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Abstract 

Background  Outbreaks of infectious diseases are a complex phenomenon with many interacting factors. Regional 
health authorities need prognostic modeling of the epidemic process.

Methods  For these purposes, various mathematical algorithms can be used, which are a useful tool for studying the 
infections spread dynamics. Epidemiological models act as evaluation and prognosis models. The authors outlined 
the experience of developing a short-term predictive algorithm for the spread of the COVID-19 in the region of the 
Russian Federation based on the SIR model: Susceptible (vulnerable), Infected (infected), Recovered (recovered). The 
article describes in detail the methodology of a short-term predictive algorithm, including an assessment of the pos-
sibility of building a predictive model and the mathematical aspects of creating such forecast algorithms.

Results  Findings show that the predicted results (the mean square of the relative error of the number of infected and 
those who had recovered) were in agreement with the real-life situation: σ(I) = 0.0129 and σ(R) = 0.0058, respectively.

Conclusions  The present study shows that despite a large number of sophisticated modifications, each of which 
finds its scope, it is advisable to use a simple SIR model to quickly predict the spread of coronavirus infection. Its lower 
accuracy is fully compensated by the adaptive calibration of parameters based on monitoring the current situation 
with updating indicators in real-time.
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Introduction
Infectious disease outbreaks are a complex phenom-
enon involving numerous interaction factors. According 
to virology researchers, the SARS-CoV-2 coronavirus, 
which causes the COVID-19 disease, has spread rapidly 
because it combines genomes with different properties 
from other coronavirus strains [1]. Regardless of the state 
of the global health infrastructure, the novel coronavirus 
disease poses a threat to all countries. Globally, the num-
ber of COVID-19 patients is rising rapidly [2].

Over 5.7 million new cases were recorded from July 
4 to July 10, 2022, which is an increase of 6% from the 
week before. Over 9800 fatalities were reported, which 
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was about the same as the previous week in terms of 
new fatalities. Globally, there had been over 6.3 million 
reported fatalities and slightly under 553 million con-
firmed cases as of July 10, 2022. The new COVID-19 
coronavirus has proven to be highly contagious, though 
not the deadliest disease that the world has seen in dec-
ades. COVID-19 has a relatively long incubation period 
of 2 days to 2 weeks (5–7 days on average), during which 
carriers are already infected even without obvious symp-
toms. Fever, fatigue, breathing problems, and a dry cough 
are the main signs and symptoms of COVID-19. The 
breathing issue is more severe and intense than the oth-
ers. There is also a lack of necessary devices to deal with 
the increased number of patients [3].

The world’s healthcare systems were unprepared for the 
latest coronavirus outbreak. The majority of government 
efforts at the moment are focused on stopping the coro-
navirus’s spread and identifying potential hot spots. Due 
to their required close proximity to probable coronavirus 
patients, healthcare workers and vital personnel are the 
most susceptible to coronavirus infections. Public health-
care services are unable to handle the rising patient load. 
Due to the excessive number of patients, the hospitals 
have soon become overcrowded, but there aren’t enough 
ventilators, PPE, oxygen providers, etc. Some patients 
must lay on mattresses on the floor because the hospi-
tals can’t handle the surge of people. Due to the ongoing 
influx of new patients who are coronavirus-infected, hos-
pitals have emerged as significant coronavirus carriers. 
The hospital administrative staff, surgeons, and health 
care providers have the highest risk of contracting an 
infection [4].

During the World Health Summit on October 25–27th, 
2020, the WHO Director-General and a number of senior 
executives and experts urged all governments to invest 
more resources in innovation, research and solutions to 
combat COVID-19 [5]. However, the health systems of 
the vast majority of countries worldwide have been strug-
gling to contain the spread of coronavirus. For example, 
the State of Israel has repeatedly imposed strict restric-
tive measures, up to the complete closure of the coun-
try’s airports [6]. After coming to power in January 2021, 
the new U.S. administration also rushed to apply stricter 
restraint policies [7].

