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Abstract 

Background:  Natural killer (NK) cells represent a critical component of the innate immune system’s response against 
cancer and viral infections, among other diseases. To distinguish healthy host cells from infected or tumor cells, killer 
immunoglobulin receptors (KIR) on NK cells bind and recognize Human Leukocyte Antigen (HLA) complexes on 
their target cells. However, NK cells exhibit great diversity in their mechanism of activation, and the outcomes of their 
activation are not yet understood fully. Just like the HLAs they bind, KIR receptors exhibit high allelic diversity in the 
human population. Here we provide a method to identify KIR allele variants from whole exome sequencing data and 
uncover novel associations between these variants and various molecular and clinical correlates.

Results:  In order to better understand KIRs, we have developed KIRCLE, a novel method for genotyping individual 
KIR genes from whole exome sequencing data, and used it to analyze approximately sixty-thousand patient samples 
in The Cancer Genome Atlas (TCGA) and UK Biobank. We were able to assess population frequencies for different 
KIR alleles and demonstrate that, similar to HLA alleles, individuals’ KIR alleles correlate strongly with their ethnici-
ties. In addition, we observed associations between different KIR alleles and HLA alleles, including HLA-B*53 with 
KIR3DL2*013 (Fisher’s exact FDR = 7.64e−51). Finally, we showcased statistically significant associations between KIR 
alleles and various clinical correlates, including peptic ulcer disease (Fisher’s exact FDR = 0.0429) and age of onset of 
atopy (Mann-Whitney U FDR = 0.0751).

Conclusions:  We show that KIRCLE is able to infer KIR variants accurately and consistently, and we demonstrate its 
utility using data from approximately sixty-thousand individuals from TCGA and UK Biobank to discover novel molecu-
lar and clinical correlations with KIR germline variants. Peptic ulcer disease and atopy are just two diseases in which 
NK cells may play a role beyond their “classical” realm of anti-tumor and anti-viral responses. This tool may be used 
both as a benchmark for future KIR-variant-inference algorithms, and to better understand the immunogenomics of 
and disease processes involving KIRs.
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Background
Natural killer (NK) cells are an important component 
of the innate immune system that classically play an 
important role in the body’s anti-tumor and anti-viral 
responses. In addition to their functions in these pro-
cesses, recent research has further implicated their 
involvement in a much wider range of pathological pro-
cesses that include cardiac, metabolic, oral, and gastroin-
testinal diseases [1–4]. While they represent only a small 
minority of circulating lymphocytes (10–15%), NK cells 
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nonetheless are considered to be the immune cell sub-
type most effective at monitoring and clearing diseased 
cells from the body [5].

As one mechanism to distinguish healthy host cells 
from infected or tumor cells, NK cells employ killer 
immunoglobulin receptor (KIR) proteins on their mem-
brane surfaces to bind to and recognize Human Leuko-
cyte Antigen Class I (HLA-I) complexes on the surface 
of their target cells. Fifteen KIR genes and 2 KIR pseu-
dogenes have been discovered [6]. These 15 genes may 
broadly be categorized into either activating KIRs, which 
promote NK cell activation and induce killing of the 
target cell on receptor stimulation, or inhibitory KIRs, 
which prevent NK cell activation and spare the target 
cell upon ligand binding. Inhibitory KIRs generally pos-
sess long cytoplasmic tails and are denoted with an L 
(KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL5A/B, KIR3DL1, 
KIR3DL2, and KIR3DL3), whereas activating KIRs gener-
ally possess short cytoplasmic tails and are denoted with 
an S (KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, 
and KIR3DS1); however, KIR2DL4 uniquely among the 
15 KIR genes possesses both activating and inhibitory 
functions [7]. Modulation of NK cell activity, and thus 
susceptibility or resistance to various pathologies, likely 
depends strongly on the binding properties and interac-
tions between KIR and HLA-I molecules. A high level 
of diversity in NK cell activity and its outcomes may be 
achieved largely through four different mechanisms: KIR 
recognition of highly distinct subsets of HLA-I allotypes, 
combination of KIRs into distinct haplotypes in different 
individuals, stochasticity of KIR expression on the sur-
face of individual NK cells, and allelic polymorphism of 
individual KIR genes [8]. In this manuscript, we primarily 
explore the last of these mechanisms and its downstream 
effects on disease susceptibility by performing KIR allele 
inference using next-generation sequencing (NGS) data.

Previous attempts to perform KIR genotyping at the 
individual gene level have either (1) relied on specially 
prepared primers and amplicon design, (2) required 
manual review as part of the algorithm, (3) utilized an 
experimental platform completely different from NGS, or 
(4) have merely assessed KIR gene presence or deletion 
rather than detected single-nucleotide-variants [9–12]. 
Given the rise and modern prevalence of NGS, espe-
cially with the recent releases of Whole Exome Sequenc-
ing (WES) data for large datasets including UK Biobank 
and The Cancer Genome Atlas (TCGA), there is a strong 
need for a fully automated pipeline that can detect sin-
gle-nucleotide variants of these KIR genes using aligned 
WES data. In this work, we have developed and charac-
terized the performance of a fully automated algorithm 
for accurate inference of KIR gene alleles from WES data: 
“KIR CaLling by Exomes” (KIRCLE). To demonstrate the 

utility of such an automated KIR genotyper, after run-
ning KIRCLE on 10,332 TCGA and 49,953 UK biobank 
exome samples, we discovered several novel correlations 
between KIR allele calls and other molecular and clinical 
features in these two datasets. Our work represents the 
first large-scale genetic analysis to elucidate pathologic 
and immunologic associations with human natural killer 
cells and provides an unprecedented resource for future 
investigations into the functionality of different KIR 
alleles.

Results
KIRCLE workflow description
KIRCLE is an allele inference algorithm that uses aligned 
WES data in the form of a BAM or CRAM file to gen-
erate probability estimates for each KIR allele, as well as 
genotype predictions for each KIR gene. KIRCLE consists 
of 4 major steps: pre-processing, local alignment with 
BLAST, bootstrapped expectation-maximization, and 
thresholding (Fig. 1a).

1)	 In pre-preprocessing, KIRCLE first extracts all WES 
reads that map to the genomic coordinates of the 
KIR genes on chromosome 19q13.4 and writes these 
reads to fifteen separate files—one for each KIR gene.

2)	 Next, KIRCLE uses nucleotide BLAST to perform 
local alignment on each KIR gene’s collection of 
reads against a database of variants belonging to that 
particular KIR gene. In the IPD-KIR Database v2.8.0, 
908 different alleles spanning the 15 KIR genes are 
documented, of which 535 represent distinct coding 
variants. KIRCLE then filters out alignments with 
less than 100% identity matches to documented KIR 
alleles.

