two independent artificial intelligence 
systems using the latest machine learning technology” 
were designed to aid their decision-making. However, 
only one system would be available to each patient. Then, 
they were told about the three tasks they had to complete 
for each patient: (i) to rate the survival probability of the 
patient under the premise of ICU admission and on the 
basis of health records provided, (ii) to re-rate the sur-
vival probability for the patient under the premise of ICU 
admission and based on the health records provided as 
well as the rating given by the decision support system, 
and (iii) to decide whether the patient should be admit-
ted to the ICU or receive palliative care in view of the 
limited resources available due to the ongoing pandemic. 
The ICU resource limitations were not specified further. 
The participants were informed of the 4-h time limit for 
evaluating all 59 patients during the experiment. After 
evaluating all the patients, the participant was asked in a 
quantitative questionnaire to reflect on the factors which 
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had played a role in their triage decisions. In February 
2023, after all the experiments had been completed, the 
participants were asked to reflect on their experiences 
and the extent to which they had trusted either system to 
correctly estimate patient survival.

The 59 health records were derived from actual, criti-
cal patients in a ward at our centre. All patient identifi-
ers were eliminated from these records. The paper-based 
patient records were presented to each physician in a 
randomized order. An example patient file cover is shown 
in Additional file 1: Fig. S1.

While participants believed that two different decision 
support systems with different user interfaces had been 
available (one non-explaining, one explaining), both sys-
tems presented the same predefined survival probability. 
However, one of the interfaces provided an explanation 
of its decision. This was achieved by showing the most 
influential factors in the scoring formula which was 
based on the 4C score by Knight et al. [16] and is shown 
in Fig. 1. The system made available to each patient and 
physician was randomized. Details on the randomization 
can be found in Additional file 1: Fig. S2.

For each evaluation, we recorded the initial survival 
probability rating, the advice given and the subsequent 
rating after chart review and advice.

Weight-on-advice (WoA) was calculated as described 
in [17]:

WoA was limited to the range between 0 and 1, both 
inclusive [18]. Samples in which the WoA could not be 
calculated because the initial rating and advice were 
identical were excluded. A WoA of 0 depicts no change 
between the initial rating and the rating after advice, 
while a WoA of 1 represents full acceptance of the sys-
tem’s advice.

The required sample size was calculated for 80% power 
and a type 1 error of 0.05 based on an estimated WoA 
difference of 0.2 between the two systems for a two-
sided two-sample t-test which was the primary outcome 
parameter.

Normally distributed, continuous variables are 
reported as mean and standard deviation (SD). Non-nor-
mally distributed, continuous variables and ordinal val-
ues are reported as median and interquartile range (IQR). 
The correlation between influential factors and the physi-
cian’s median WoA was calculated using Spearman’s cor-
relation coefficient.

Linear mixed models were used to compare the pri-
mary WoA outcome between the randomized groups 
(advice with vs without explanation) and between board-
qualified physicians and residents, respectively. Further-
more, linear mixed models were calculated to evaluate 

WoA =

initial rating− rating after advice

initial rating− advice

Fig. 1  The explanation provided. This type of graphic was shown to the examiner by the explaining CDSS system. It was presented 
alongside the rated survival probability. The figure shows true and fictional influential factors (left) rated by their relative importance. The 
distribution and dot size are intended to represent some degree of variability. All values were generated randomly
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a potential dependency between WoA, time of day and 
progress of the experiment. In addition to these fixed fac-
tors (group, board certification, time of day, progress of 
the experiment), the patient and physician effects were 
considered as random factors in order to incorporate the 
dependency structure of repeatedly measured observa-
tions of the same individual and by the same physician, 
respectively. A similar linear mixed model was calculated 
to analyse the influence of the progress of the experiment 
on the decision time (log2-transformed). Another linear 
mixed model was calculated, considering the two binary 
factors: advice (with vs without explanation) and advice 
at the first patient (with vs without explanation), and the 
interaction term of these two factors. Generalized lin-
ear mixed models were performed to analyse the binary 
outcome admission to the ICU using the logit link func-
tion. Again, the patient and physician effects were con-
sidered as random factors, and the explanatory variables 
qualification, progress of the experiment and rating after 
advice were considered as fixed factors and covariates. To 
evaluate a potential difference in the effect of the rating 
after advice depending on the physician’s qualification, an 
interaction term was tested in the model. The strengths 
of the effects are described by odds ratios (OR) with 95% 
confidence intervals (95%CI).

Statistical analyses were performed using SAS (ver-
sion 9.4, SAS Institute Inc. (2020), Cary, NC, USA). An 
alpha value of 0.05 was set as the threshold for statistical 
significance.