On July 20, 2022, 221,955 cases of COVID-19 infection 
were recorded in China. The total number of deaths from 
coronavirus infection was 5,213 people. There are 5,661 
people in the active phase of the disease, of which 383 
are in critical condition. The lethality rate is 2.35%. There 
is tension in the country that the infamous situation in 
Wuhan could resurface repeatedly after the easing of 
quarantine restrictions. The situation in China is closely 
monitored by other countries, as they may end up in an 

even worse situation in a few days. The actions taken 
in China may seem excessive, but the Chinese authori-
ties attempt to avoid past miscalculations. In the early 
stages of the coronavirus outbreak in Hubei province, the 
magnitude of the issue was not adequately assessed, and 
countermeasures were thus delayed. An equally acute 
problem is observed in South Korea, Singapore, Taiwan, 
and Hong Kong, which so far have managed to contain 
the spread of coronavirus [8].

In Russia, a rapid spread of infection in 2020 has sig-
nificantly changed the lifestyle of all social groups [9, 10] 
and forced to reorganize the health care system in all 
regions of the country. Despite the relatively stable situ-
ation, 18,504,729 confirmed cases had been reported in 
the country as of 20 July 2022. For all time, 381,997 peo-
ple died, 17,919,843 recovered.

Judging by the epidemiological situation with corona-
virus in Europe and the United States, as of July 2022, an 
increase in the incidence is also expected in the Russian 
Federation by the autumn–winter period. If transport 
links between countries had remained at the pre-pan-
demic level, then the increase in the incidence would 
have begun somewhat earlier [11]. After a large wave of 
the Omicron strain passed in the country at the begin-
ning of 2022, collective immunity grew quite strongly in 
the population, which gradually begins to weaken. Rus-
sian virologists note that the Omicron variant is less dan-
gerous for humans than the parallel strains Alpha and 
Delta. With Omicron, the mortality rate is 0.3–0.4%. At 
the beginning of the pandemic, when the original strain 
from Wuhan (China) was spreading, the mortality rate 
was 5–6%. However, around 800,000 people around the 
world continue to be infected with the coronavirus every 
day. Despite the more recent mild course of the disease 
with the Omicron strain, about 900 thousand people died 
in the world in the first half of 2022.

The Centaur subspecies of the Omicron strain can be 
deadlier than other variants. In addition, it is more con-
tagious than its predecessors BA.1-BA.5, it can success-
fully bypass the formed immunity, therefore its spread in 
Russia causes serious concern. It is possible that in the 
coming months a new, more pathogenic line will appear. 
The further situation with the spread of coronavirus will 
depend on which line of evolution the virus will follow. 
It is almost impossible to control it. According to official 
statistics as of 07/19/2022 in Russia, 18,499,044 cases 
of COVID-19 infection were laboratory confirmed, of 
which 17,915,526 patients fully recovered, 381,960 deaths 
were recorded. In the period from July 18 to July 19, 2022, 
there were 4200 COVID-19 cases, 4186 recoveries, and 
44 deaths (Table 1).

Pandemics have been more frequent during the past 
few decades as a result of increased urbanization and 
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international travel. It’s critical to create models to pre-
dict the risk of an infectious disease spreading further 
since a disease that spreads in one area has the poten-
tial to become a pandemic with global humanitarian and 
economic consequences.

The study of population epidemics has a long history 
dating back to the work of Kermack in 1927, in terms 
of mathematics, outbreak modeling, and control. In the 
field of statistical physics of disordered systems, spread-
ing phenomena have also received substantial study. In 
this context, of high relevance is predictive modeling of 
a new coronavirus infection outbreak at the level of a 
given region. A variety of mathematical algorithms can 
be used as tools to study the dynamics of the spread of 
infectious diseases since epidemiological models are 
used to predict and evaluate other pathogenic behaviors 
[12]. It is quite clear that the specifics of the COVID-19 
pandemic process should be studied and analyzed thor-
oughly, involving the methodology of mathematical mod-
eling. Its essence is to replace the original object with its 
abstract image by a more detailed examination of the 
model based on computer and logic algorithms and study 
the true outbreak process. This approach of design and 
prediction combines the benefits of theoretical construc-
tions with experimental work. The interaction not with 
the process itself, but with its model allows studying its 
situational behavior quickly and inexpensively. Based 
on the strength of the modern mathematical apparatus, 
computational experiments with object models allow 
studying and predicting the phenomenon in detail in all 
its aspects. Mathematical modeling algorithms are stead-
ily improving, capturing increasingly new areas of knowl-
edge. Most models are designed and implemented to 
predict short-term morbidity. That is driven by the needs 
of the anti-epidemics services for the timely preparation 
and implementation of efficient preventive, anti-epidem-
ics, and therapeutic measures [13–16].