3)	 KIRCLE then bootstraps the BLAST-identified align-
ments with 100% identity matches to KIR alleles and 
uses an expectation-maximization (EM) algorithm, 
with convergence hyperparameter α, to generate 
allele probability estimates from these collections of 
alignments (Fig. 1c). n bootstraps of fraction p of all 
100%-identity alignments are computed in this man-
ner. The bootstrapped allele probability estimates are 
then averaged together to determine a final prob-
ability estimate for each allele. This bootstrapping is 
helpful in countering the EM algorithm’s tendency to 
converge to local minima representing homozygous 
solutions based on small differences in initial align-
ment data.

4)	 Finally, KIRCLE uses a thresholding algorithm to 
convert each KIR gene’s set of allele probability 
estimates into homozygous or heterozygous geno-
type calls, depending on the number of alleles that 
exceeded a heuristically determined threshold t 
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(Fig. 1b). Depending on the user’s selection of hyper-
parameter t and the EM algorithm’s outputted allele 
probabilities, the resulting genotype solution may be 
either homozygous, heterozygous, or non-existent.

Final workflow outputs from KIRCLE include a table 
of allele probability estimates, a table of genotype calls, 
and a list of runtime hyperparameters.

Fig. 1  Description of the KIRCLE methodology. a Flowchart describing the 4 steps of the KIRCLE algorithm as it processes a single KIR gene 
(KIR2DL1 as an example here). Inputs are green, computations are blue, and outputs are gold. KIRCLE hyperparameters are listed in parentheses 
where they are implemented. b Depiction of step 4 of KIRCLE (thresholding). Allele probabilities generated by expectation-maximization may lead 
to a homozygous solution, a heterozygous solution, or no solution at all, depending on the user-selected value of the threshold hyperparameter t. 
In the depicted example, running KIRCLE with t = 0.5 (blue) would generate a homozygous solution (2 copies of KIR2DL2*003), whereas using t = 
0.2 (green) would generate a heterozygous solution (1 copy each of KIR2DL2*002 and KIR2DL2*003). Using t = 0.8 (red) or t = 0.05 (purple) would 
have yielded no solution. c Depiction of one step of expectation-maximization. The initial allele-read matrix Mt0 is collapsed into an expectation 
vector Et0 that is used to compute the next iteration of the matrix Mt1 . This process is repeated until the convergence criterion is satisfied, at which 
point the final expectation vector represents an estimate of KIR allele probabilities
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Hyperparameter determination and validation for KIRCLE
KIRCLE requires the use of 4 hyperparameters: α (the 
convergence threshold for expectation-maximization), 
n (the number of bootstraps to perform), p (the propor-
tion of reads to use in each bootstrap), and t (the thresh-
old used to convert KIR allele probabilities to binary KIR 
genotype calls). Of these, choices regarding p and t rep-
resent the greatest and most direct potential sources of 
variability in KIRCLE’s accuracy. Using one randomly 
selected sample from UK Biobank, we were able to char-
acterize KIRCLE’s performance, as measured by the 
Shannon entropy of the inferred genotypes, across differ-
ent values of p (from 0.2 to 0.8) and t (from 0.05 to 0.40). 
At each set of hyperparameters tested, we performed 500 
iterations of KIRCLE on one arbitrarily selected sample 
in UK Biobank, collected the 500 genotype outputs, and 
empirically computed the log2 Shannon entropy of the 
genotype solutions for each KIR gene. An ideal genotype 
caller would be consistent and call the same solution for 
the same input, resulting in a “genotype-entropy” of 0. 
For many KIR genes, such as KIR2DL1 and KIR2DL4, 
contour maps of the resulting entropies revealed that 
KIRCLE was largely self-consistent, with little variability 
of output (genotype-entropy of 0) across a wide spectrum 
of hyperparameter values (Fig.  2a, b). This pattern was 
recapitulated in the majority of KIR genes, suggesting 
respectable consistency of KIRCLE output across multi-
ple KIR genes (Supplementary Fig. S1a–j). For all subse-
quent analyses in this manuscript, hyperparameter values 
of α=1e−5, n=100, p=0.5, and t=0.25 were used.

Next, to establish the accuracy of our algorithm, we 
assessed the concordance of KIRCLE-generated geno-
types between TCGA biological replicates. Of 10,332 
exomes in TCGA, 1,062 were present twice as biological 
replicates and thus used in this analysis. We determined 
that 85.8% of genotype solutions called by KIRCLE 
across all KIR genes were concordant between repli-
cates (Supplementary Fig. S2a). We defined solutions 
to be concordant if the genotype inferred by KIRCLE 
in one sample was identical to that inferred in its repli-
cate. Genes with the highest concordance between rep-
licates were KIR2DS2 (98.3%), KIR3DL1 (92.1%), and 
KIR3DS1 (92.1%), whereas genes with the lowest con-
cordance between replicates were KIR2DL2 (77.0%), 
KIR2DS5 (78.9%), and KIR3DL3 (81.0%) (Fig. 2c). Given 
the observed difference between KIRs with the highest 

concordance (e.g., KIR2DS2) and those with the low-
est concordance (e.g., KIR2DL2), we sought to explain 
these differences in accuracy by analyzing the degree of 
sequence similarity between different alleles of each KIR. 
We assessed sequence similarity by performing a mul-
tiple sequence alignment (MSA) on all alleles of a KIR 
using Clustal Omega [13] and then measuring the mean 
phylogram distance between all coding variants (Supple-
mentary Fig. S2b–c). We noted a strong positive corre-
lation (Spearman’s ρ=0.631) between the mean distance 
between alleles of a given KIR and the observed concord-
ance between that KIR’s genotype calls among TCGA 
biological replicates, indicating that the higher levels 
of sequence similarity among alleles of KIRs such as 
KIR2DL2, KIR2DS5, and KIR3DL3 are likely to account 
for their lower rates of observed concordance.