Results
All 32 physicians (21 residents and 11 staff physicians) 
completed the study procedure by evaluating 59 patients 
each, giving 1888 physician–patient evaluations in total. 
No participant dropped out of the study. Experiments 
were conducted between December 2021 and June 2022.

All participants adhered to the specified time limit. The 
median (IQR) time for completion was 179 (149–203) 
min, with the maximum time allowance being 240 min. 
On average, physicians were shown an explanation for 
the advice 29.8 out of 59 times (SD 3.8), and on average, 
an explanation was available 16.1 out of 32 times for a 
patient (SD 1.1).

The median (IQR) time spent on the first patient 
was 198 (162–228.5) s while the median time spent on 
the 59th patient was 152 (120–217) s. This decline in 
decision time per patient was statistically significant 
(p-value < 0.0001) and is depicted in Fig. 2.

WoA was calculated for both systems to determine 
whether providing an explanation influenced the 

Fig. 2  The x-axis shows the progress of the experiment; the y-axis shows the number of seconds spent on each individual patient
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impact of the decision support system. In 72 instances 
(3.8%), the physician’s initial and final survival prob-
ability rating precisely matched the rating given by 
the CDSS as advice. These cases were excluded from 
WoA calculations. The median (IQR) WoA was 0.33 
(0.0–0.56). WoA was 0.35 (0.0–0.57) without explana-
tion and 0.31 (0.0–0.54) for the system which provided 
an explanation (p-value = 0.115). This is equivalent to 
a median of a 4 percentage point change in the rating 
towards the direction of the CDSS advice (see Fig.  3). 
Figure 4 shows the distributions of WoA per physician, 
while Additional file 1: Fig. S3 shows the distribution of 
WoA by physician and explanation.

There was no difference in WoA (p-value = 0.33) 
between residents (median 0.37, IQR 0–0.56) and 
board-certified physicians (median 0.25, IQR 0–0.53). 
WoA did not change over the course of the experiment 
(p-value = 0.194). WoA did not change over the course of 
a day (p-value = 0.446), which is depicted in Fig.  5. The 
first interaction (with or without explanation) did not sig-
nificantly influence the further course of the experiment 
(p(interaction) = 0.815).

The decision to admit a patient to the ICU was 
highly correlated with the rating after receiving advice 
(OR = 1.16, 95%CI (1.14–1.18), p-value < 0.0001) (Fig. 6). 
The generalized linear mixed model estimated 5%, 50% 
and 95% probabilities for ICU admission at a 30.4%, 

Fig. 3  Distance of initial rating and rating after advice. The x-axis shows the progress of the experiment; the y-axis shows the median 
distance to the advice for each patient with IQR error bars—both the initial rating and the rating after advice are displayed. The mean change 
between the initial rating and the rating after advice is 5.38% absolute (33.8% relative)

Fig. 4  Weight-on-advice by physician. Each vertical lane represents the calculated weight-of-advice values for a single physician. Boxes contain Q1 
through Q3; whiskers extend to the farthest observation within 1.5 times the IQR. Outliers are shown as circles. Weight-of-advice values were limited 
to between 0 and 1
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50.6% and 70.8% rated survival probability, respectively. 
The strength of the association between rated survival 
probability and admission to ICU differed in qualification 
groups (p(interaction) < 0.0001) but did not change pre-
dictably according to the physician’s degree of experience 
(see Additional file 1: Fig. S4).

In the qualitative questionnaire completed at the 
beginning of the study session, participating physicians 
were first asked if and how they had learned about triage 
decision-making. They named a broad range of formal 
sources for learning about triage, including university 
and paramedic education, additional training offered by 
employers, scientific books, and journal articles, as well 
as various courses and conference talks. Informal sources 
included everyday interactions in clinical practice and in 
emergency response situations, as well as conversations 
with colleagues. Some participants noted that the formal 
education on triage they had received at university was 
insufficient, indicating that the other modes of learning 
about triage are crucial in preparing physicians for crisis 
situations.

Of the 32 participants, 8 (25%) stated that they either 
had not (yet) been actively involved in triage decision-
making (n = 6) or did not have primary responsibility for 
making these decisions as there was a superior or team in 

place which took on this role (n = 2). The other 24 (75%) 
participants stated that they had made triage decisions in 
the past or were regularly involved in such decisions.

Although there were noticeable overlaps in the answers 
on making triage decisions and the specific criteria 
applied, there were different focal points, indicating that 
the applied criteria can and do vary between physicians. 
Several participants referred to official checklists and 
standardized clinical guidelines, as well as the patients’ 
frailty scores as the basis for triage decisions. Further-
more, several participants mentioned factors such as 
available resources and capacities, both in terms of 
human and technical resources (respirators, available 
ICU beds, etc.), when making triage decisions. Maximiz-
ing utility was identified as a triage goal by some par-
ticipants, while others added that triage is applied not 
only as a means of deciding who will receive treatment 
but also to prioritize the patients most urgently needing 
care. Several physicians also stated that aspects of tri-
age go beyond official checklists and are not “necessarily 
quantifiable”, as one participant phrased it, because clini-
cal experience and “personal, experienced-based assess-
ment” are also significant factors.