In the fight against COVID-19, contemporary tech-
nologies like deep learning, machine learning, and data 

science are helping. The healthcare system is greatly ben-
efited by these strategies. Linear Regression, Support 
Vector Machine, Multi-Layer Perceptron, and Vector 
Auto-Regression are among the most popular methods 
among them. Machine learning can be a helpful method 
for accurately assessing, screening, following, forecast-
ing, and predicting the characteristics and trends of the 
COVID-19, according to Rahman et al. [17].

Deep learning has created a new pathway in the healthcare 
system. The healthcare system has made considerable strides 
toward autonomous disease identification with the use of 
deep neural networks, including tumor detection, cancer cell 
detection, chest disease detection, and genomic sequence 
analysis. A combined architecture of Convolutional Neural 
Network consisting of 20 layers, On the basis of the auto-
matic feature extraction from X-ray pictures, the COVID-19 
identification using Recurrent Neural Networks and Long 
Short-term Memory is significantly impacted [18–20].

Methods
When setting the research problem, the team of authors 
was guided by the following considerations. Since viral 
infections like COVID-19 are characterized by an expo-
nential increase in the number of cases at the initial stage 
of the epidemic, it would be very interesting to know 
the following: is it possible to make some forecast of the 
development of the epidemic from the first data on the 
number of cases? Since the answer to such an important 
question is far from obvious, the authors first wanted to 
answer the following questions:

1.	 Is it possible, based on a limited number of cases, to 
draw conclusions about how the epidemic spread of 
a particular infectious disease corresponds to its viral 
nature?

2.	 Is it possible to make a more or less accurate predic-
tion based on the information already available about 
the behavior of the disease?

Table 1  Selective up-to-date data on the regions of the Russian Federation as of July 19, 2022

Region Infected Active cases Died Recovered Mortality (%)

Russian Federation 18,499,044 + 4200 201,558–30 381,960 + 44 17,915,526 + 4186 2.06

Moscow 2,789,777 + 790 150,294–215 44,340 + 11 2,595,143 + 994 1.59

St. Petersburg 1,542,397 + 521 4,363 + 86 34,256 + 5 1,503,778 + 430 2.22

Moscow region 986,440 + 384 6046–9 15,182 + 1 965,212 + 392 1.54

Sverdlovsk region 449,704 + 169 1895 + 76 10,766 + 2 437,043 + 91 2.39

Nizhny Novgorod Region 425,237 + 16 992–50 11,589 412,656 + 66 2.73

Voronezh region 390,658 + 114 1275–42 8353 381,030 + 156 2.14

Samara Region 386,888 + 81 879 + 41 7918 + 2 378,091 + 38 2.05
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To answer these questions, the authors used a feature 
that is very characteristic of a viral disease, namely, the 
exponential spread of the disease in the initial period of 
the epidemic. Since the growth rate must remain con-
stant in the exponential nature of the epidemic, the 
authors therefore needed to make sure that this rate is 
stable. If its stability is not confirmed, then the expected 
prediction results are unlikely to be relevant since then 
the dynamics of disease growth will differ from the typi-
cal behavior of viral infections.

With an affirmative answer to these key questions, one 
can proceed to forecasting. To predict for a long period, 
it is necessary to have information about the nature of the 
disease. A simpler task is to build a short-term forecast 
for the very near future when there is no doubt that the 
behavior of the infectious agent will not change much. In 
this case, for forecasting, it would be optimal to use sim-
ple mathematical models for the development of infec-
tions, for example, the SIR model.

The study was carried out using the data of Nizhny 
Novgorod region with 11,499 confirmed COVID-19 
cases by early June 2020. Based on monitoring data as 
of June 15, 2020, the number of people infected with the 
virus increased by 330, and the number of people who 
died was 125. The number of patients who recovered and 
were discharged reached 4612 (Fig. 1).

The massive outbreak of COVID-19 pathogen in 
Nizhny Novgorod region has posed many challenges 
to the management of the region and regional health-
care. It required challenging management decisions, 

the important basis of which may be the information 
obtained by the timely use of prognostic algorithms for 
the spread of infection.

The prediction of values for virus disease propagation 
dynamics (VDD) parameters is carried out using a data 
analysis system built according to the following scheme 
(Fig. 2).