Finally, we investigated whether KIRCLE is robust 
against differences in depth of sequencing. To do so, we 
compared the ambiguity of KIRCLE’s output, quantified 
as the Shannon entropy of generated KIR allele prob-
abilities, across TCGA samples with different depths of 
sequencing. Low ambiguity in KIR allele calling results in 
KIR allele probabilities of either 1 for a single allele and 
0 for all other alleles (reflecting a homozygous genotype) 
or 0.5 for two different alleles and 0 for all other alleles 
(reflecting a heterozygous genotype), leading to entropies 
of either 0 or 1 respectively. Conversely, high ambigu-
ity in KIR allele calling will lead to a more uniform dis-
tribution of KIR allele probabilities, leading to entropies 
higher than 1. For each TCGA sample, we measured 
both the average coverage and the KIR-allele-probability 
entropies for each KIR gene. Binning samples by their 
average coverages, we observed that allele probability 
entropies—and thus the ambiguity of KIR allele proba-
bilities—are notably increased only at very low coverages 
(<20 average depth of coverage at the KIR gene locus). 
Furthermore, as negative controls, 20 “pseudo-BAMs” 
were generated by randomly sampling reads mapping 
to KIR gene loci from 50 randomly selected BAMs in 
TCGA. Pseudo-BAMs were generated with an average 
read depth commensurate with their constituent BAMs. 
After applying KIRCLE to these pseudo-BAMs, their 
resulting allele probability entropies were much higher 
(median=1.70; IQR 0.958–2.61) than a significant major-
ity of actually observed entropies for all TCGA samples, 
regardless of the depth of coverage (Fig.  2d). Moreover, 

(See figure on next page.)
Fig. 2  KIRCLE accuracy and consistency validation. a Contour plot demonstrating the effect of varying the bootstrap-proportion (p) and threshold 
(t) hyperparameters on KIR2DL1 allele inference, as measured by empirical calculation of the inferred genotypes’ entropy. b KIRCLE’s performance 
on KIR2DL4 allele inference was similarly characterized. c Fraction of each KIR gene’s KIRCLE-inferred allele genotypes that were called identically 
between 531 samples and their biological replicates in TCGA. Error bars represent the normal approximation confidence intervals. d TCGA sample 
coverages (binned) versus TCGA sample allele probability entropies for all 15 KIR genes. The allele probability entropies of a set of 20 “pseudo-BAMs” 
(green) are presented as negative controls
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Fig. 2  (See legend on previous page.)
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despite differences in average depth of coverage at differ-
ent KIR gene loci, average KIR allele entropies between 
different KIR genes largely remained constant (Supple-
mentary Fig. S2b). Overall, KIRCLE demonstrated a high 
level of consistency while being able to call a diverse set 
of KIR genotype solutions and is robust to the effects of 
low depth of coverage.

KIR allele comparisons between TCGA and UK Biobank
After benchmarking KIRCLE using internal quality con-
trol metrics, we assessed KIRCLE’s performance by 
comparing its allele predictions in TCGA to its allele 
predictions in UK Biobank. We first compared the fre-
quencies of different KIR alleles in TCGA with their fre-
quencies in UK Biobank among Caucasian individuals in 
both datasets, in order to mitigate race as a confounding 
variable affecting observed allele frequency. For each KIR 
gene, we ranked its alleles by frequency in both TCGA 
and UK Biobank and then computed the Spearman cor-
relation coefficient between the allele frequencies in the 
two datasets (Fig.  3a). We noted that all KIR genes dis-
played positive correlation coefficients and that the vast 
majority of KIR genes demonstrated highly similar dis-
tributions of allele frequencies between TCGA and UK 
Biobank (Spearman’s ρ=0.802). Direct comparison of 
all KIR alleles ranked by frequency also demonstrated 
high consistency between the two cohorts’ Caucasian 
subpopulations (Fig.  3b). Both UK Biobank and TCGA 
are largely composed of Caucasians (81.4% and 93.3% 
of the individuals analyzed in TCGA and UK Biobank 
respectively).

Additionally, we were able to further validate observed 
KIR allele frequencies for certain KIR genes using allele 
frequency data from the US National Marrow Donor 
Program (NMDP), as reported by the Allele Frequency 
Net Database [14]. We used the NMDP dataset because 
the subjects in this cohort are predominantly Caucasians, 
similar to the TCGA patients. For KIR2DL4, the four 
most frequent KIR2DL4 alleles reported by the NMDP 
were KIR2DL4*001, KIR2DL4*008, KIR2DL4*005, and 
KIR2DL4*011 (34.6%, 30.2%, 19.9%, and 11.6% respec-
tively). We were able to recapitulate these four alleles as 
the most frequent KIR2DL4 alleles in both TCGA and UK 
Biobank’s Caucasian subpopulations, albeit in a different 
order for each dataset (Fig. 3c). In TCGA, KIR2DL4*005 
was the most frequent allele, followed by KIR2DL4*001, 
KIR2DL4*008, and KIR2DL4*011 (44.4%, 23.5%, 14.4%, 
and 7.55%). In UK Biobank, this order was reversed with 
KIR2DL4*011 being the most frequent allele, followed by 
KIR2DL4*008, KIR2DL4*001, and finally KIR2DL4*005 
(32.4%, 21.0%, 18.0%, and 13.9%). Further validation of 
allele frequencies against the NMDP was also performed 
for the alleles of KIR3DL2. The most frequent KIR3DL2 

allele in a population of 75 Caucasians was KIR3DL2*002 
(26.1%), followed by KIR3DL2*001 and KIR3DL2*007 
(21.0% and 18.8%) [15]. While KIR3DL2*002 was found 
at similarly high frequencies in both TCGA (9.37%) 
and UK Biobank (9.27%) as the 4th and 3rd most fre-
quent KIR3DL2 alleles respectively, KIR3DL2*001 and 
KIR3DL2*007 were much lower ranked at 9th and 13th in 
TCGA and 8th and 1st in UK Biobank respectively. How-
ever, these are still fairly well-represented alleles at 4.95% 
and 2.78% frequency in TCGA and 5.00% and 13.3% fre-
quency in UK biobank respectively. Furthermore, consid-
ered overall, KIR3DL2 allele frequency ranks in TCGA 
and UK Biobank still demonstrate positive correlations 
with the allele frequency ranks observed in the NMDP 
(Supplementary Fig. S2c). Despite slight numerical dif-
ferences, confirmation of the status of the most frequent 
alleles in these two KIR genes increases our confidence 
in KIRCLE’s ability to infer KIR alleles from WES data 
accurately.