In the final questionnaire, completed at the end of the 
study session, participants were asked if they trusted 

Fig. 5  Weight-on-advice over the course of the day. No statistically significant trend can be observed
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the computer models in general; if they mistrusted the 
models in some cases; and to rate the impact the soft-
ware models had on their decision. The median over-
all level of trust in the software was 4 out of 10 points 
(0 = no trust, 10 = absolute trust). Thirty out of 32 phy-
sicians responded to the question about distrust of the 
software in some cases by giving more than 5 points on 
a 0–10 scale. The physicians’ self-assessed value for over-
all trust in the software and its self-assessed influence 
on their decision-making correlated moderately with 
their median WoA (r = 0.56 and r = 0.81, respectively; 
p-value < 0.001 for both). An overview of the self-assessed 
influential factors and answers on the final questionnaire 
are given in Figs. 7 and 8. The most influential factor was 
patient age, followed by living situation (mean influence 
8.9 (IQR 8–10) and 7.2 (IQR 6–9 out of 10). ECG (2.4, 
IQR 1–4) and calculated scores (3.8, IQR 2–6)) had the 
least influence on the rated survival probability. After 
all the experiments had been conducted, participants 
were asked to recall how much they trusted each sys-
tem. Those who remembered rated the systems with an 
overall median of 5.5 (IQR 4–6.75 out of 10) points, and 
separately with a median of 4 (IQR 3.5–5.5 out of 10, no 
explanation) and 7 (IQR 5.5–7.5 out of 10, with explana-
tion) points.

Discussion
This investigator-initiated, prospective, experimental 
study showed that when tasked with predicting the sur-
vival probability of critically ill patients, physicians are 
significantly influenced by CDSS. However, contrary to 
our hypothesis, our data suggests no difference in weight-
on-advice between the CDSS which explained its deci-
sion and the one that did not.

Ethical discussions about “intelligent machines” are 
as old as the idea of autonomous machines themselves. 

Fig. 6  The probability of admission correlates with predicted survival. The survival rating after advice is shown on the x-axis, while the probability 
of admission (as estimated by the generalized linear mixed model) is displayed on the y-axis

Fig. 7  Influential factors in decision-making
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Isaac Asimov, a British writer, devised a set of rules 
known as Asimov’s Laws, which—when followed—should 
protect humanity from a robot uprising. The first rule 
states that a “robot may not injure a human being or, 
through inaction, allow a human being to come to harm” 
[19]. Consequently, adhering to these laws would pro-
hibit CDSS from automatically denying treatment [20]. In 
accordance with this rule, the US Food and Drug Admin-
istration requires supervision of all machine-determined 
scorings by a qualified physician [21]. Nevertheless, in 
triaging patients, physicians rely heavily on scoring sys-
tems and increasingly on machine learning (ML) systems 
[20].

Effect of explainability on WoA
Surprisingly, and contrary to our initial hypothesis, no 
difference could be found in the WoA based on explain-
ability. Based on our data, two observations may provide 
some explanation for this unanticipated result.

Firstly, analysis of the post-experiment questionnaire 
revealed that physicians did in fact question certain 
parameters of the explanation provided by the CDSS. 
This may have led to increased scepticism of the specific 
CDSS and subsequent dismissal of its advice. The higher 
post hoc self-assessed trust in the computer models asso-
ciated with a higher WoA supports this hypothesis. While 
our system simply provided a static, non-interactive 
explanation, Goldberg et  al. described the importance 
of a structured decision-making process that focuses on 
interaction [22]. They argue that with the development 
of more sophisticated and reliable ML systems, users 
will become less critical of the recommended decisions 
and less prone to question them [22]. This claim of com-
puter obedience is supported by experimental data [13], 
including the data from the present study. Goldberg et al. 
therefore suggest a process in which both the physician 
and the ML model are required to explain and “argue” 
their decision and question each other’s arguments. This 
has recently been termed a “clinical reasoning support 

system” [23]. It should be noted, however, that this kind 
of decision-making process is bound to require more 
time per decision than with conventional CDSS.

Secondly, our experiment intentionally put the par-
ticipants under a high—but realistic—level of tempo-
ral stress, thus limiting the time available to question 
and understand the CDSS recommendation. Indeed, 
the authors of the “Barcelona Declaration for the 
proper development and usage of artificial intelligence 
in Europe” demand that artificial intelligence be able 
to explain its decision in a language the user is able to 
understand [24]. This emphasizes the need for improved, 
more intuitive presentation of the data informing the 
decision.