The purpose of using a VDD online data analysis sys-
tem is not to design a template that considers as many 
factors as possible, but rather to obtain satisfactory pro-
jections of disease dynamics with minimal time and 
resources. There are a number of prognostic algorithms 
to analyze the perspectives of viral infections, ranging 
from simple to very complex ones. Hence, the major 
problem in developing a prognostic model is to choose 
the best option. In the COVID-19 pandemic, which is not 
only threatening, but is developing rapidly, simple prog-
nostic algorithms describing possible scenarios are the 
most appealing. Such algorithms are particularly conven-
ient for fast-evolving situations.

According to scientists from the Singapore’s University 
of Technology and Design, the COVID-19 outbreak in 
Russia was expected to end in early autumn 2020. As it 
is evident today, that was a miscalculation. Unfortunately, 
the computational algorithm has not been released to the 
public. All what is known is that the SIR model has been 
used, which was once considered the gold standard for 
describing the spread of infectious diseases: Susceptible, 
Infected, Recovered. It was introduced in the 1920’s and 
has an extensive history of application [21]. According to 

Fig. 1  Dynamics of COVID-19 prevalence in Nizhny Novgorod region
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the attitude towards the disease, the population is divided 
in groups: susceptible—S, infected—I, and recovered—R.

The rate of increase in the number of diseases is deter-
mined by the following formula:

Xi = (Xi+ 1−Xi)/Xi

The results of the growth rate of the number of diseases 
are as follows (Fig. 3).

The growth factor X varies within a limited range, 
which confirms the hypothesis that the data in question 
can be considered data on a viral disease. Thus, the 1st 
question can be answered in the affirmative.

Fig. 2  Flow chart of VDD Data Analysis System

Fig. 3  Disease Growth Rate
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To answer the 2nd question, it is necessary to assess 
the stability of the disease growth process. To do this, 
the authors construct the Shewhart (Walter Andrew 
Shewhart) map of this process. To do this, it is necessary 
to calculate the sliding range R using the formula:

where ABC is the absolute value function, Xi, Xi − 1—
current and previous value of the growth factor.

The calculation of the sliding range R is tabulated.

X R

0.0875

0.367816 0.280316

0.277311 0.090505

0.276316 0.000995

0.154639 0.121677

0.303571 0.148932

0.160959 0.142613

0.19174 0.030782

0.133663 0.058077

0.128821 0.004842

0.249516 0.120695

0.174923 0.074594

0.13307 0.041853

0.080233 0.052837

0.078579 0.001653

0.093812 0.015233

0.107664 0.013852

0.12603 0.018365

0.151426 0.025397

0.056544 0.094883

R = ABC(Xi− Xi− 1)

To construct the boundaries of the Shewhart map, it is 
necessary to determine the average value of X (MX) and 
mR.

MX = 0.167; mR = 0.070.
The Shewhart map for average values should contain 

the upper and lower bounds, within which the values 
of the stable process should be contained. If the values 
obtained are outside the process boundaries, then this 
is an indication that the process is affected by special 
causes of variability. In the task of assessing the stability 
of disease growth rate, going beyond the boundaries of 
the Shewhart map will mean that there are no grounds to 
build a disease prognosis, since other extraneous factors 
act in addition to the virus impact factor.

The average moving range is multiplied by 2.66 to 
determine the Upper Natural Process Limit (UNPL), 
which is then added to the X-center map’s line:

UNPL = MX +(2.66*mR) = 0.167 + (2.66*0.070) = 
0.354.

By dividing the average moving range by 2.66 and 
removing the result from the X-center map’s line, one can 
get the lower natural process limit (LNPL):

LNPL =X−(2.66*mR) = 0.167−(2.66*0.070) = − 0.020.
Since the lower natural limit of the process turned out 

to be less than 0, the authors will not take this limit into 
account. As a result, the Shewhart map for the growth 
rate of diseases will reflect the content of Fig. 4.

Analysis of the Shewhart map allows one to note the 
following features of the process:

•	 At the beginning of the process, the value of the 
coefficient of growth in the number of diseases goes 
beyond the upper natural limit of the process.

Fig. 4  Shewhart map for disease growth rate, X
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•	 In the second part of the process timeline, process 
stability increases.

Going beyond the UNPL border of the second point 
is explained by the small amount of information about 
the growth of the disease at the beginning of its spread. 
To test the assumption of a decrease in the variability 
of the disease growth rate, one needs to determine the 
UNPL for points from 10 to 20:

UNPL = MX +(2.66*mR) = 0.167 + (2.66*0.042) = 
0.279.