In addition to validating population frequencies of 
KIR alleles, we also examined patterns of KIR allele co-
expression and dependence. As KIRCLE assesses for the 
presence of 535 KIR alleles over 15 KIR genes, the KIR 
genotype of each sample in TCGA and UK Biobank 
may be represented as a point in 535-dimensional “KIR-
space.” We first used t-distributed stochastic neighbor 
embedding (t-SNE) to perform dimensionality reduc-
tion and thus visualize the distribution of individuals in 
TCGA in 2 dimensions [16]. When we colored this t-SNE 
map using individuals’ SNP-inferred ethnicities [17], 
we observed that different ethnicities cluster together 
and are non-uniformly distributed (Fig.  3d). In particu-
lar, African Americans and—to a lesser extent—Asian 
Americans in TCGA formed clusters that were often 
very distinct from the Caucasian majority. Similar anal-
yses performed in UK Biobank recapitulated this non-
random distribution of KIR genotypes and confirmed 
the non-uniform distribution and clustering of those 
who self-identified their ethnicity as “Black” or “Asian” 
(Fig.  3e). Of particular note, the “Asian” population in 
TCGA comprises those of East Asian descent, whereas 
the “Asian” population in UK Biobank largely comprises 
those of South Asian descent (with major subcategories 
of Indians, Pakistanis, and Bangladeshis). However, both 
groups of Asians clustered distinctly and separately from 
the Caucasian majority to some extent in both datasets.

KIR allele associations with HLA alleles
As it is known that HLA and KIR bind to each other in 
an allele-specific way, we posited that strong correla-
tions may also exist between KIR alleles and HLA alleles 
on the population level, due to a known co-evolution 
event in humans [18]. Using HLA types imputed by the 
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Fig. 3  KIR allele distributions in UK Biobank and TCGA. a Non-linear correlations between KIR allele frequencies among Caucasian individuals in 
TCGA versus those in UK Biobank, stratified by KIR gene. Error bars represent the standard deviation of correlation coefficients after re-sampling 
with replacement 100 times. b Comparison of allele frequency ranks between Caucasian individuals in TCGA and UK Biobank. c KIR2DL4 allele 
frequencies among Caucasian individuals in TCGA (left), UK Biobank (center), and US NMDP (right). d t-SNE plot of individuals in TCGA colored by 
participants’ ethnicities. Caucasian individuals were down-sampled by a factor of 8 for ease of visualization. e t-SNE plot of UK Biobank individuals 
colored by ethnicity. Caucasian individuals were down-sampled by a factor of 16 for ease of visualization
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HLA*IMP:02 algorithm and subsequently released by 
UK Biobank [19], we observed 326 significantly asso-
ciated pairs of KIR alleles with HLA alleles in the UK 
Biobank data (Fig. 4a, b, Supplementary Fig. S3a). Many 
of these associations belonged to a set of particularly 
common HLA alleles (e.g., HLA-B*53) or KIR alleles 
(e.g., KIR3DL3*005). Furthermore, we also note that 
the majority (73.0%) of significant associations are posi-
tive. We speculate that these associations reflect changes 
in direct physical interactions between HLA and KIR 
alleles, which result in co-selection due to an advan-
tageous increase in fitness for individuals with these 
combinations of KIR and HLA alleles. Particularly visu-
ally striking examples of positive and negative asso-
ciations between KIRs and HLAs include KIR3DL3*005 
with HLA-A*74 (Fisher’s exact FDR=7.43e−43; odds 
ratio=55.1) and KIR2DL3*002 with HLA-A*36 (Fisher’s 
exact FDR=1.71e−12; odds ratio=0.0727), respectively 
(Fig. 4c). Additionally, when examining the t-SNE coordi-
nates of individuals with HLA alleles such as HLA-B*42, 
we observed a non-uniform distribution and clustering 
of these samples that closely mirrors the distribution of 
samples when labeled by ethnicity (Fig. 4d).

While these findings may support the biological link 
between these two classes of molecules and shed addi-
tional light onto which particular HLA alleles may have 
evolved in parallel with particular KIR alleles, they also 
raise the possibility that our observed associations are 
driven by population stratification according to ethnic-
ity. In order to disentangle the effects of this stratification 
on associations between HLA and KIR alleles, we re-
attempted the analysis using only Caucasian individuals 
in UK Biobank, while testing only KIR alleles with >1% 
allele frequency in UK Biobank (Fig. 4e). While this anal-
ysis unveiled a much smaller subset of HLA-KIR asso-
ciations, we noted 3 significant associations: HLA-C*17 
with KIR2DS4*016 and HLA-B*41 with KIR2DL4*011 
and KIR2DS4*016. Notably, both KIR2DS4 and KIR2DL4 
have NK-cell-activating activity, and all three are affili-
ated with a negative odds ratio. These results indicate 
that HLA-C*17 and B*41 could be true activation ligands 
for KIR2DS4 and KIR2DL4, and their interactions may 
induce NK responses that impose negative selection 
pressure on individuals bearing both alleles.

Although TCGA is a much smaller dataset than UK 
Biobank, we were able to use TCGA to discover a smaller 
set of correlations between HLA alleles and KIR alleles 
after filtering out KIR alleles with <1% allele frequency 
in TCGA to improve our Bonferroni correction factor 
(Supplementary Fig. S3b). HLA allele calls for samples in 
TCGA were made using POLYSOLVER [20]. In particu-
lar, KIR2DL2*003, KIR3DL2*013, and KIR3DL3*008 were 
strongly positively associated with HLA-B*46, HLA-B*53, 

and HLA-C*15 respectively at the FDR < 0.25 level. The 
HLA-B*53 association with KIR3DL2*013, notably, was 
the most significant HLA-KIR association discovered in 
UK Biobank. However, when we re-attempted the analy-
sis using only Caucasian individuals in TCGA to elimi-
nate population stratification by ethnicity as a potential 
confounding factor, all significant associations between 
KIR and HLA alleles disappeared after Bonferroni cor-
rection. In summary, after correction of population strat-
ifications, we found few significant associations between 
activating the KIR gene and HLA alleles. The absence of 
significant associations between inhibitory KIR genes 
and HLA alleles might suggest weaker selective pressure 
for KIR alleles, possibly due to the multiple redundant 
mechanisms inhibiting NK cell activation [21].

KIR allele associations with clinical correlates
In addition to correlations with HLA alleles, we searched 
for KIR allele correlations with clinical features. We first 
examined KIR allele correlations with individuals’ medi-
cal diagnoses documented in UK Biobank, as encoded 
by the 10th revision of the International Statistical Clas-
sification of Diseases (ICD10). To minimize the number 
of under-powered tests we performed, we attempted 
correlations only with KIR alleles represented at over 
1% frequency in UK Biobank. Additionally, we excluded 
all diseases primarily associated with external causes, 
including accidents, injuries, and nutritional deficien-
cies, as well as obstetric and psychiatric diseases among 
others. Of note, this list of exclusions includes infectious 
diseases, which despite having a strong biological basis 
for association with KIR alleles, require exposure to a 
pathogen, which is largely driven by individuals’ environ-
mental circumstances. Strikingly, the only associations 
that remained significant at the FDR < 0.25 level were 
those associated with sickle-cell anemia (ICD10 D57) 
or with uterine leiomyomas (ICD10 D25), both diseases 
that disproportionately affect black people [22]. How-
ever, positing a direct biological mechanism behind these 
associations likely would represent a third-cause fallacy, 
as blacks are statistically more likely to possess both KIR 
alleles enriched in black populations as well as either the 
sickle-cell trait or uterine leiomyomas.