Interestingly, participants rated medical scores as the 
second to last influential factor in their decision-making 
process (mean 3.8/10, SD 2.5), while the computerized 
machine learning model was rated higher at a mean of 
5.7/10 (SD 2.3). This further illustrates that subjects were 
unaware of the score-based nature of our CDSS.

Taking advice
Our experiment was specifically designed to make par-
ticipants feel overwhelmed and fatigued: physicians were 
presented with four binders of health records while, once 
again, being reminded of the set time limit. We hypothe-
sized that due to the overwhelming and repetitive nature 
of the task, carried out in isolation, over the course of the 
experiment participants would exhibit decision fatigue. 
We hypothesized that WoA would increase and physi-
cians would be more likely to accept the model’s recom-
mendation [25–27].

Instead, no change in WoA could be observed sug-
gesting that if decision fatigue occurred, it did not 
significantly influence WoA. The WoA remained 
remarkably constant over the course of the experiment, 
as well as over the course of the day (see Fig. 5). Addi-
tionally, the fact that 75% of participants have previ-
ously conducted or participated in triage processes may 

Fig. 8  Final questionnaire
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affect this invariability. This corresponds with com-
parable data presented by Zheng et  al. [28]. The team 
analysed consultations and CT (computed tomography) 
orders over shifts in the emergency department and 
observed no decrease in consultations and admissions, 
concluding that decision fatigue does not occur in 8-h 
shifts at their emergency department [28]. By contrast, 
Häusser et  al. showed that sleep deprivation might 
result in a significant increase in WoA in estimation 
experiments [18]. Furthermore, they showed that the 
competency of the advisor was associated with a higher 
WoA [18]. This current research suggests that WoA is 
not a mere constant but rather a complex function of 
various experimental parameters [18, 29]. For instance, 
the extent of the difference between the original rating 
and the subsequent advice given by the CDSS has also 
been shown to affect WoA [29]. Despite this, studies 
show that when taking advice, regardless of the experi-
ment, the mean WoA is approximately 30%, slightly 
lower than in our observations [17, 30]. In conclusion, 
the constancy of WoA throughout the duration of our 
experiment might be rooted in the comparative brief-
ness of our experiment together with the perceived 
incompetence of our supposed CDSS.

Soll et al. [31] and Lees et al. [32] have raised concerns 
that calculating the mean of the WoA measurements may 
hide the true bimodal distribution of WoA. Indeed, the 
premise of WoA bimodality, computed using Hartigan’s 
dip test [33], holds in our dataset (p-value < 0.001) [34]. In 
contrast to the observation of Lees et al. [32], we did not 
observe peaks at the ends of the WoA spectrum (0 and 
1); instead, peaks were located at 0% (no change follow-
ing advice, 30% of data points) while the remaining data 
points had a median of 50% (averaging the own rating 
with the CDSS rating).

Interestingly, our data suggests that physicians were 
aware of being significantly influenced by the CDSS. A 
higher WoA was associated with a higher self-assessed 
impact of the CDSS on the physician’s decision, in addi-
tion to greater perceived trust in the CDSS.

To the best of our knowledge, this is the first study 
to examine the physician–CDSS interaction in the 
situation of repetitive tasks requiring serial decision-
making. However, the important limitations of our 
study need to be addressed. Firstly, while we specifi-
cally designed the experiment to resemble a plausible 
real-world situation, the experimental nature and its 
associated limitations of the study remain. Secondly, 
explainability is a broad term that does not describe a 
well-defined property of CDSS. Instead, explainability 
may take many forms. Third, a highly selected patient 
cohort of critically ill patients served as a basis for 
our study. Thus, while we have presented important 

learnings in the field of CDSS and human interaction, 
the ability to generalize our results may be limited.

Conclusions
An overall high weight-on-advice (WoA) of 34% could 
be observed in our data, indicating that on average 
the physicians’ final rating moved 34% of the distance 
between the initial rating and the systems’ advice. At 
the same time, the median trust in the computer mod-
els was low and awarded only 4 points on a 10-point 
scale.

In light of its fundamental consequences, the process 
of ICU triage must be based on a robust decision-mak-
ing process. Emerging technologies allow this process 
to be facilitated using ML-based CDSS systems. How-
ever, the implications of consulting CDSS in this situ-
ation are neither well understood and nor have they 
been examined to date. Further research is urgently 
needed to examine how CDSS interact with the deci-
sion-making processes made by healthcare profes-
sionals in triage situations. Newer techniques such as 
clinical reasoning systems could potentially improve 
clinician–CDSS interaction, thereby improving patient 
safety.
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