Thus, we next narrowed our analysis to investigate only 
those individuals who self-identified as Caucasian. While 
the vast majority of correlations failed false-discovery-
rate correction, we discovered a significant correlation 
between the KIR3DL3*080 allele and ICD10 K25—pep-
tic ulcer disease (PUD) (Fisher’s exact test, FDR= 0.0429; 
Fig.  5a). Whereas those without KIR3DL3*080 had 
merely a 1.04% chance of being diagnosed with PUD, 
patients with KIR3DL3*080 had a 2.90% chance of being 
diagnosed with PUD, representing a 2.8-fold increase in 
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Fig. 4.  KIR allele associations with HLA alleles. a Bar plot depicting and listing KIR alleles that are significantly associated with HLA alleles at the FDR 
< 1e−10 level. b Volcano plot of KIR allele correlations with HLA alleles in UK Biobank. Associations are color-coded by the activity (inhibitory or 
activating) of the KIR allele. c Presence of at least 1 copy of HLA-A74 positively correlates with presence of at least 1 copy of KIR3DL3*005 (left) and 
presence of at least 1 copy of HLA-A36 negatively correlates with presence of at least 1 copy of KIR2DL3*002. d KIR t-SNE of UK Biobank individuals 
with those possessing HLA-B*42 highlighted in red. e Volcano plot of KIR allele correlations with HLA alleles among Caucasians in UK Biobank
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Fig. 5  KIR allele associations with clinical correlates. a QQ-plot of KIR allele correlations with ICD10 diagnosis codes in UK Biobank among Caucasian 
individuals. b Odds of developing peptic ulcer disease is increased among those with the KIR3DL3*080 phenotype. c Bar plot showing decreased 
mean age of hay fever, rhinitis, or eczema in those with at least one copy of KIR3DL2*107. d Bar plot showing increased mean age of hay fever, 
rhinitis, or eczema in those homozygous for KIR3DL2*062. e Bar plot showing decreased mean age of atopy in those with at least one copy of 
KIR3DL2*107. f Bar plot showing increased mean age of atopy in those homozygous for KIR3DL2*062. All error bars in bar plots depict standard 
error of mean
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likelihood (Fig. 5b). No significant association was found 
between KIR3DL3*080 and usage of ibuprofen, which 
would predispose individuals toward developing PUD 
(data not shown). Thus, if KIR3DL3*080 predisposes an 
individual toward PUD, it likely does so through an alter-
native mechanism. Significant correlations with ICD10 
diagnosis codes in Black and Asian populations were not 
observed, likely owing to the lower statistical power these 
smaller populations had.

Additionally, we explored correlations between KIR 
alleles with population frequency >1% and other clinical 
correlates besides ICD10 codes. When examining corre-
lations with age of onset of several chronic diseases and 
conditions, we discovered that KIR3DL2*107 was highly 
correlated with early age of onset of hay fever, rhinitis, 
or eczema in Caucasian individuals. Whereas individu-
als without KIR3DL2*107 had an average age of onset 
of 24.7 years (IQR 12–35 years), those with at least one 
copy of KIR3DL2*107 had an average age of onset of 
22.4 years (IQR 11–30 years; two-sided Mann-Whitney 
FDR=0.0751; Fig.  5c). Moreover, an alternative allele of 
KIR3DL2, KIR3DL2*062, was weakly associated with an 
increase in age of onset of hay fever, rhinitis, or eczema 
from 24.5 years (IQR 12–35 years) to 27.0 years (IQR 
14–40 years; Mann-Whitney FDR=0.244; Fig. 5d). Later 
onset of these conditions was particularly pronounced 
in individuals with two copies of KIR3DL2*062, with 
an average age of onset of 27.6 years (IQR 14–40 years). 
Together, these results suggest that polymorphisms in 
KIR3DL2 may play a key role in determining the age of 
onset of hay fever, rhinitis, and/or eczema.

Moreover, hay fever and eczema, in conjunction 
with allergic asthma, more broadly represent mani-
festations of atopy, the genetic predilection to trigger 
IgE-mediated (type I) hypersensitivity reactions fol-
lowing allergen exposure with increased TH2-driven 
responses [23]. Thus, we next attempted to generalize 
this association to encompass atopy more broadly by 
examining KIR3DL2*107 and KIR3DL2*062’s associa-
tions with age of onset of either asthma or hay fever, 
rhinitis, or eczema, using the age of onset of whichever 
condition occurred earliest in life for each individual. 
We observed the same association: individuals with 
at least one copy of KIR3DL2*107 had an average age 
of onset of 15.9 years (IQR 6–20.75 years), whereas 
those without any copies of KIR3DL2*107 had an aver-
age age of onset of 19.0 years (IQR 8–28 years; Mann-
Whitney p=0.012; Fig. 5e). Simultaneously, individuals 
with at least one copy of KIR3DL2*062 (22.5 years; 
IQR 10.25–31.5 years), and particularly those with two 
copies of KIR3DL2*062 (23.1 years; IQR 10.75–32.75 
years), had later onsets of atopic reactions than those 
without KIR3DL2*062 (18.7 years; IQR 7–27 years; 

Mann-Whitney p=0.019; Fig. 5f ). Together, these find-
ings suggest a potential biological mechanism either 
delaying or hastening onset of atopic reactions like hay 
fever, eczema, or asthma that involves KIR3DL2, and 
the KIR3DL2*107 and KIR3DL2*062 alleles in particu-
lar. In addition to atopic reactions, we also observed 
significant associations of KIR alleles with other clinical 
correlates, including dental and oral health, quantita-
tive blood analysis, and waist circumference, suggesting 
potentially broad impact of natural killer functions in 
affecting diverse human traits (Supplementary Fig. 4).

Finally, to further explore the effects of KIR3DL2 
polymorphism on age of atopy onset, we posited that 
each of the two aforementioned KIR3DL2 alleles fol-
lows either a dominant, semi-dominant, or recessive 
model of expression and then sought to determine 
which of these three models best explains the effect 
of KIR3DL2 genotype on age of atopy onset. In the 
recessive model, only a genotype homozygous for the 
KIR3DL2 allele in question contributes to a change in 
age of atopy onset from baseline. In contrast, in the 
dominant model, genotypes either homozygous or het-
erozygous for the KIR3DL2 allele in question contrib-
ute to changes in baseline age of atopy onset. Finally, 
in the semi-dominant model, homozygotes for the 
KIR3DL2 allele in question are twice as potent as corre-
sponding heterozygotes in changing age of atopy onset 
from baseline. When assessed against each other using 
the UK Biobank data, the dominant model outper-
formed semi-dominant and recessive models of expres-
sion for KIR3DL2*107, as measured by the Bayesian 
information criterion (−10.8145 versus −10.8151 and 
−10.8172, respectively). Meanwhile, expression pat-
terns of KIR3DL2*062 instead favored the recessive 
model over the semi-dominant and dominant mod-
els of expression for KIR3DL2*062, as measured by 
the Bayesian information criterion (−10.8138 versus 
−10.8141 and −10.8146, respectively). In summary, 
our analysis indicated that KIR3DL2*107 may “over-
ride” other alleles and thus present with a dominant 
phenotype, whereas KIR3DL2*062 may be weaker than 
other KIR3DL2 alleles and thus present with a recessive 
phenotype.

Discussion
The fifteen KIR genes represent a polymorphic set of 
immune modulators with an array of potential effects 
on immune and clinical phenotypes. In this manuscript, 
we have developed, characterized, and implemented our 
algorithm KIRCLE, uncovering multiple correlations 
between KIR alleles and other features in TCGA and UK 
Biobank.
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KIR alleles associated with HLA alleles
Class I HLAs represent well-known binding partners 
of KIRs. Thus, any change in either the KIR binding 
site or the HLA binding site that alters their affinities 
to each other may be expected to modulate NK cell 
activation or inhibition. However, as both HLA and 
KIR loci are highly polymorphic, it has historically 
been challenging to determine their matches through 
low-throughput experimental approaches or through 
small-scale computational analyses. By using KIRCLE 
and a large cohort of UK Biobank data, we were able 
to observe several statistically significant associa-
tions between KIR and HLA alleles. These observed 
KIR-HLA associations may be indicative of selective 
pressures for these receptors to co-evolve to maintain 
appropriate levels of NK cell activity. Specifically, we 
observed that Caucasian individuals in UK Biobank 
with KIR2DS4*016 and KIR2DL4*011, two KIR alleles 
with activating activity, have a lower frequency of 
HLA alleles HLA-C*17 and HLA-B*41 than individu-
als without these alleles. We may posit that this “anti-
correlation” possibly represents evidence of a potential 
intolerance of lethal NK cell hyperactivity, leading to 
the observed underrepresentation of individuals with 
these particular KIR-HLA allele combinations. How-
ever, such an explanation is purely speculative, with 
further mechanistic studies required to validate the 
observed frequencies and either to confirm or to refute 
this hypothesis.

Several factors affect the results of our analyses. In 
addition to observing differences in KIR allele frequen-
cies among those with different HLA alleles, we also 
observed differences in KIR allele frequencies among 
different ethnic populations, which are already known 
to possess different HLA allele frequencies [24]. While 
this combination of observations may reflect common 
selective pressures historically experienced by these 
ethnic populations which then may have forced KIR 
and HLA alleles to co-evolve, it likely also points to 
ethnicity as a confounding factor in this purely correl-
ative study. We attempted to account for this potential 
confounder by repeating our analysis on only Cauca-
sian individuals within UK Biobank. Such an analysis 
yielded a much smaller set of statistically significant 
KIR-HLA associations. Finally, it is possible that the 
KIR allele cohorts as inferred by KIRCLE are not 
well-defined enough to fully elucidate the underlying 
KIR-HLA interactions driving any observed associa-
tions. Future work would be expected to resolve these 
cohorts more accurately and thus better detect KIR-
HLA interactions as well as their effects on immune 
and cancer-related outcomes.

KIR allele associations with peptic ulcer disease and atopic 
reactions
Previous genome-wide association studies of PUD have 
largely been performed in East Asian populations and 
did not uncover any associations between KIR polymor-
phism and either PUD or H. pylori infection [25, 26]. 
However, NK cells are known to be present in the gas-
tric and duodenal mucosa and have been shown to be 
directly activated by H. pylori bacteria to produce IFN-γ 
and trigger an immune response [27]. Our result builds 
upon these existing known interactions and hypothesizes 
that KIR3DL3*080 may increase susceptibility to PUD 
through modulating NK cells’ natural response to H. 
pylori.

Furthermore, we uncovered evidence for a potential 
association between age of presentation of atopy and 
two different variants of KIR3DL2: KIR3DL2*107 and 
KIR3DL2*062. At least one copy of one of these two vari-
ants is present in 7.89% of the Caucasian population in 
UK Biobank. Indeed evidence exists for NK cells’ involve-
ment in atopic and autoimmune diseases of the skin (i.e. 
eczema), even if the details of this involvement remain 
unclear [28], and increasing support has been seen for 
their role in allergen-specific immune suppression, Th1 
cell generation, and Ig production [29]. Our finding that 
KIR3DL2*107 is associated with earlier presentation of 
atopy and that presence of KIR3DL2*062 associates with 
delayed presentation potentially further points to a role 
specifically for KIR3DL2 in regulating NK cell activity 
as it contributes to these diseases. One possible expla-
nation for the opposite directions of impact on age of 
onset is that KIR3DL2*107 is stronger than other alleles 
and thus presents with a dominant phenotype, whereas 
KIR3DL2*062 is weaker than others and thus results in 
a recessive phenotype. As preliminary evidence sup-
porting this explanation, we demonstrated that a domi-
nant model of expression best fits KIR3DL2*107, while a 
recessive model of expression best fits KIR3DL2*062.

However, it is worth emphasizing that even though our 
observed clinical correlations remained significant after 
correction for multiple hypothesis testing, it remains 
unclear to what extent the identified KIR alleles are the 
direct cause of these phenotypic changes. Moreover, NK 
cells in vivo utilize a combination of multiple KIRs and 
other receptors to interact with their target cells, whereas 
our current analyses examine bulk correlations with KIR 
genotypes and lack the single-cell resolution required 
to investigate the combinatorial complexity of actual 
KIR expression on the surface of NK cells in vivo. Thus, 
a more nuanced and more adequately powered study of 
the effects of multiple KIRs in combination at single-cell 
resolution may better resolve the biological interactions 
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of KIRs that ultimately functionally cause these down-
stream clinical outcomes.

Limitations and future directions
While we were able to use biological replicates in TCGA 
to benchmark the accuracy of KIRCLE and compare our 
population-level estimates of KIR allele frequencies to 
prior estimates of KIR allele frequencies as reported by 
the US NMDP to validate our KIR genotype predictions, 
we were unable to carry out any experimental validation 
to benchmark its accuracy more directly. While our cur-
rent analysis includes measures of the Shannon entropies 
of KIRCLE-predicted allele probabilities and concord-
ance of predicted genotypes between biological replicates 
within TCGA as measures of the precision of our algo-
rithm, such measures nevertheless remain susceptible to 
systematic biases in either the methodology or the nature 
of the datasets used (e.g., WES). In particular, our current 
analysis does not compare our KIR genotype predictions 
to gold-standard KIR genotypes as assessed by Sanger 
sequencing against each KIR gene’s locus on chromo-
some 19 in live biological samples. Such comparison to 
gold-standard genotype predictions will be required to 
evaluate the overall accuracy of any KIR genotype infer-
ence algorithm more definitively.

Additionally, after generating KIR genotype predic-
tions, our downstream correlations all represented uni-
variate analyses, due to the relatively low abundance 
of individual KIR alleles. While such a simplistic analy-
sis is suitable for a first-pass search for potential direct 
associations, more nuanced future analyses of clinical 
associations with KIR alleles will need to account for con-
founding factors beyond human genetics to determine 
individuals’ susceptibility to diseases, including individu-
als’ living or occupational environments, full medical his-
tories, lifestyles, and much more. Such analyses may help 
uncover any functional roles KIRs play in these processes 
and will likely become available with sufficient statistical 
power when UK Biobank fulfills its mission to sequence 
all 500,000 individuals. Meanwhile, the studied sample 
sizes of ~50,000 individuals in UK Biobank and ~10,000 
individuals in TCGA are relatively underpowered to dis-
cover associations between all combinations of 535 KIR 
alleles with thousands of molecular and clinical corre-
lates. As such, we employed a relatively liberal thresh-
old of FDR < 0.25 in our downstream analyses. While an 
FDR threshold of 25% indicates that reported results are 
likely to be valid 3 out of 4 times and is appropriate in 
the context of exploratory, discovery-driven analyses, our 
reported findings in this manuscript nevertheless should 
be interpreted merely as interesting candidate hypothe-
ses that require further validation in future work.

Furthermore, Caucasian individuals are heavily over-
represented in both the TCGA and UK Biobank cohorts, 
and thus our downstream analyses have largely been suit-
ably powered to investigate only those KIR alleles that are 
well represented among Caucasians. Future studies will 
be needed to use more racially diverse cohorts to analyze 
KIR alleles that are more frequently represented in other 
ethnicities.

Finally, as mentioned at the outset, NK cell activity is 
modulated by a number of factors outside of individual 
KIR genes polymorphism, including the subset of HLA-
Is they recognize, the distinct combinations of genes that 
constitute the individual’s KIR haplotype, and stochas-
ticity in KIR expression on the surface of individual NK 
cells. Indeed, over 40 distinct KIR haplotypes, each com-
posed of at least seven KIR genes, have been documented 
in the human population [30]. Variation of any of these 
additional factors may further affect NK cell function and 
ideally would be explored in conjunction with KIR poly-
morphism at the individual gene level in future studies.

In conclusion, our work has generated KIR allele pre-
dictions for TCGA and UK Biobank that will be invalu-
able for future studies of NK cells in these populations, 
uncovered multiple potential novel associations between 
KIR gene variants and clinical and molecular features, 
and has paved the way for future investigation into the 
role of KIRs in immunologic response and human dis-
ease. We hope that our algorithm can serve as a bench-
mark for future algorithms that will perform KIR 
genotyping and that others may use our algorithm to 
better understand the immunologic and pathologic pro-
cesses surrounding KIR genes.

Conclusions
We have developed KIRCLE, a first-of-its-kind fully 
automated computational pipeline for the inference of 
germline variants of the highly polymorphic killer-cell 
immunoglobulin-like receptor (KIR) genes from whole 
exome sequencing data. We demonstrate the utility of 
such an algorithm by using KIRCLE to infer germline 
KIR variants in approximately sixty-thousand individuals 
in The Cancer Genome Atlas and UK Biobank and then 
discover novel molecular and clinical correlations with 
these variants. This work represents the first large-scale 
genetic analysis to elucidate immunologic and pathologic 
associations with human natural killer cells and will serve 
as a valuable resource for future investigations into the 
immunogenomics and disease processes involving KIRs.

Methods
Allele inference using expectation maximization
To infer allele probabilities from a set of read align-
ments to a database of KIR alleles, we use an 
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expectation-maximization algorithm to aggregate the 
alignment data into an initial set of allele probability 
“expectations,” which is then used to further weight the 
alignment data in order to refine our estimates of KIR 
allele probabilities. Thus, given a bootstrap of read align-
ments with 100% identity to at least one KIR allele, KIR-
CLE’s EM algorithm iteratively generates probability 
estimates for each KIR reference allele. Let:

m = the total number of alleles of this KIR gene
n = the total number of reads in this bootstrap
A = the set of KIR alleles {a1, a2, … , am}
R = the set of BAM reads {r1, r2, … , rn}
xr = the number of alleles that read r aligns to with 
100% identity
t = each time step of the expectation maximization 
algorithm
α = a heuristically chosen convergence threshold

We first initialize an m x n “alignment matrix” M to 
encode our read alignments:

Next, using M, we compute an initial expectation vec-
tor Et representing our rudimentary estimate of each KIR 
allele’s probability in this sample:

Then, at each time step t of the expectation-maximi-
zation algorithm, we update the values of our alignment 
matrix M in a Bayesian fashion using the previously gen-
erated expectation vector Et as our prior and Mt as our 
likelihood:

Subsequently, we may generate an updated expectation 
vector Et+1 using Mt+1 in conjunction with Eq. (2) above.

We continue to iterate through our expectation-max-
imization algorithm in this manner, computing Et from 
Mt and then Mt+1 from Et and Mt, until we achieve our 
convergence criterion, defined as the sum of squared 
changes in M not exceeding a heuristically selected 
hyperparameter α:

Ultimately, our final expectation vector ET is outputted 
as our vector of allele probability estimates.
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Allele coding region collapse
Because we used WES data as our input, KIR variants 
that differed only at non-exonic sites were merged by 
summing their allele probability estimates. Furthermore, 
as we are primarily interested in the phenotypic effects 
of altered binding affinity to KIR domains, we merged 
variants that differ only by a silent mutation by summing 
their allele probability estimates as well. Thus, all KIR 
alleles subsequently are reported as a three-digit number 
following the KIR gene name (e.g., KIR2DL4*005).

KIR allele correlations with molecular and clinical 
correlates
Correlations between inferred KIR alleles and molecular 
and clinical correlates in TCGA and UK Biobank were 
performed by comparing the values of these correlates in 
samples with a given KIR allele versus those without that 
KIR allele. Comparisons were performed using two-sided 
Fisher’s exact tests for categorical variables and two-sided 
Mann-Whitney U tests for continuous variables. Correc-
tion for multiple hypothesis testing in all analyses was 
performed using the Bonferroni method.

Clinical effect model comparison
To explore several correlations we discovered between 
KIR3DL2 genotype and the earliest age of atopy onset 
more deeply, we attempted to model the earliest age of 
atopy onset as a linear function of the KIR3DL2 genotype

where x(genotype) is determined by the model 
of KIR allele expression. Under a dominant model, 
both homozygotes and heterozygotes for an allele 
KIR3DL2*000 contribute equally to the phenotype. Thus,

Meanwhile, under a semi-dominant model, homozy-
gotes are twice as expressive as heterozygotes:

Finally, under a recessive model, only homozygotes 
have an effect on phenotypic expression:

(5)
(

Age of Atopy Onset
)

= m ∗ x(genotype)+ b

(6)x(genotype) =







1 2 copies of KIR3DL2 ∗ 000
1 1 copy of KIR3DL2 ∗ 000
0 0 copies of KIR3DL2 ∗ 000

(7)x(genotype) =







2 2 copies of KIR3DL2 ∗ 000
1 1 copy of KIR3DL2 ∗ 000
0 0 copies of KIR3DL2 ∗ 000

(8)x(genotype) =







1 2 copies of KIR3DL2 ∗ 000
0 1 copy of KIR3DL2 ∗ 000
0 0 copies of KIR3DL2 ∗ 000
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How well each of these models performed against each 
other was assessed by the goodness of fit of the final lin-
ear model (Eq. 5) with the UK Biobank data and summa-
rized using the Bayesian Information Criterion.

Software used
All analyses in this article were performed using an array 
of standard tools for bioinformatics. Pre-processing and 
processing of sequencing data as part of KIRCLE were 
accomplished using samtools 1.3.1, Nucleotide BLAST 
v2.8.1+, Python v3.6.10, argparse v1.1, numpy v1.18.1, 
pandas v1.0.1, and pysam v0.9.1. Later downstream sta-
tistical analyses and visualizations were performed using 
Python v3.7.7 with packages scipy v1.4.1, sklearn v0.22.1, 
matplotlib v3.1.3, and seaborn v0.10.1. Scripts were run 
on Red Hat Enterprise Linux Server release 7.4 (Maipo) 
on the BioHPC-Nucleus Supercomputer at UT South-
western Medical Center.
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Additional file 1. 

Additional file 2: Supplementary Figure S1. Validation of KIRCLE’s 
Consistency. Contour plots demonstrating the effect of varying p and t on 
consistency of genotype calling, as quantified by entropy, for (a) KIR2DL2; 
(b) KIR2DL3, KIR2DL5B, KIR2DS2, & KIR3DS1; (c) KIR2DL5A; (d) KIR2DS1; (e) 
KIR2DS3; (f ) KIR2DS4; (g) KIR2DS5; (h) KIR3DL1; (i) KIR3DL2; (j) and KIR3DL3. 
Supplementary Figure S2. Validation of KIRCLE’s Accuracy. (a) Confusion 
matrix depicting KIRCLE’s consistency in KIR genotype inference between 
531 samples and their biological replicates in TCGA. (b) Scatterplot 
demonstrating that the concordance of KIR genotypes between TCGA 
replicates in each KIR gene positively correlates with sequence “dissimilar-
ity” (as measured by average MSA distance) between alleles of that KIR 
gene. (c) Example MSA phylograms for KIR2DS2 (left) and KIR2DL5A (right) 
demonstrate different degrees of sequence similarity between different 
alleles of the same KIR gene. (d) Average entropy versus average depth of 
coverage in TCGA for each KIR gene. (e) Comparison of allele frequency 
ranks among the 9 KIR3DL2 alleles observed in the US NMDP with their 
frequency ranks in TCGA (left) and UK Biobank (right). Supplementary 
Figure S3. KIR Correlations with Molecular Markers. (a) Heatmap of the 
log2-odds-ratios of KIR allele correlations with HLA alleles in UK Biobank. 
Correlations with Fisher’s Exact FDR > 0.25 were masked. (b) Volcano plot 
of KIR allele correlations with HLA alleles in TCGA. (c) Heatmap of log2-
median-fold-changes in tumor immune infiltrate composition estimates 
stratified by KIR alleles in TCGA. Mann-Whitney-U FDR > 0.25 correlations 
were masked. (d) Volcano plot of KIR allele correlations with differences 
in tumor immune infiltrate composition in TCGA. (e) Heatmap of log2-
median-fold-changes in other immune-related molecular signatures and 
markers stratified by KIR alleles in TCGA. Mann-Whitney-U FDR > 0.25 
correlations were masked. (f ) Volcano plot of KIR allele correlations with 

differences in other immune-related molecular signatures and markers 
as measured and characterized in TCGA. Supplementary Figure S4. KIR 
Correlations with Other Clinical Variables in UK Biobank. (a) Increased 
likelihood of loose teeth was observed among individuals possessing at 
least one copy of the KIR3DL3*002 allele compared to those without it. (b) 
Quantitative blood analysis of individuals homozygous for KIR3DL2*010 
revealed Increased reticulocyte percentage compared to those without 
the allele. (c) Decreased waist circumference was observed in individu-
als possessing at least one copy of KIR2DL3*010. (d) Lower age of cancer 
diagnosis was observed among KIR2DS3*002 heterozygotes. (e) Lower 
age of Chronic Obstructive Pulmonary Disease (COPD) diagnosis was 
observed among KIR3DL2*008 heterozygotes. (f ) Increased duration 
of sleep was observed in individuals possessing at least one copy of 
KIR2DL4*032. All error bars in bar plots depict standard error of mean.

Additional file 3: Supplementary Table S1. KIRCLE-inferred KIR allele 
genotypes in TCGA. Number of copies of each of 535 KIR coding alleles in 
10,332 TCGA samples.

Additional file 4: Supplementary Table S2. KIRCLE-inferred KIR allele 
genotypes in UK Biobank. Number of copies of each of 535 KIR coding 
alleles in 49,694 UK Biobank samples. Note that UK Biobank ID numbers 
are study-dependent and not conserved between datasets. Therefore, if 
readers wish to make comparisons with correlates downloaded for their 
own project, they will need to re-compute these genotypes using KIRCLE 
on WES CRAM files that they themselves downloaded from UK Biobank.
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