The validity of the assumption is confirmed—the 
points of the process are within narrower boundaries.

One can draw the conclusion that it is possible to cre-
ate an algorithm for predicting a disease after doing an 
analysis of a disease’s growth rate stability.

In time, it is possible that S changes to I, and I to R. A 
simplified version of the SIR implies that:

1.	 The number of treatments per unit of time is propor-
tional to the total number of infected individuals, i.e., 
each infected person has a fixed probability of recov-
ery in units of time.

2.	 The number of infections is proportional to the prod-
uct S × I. This hypothesis is based on the notion that 
the infection occurs through the so-called unsafe 
contacts, i.e., the contact between susceptible and 
infected individuals. If the total number of contacts 
among persons per unit of time is constant, and if 
the population is sufficiently mixed, the proportion 
of hazardous contacts should be commensurate with 
product S × I.

The mathematical model of SIR, describing the 
dynamics of changes in the number of potential 
patients (susceptible to a given disease), those who fell 
ill, and those who recovered (incl. died), is represented 
by a system of three equations:

where N = S + I + R is the population size; S(t) is the 
number of susceptible individuals at time t; I(t) is the 
number of infected individuals at time t; R(t) is the num-
ber of individuals who have been infected at time t; β—
intensity factor of contacts with subsequent infection; 
γ—intensity factor of infected individuals’ recovery (the 
value inverse of the average duration of the disease).

(1)

dS

dt
=

βIS

N
dI

dt
=

βIS

N
− γ I

dR

dt
= γ I

The first equation indicates that the variation in the 
number of healthy but susceptible individuals decreases 
over time in proportion to the number of contacts 
with infected individuals. After contact, the infection 
occurs, and the susceptible person becomes infected.

The second equation shows that an increase in the 
number of people infected occurs in proportion to the 
number of contacts between healthy and infected indi-
viduals and diminishes as they recover. The propor-
tional coefficient β is one of the principal parameters of 
the mathematical model.

The third equation shows that the number of individ-
uals recovered per unit of time is proportionate to the 
number of infected individuals. In other words, each 
person who has fallen ill must recover after a while. 
The coefficient of proportionality γ characterizes how a 
patient’s body adapts to a new virus [22].

As can be seen from the SIR model, the disease devel-
ops according to the ‘susceptible to become infected 
and then recover’ pattern. The following condition:

Describes the invariability of the population and 
does not take into account deaths from the disease. The 
number of patients at a given time is determined by a 
parameter called the base reproduction number:

It is generally accepted that the most important 
parameters in the SIR model are: characteristic time t—
typical recovery time; reproduction rate R0—the ratio 
between infection and recovery rates. Parameter R0 can 
be considered the average number of people on whom 
an infected person spreads the virus over time before 
recovery [23–25]. The main feature of the SIR model is 
the epidemic transition: the VVD depends radically on 
whether the R is superior or inferior to one. At R0 < 1, 
the epidemic subsides; at R0 > 1, it develops, covering 
a large part of the population. The extent of coverage 
depends on the specific value of R0, which, in turn, 
depends upon the characteristics of the virus, the pro-
portion of the vaccinated or recovered population, and 
measures taken to control the outbreak, i.e., various 
quarantine forms. For example, if R0 = 2 , the number 
of those infected could represent approximately 80% of 
the total population.

Initial data for the first month of the pandemic (from 
2020-04-08 to 2020-05-08) are shown in the table 
(Table 2).

(2)
dS

dt
+

dI

dt
+

dR

dt
= 0

(3)R0 =
β

γ
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Solving the prediction problem begins with determin-
ing the model parameters for the actual disease data. In 
the equation system of the model (1), the expressions for 
the base model parameters β and γ can be obtained (2):

Endpoint dependence data from the SIR model were 
used in epidemic development calculations in the average 
model of epidemic system dynamics in the form of flows 
and stocks [17, 18] (Fig. 5).

Modeling and calculations were performed in iThink 
v9.0.2 software (www.​isees​ystems.​com). This figure 
shows the computational window in iThink (Fig. 6).

Stock S allows one to enter data on the population, 
stock I characterizes the number of cases, stock R char-
acterizes the number of recovered. The Rate of disease 

(4)γ =

dR
dt

I
β =

dI
dt

× N

I × S
+ γ

Table 2  Baseline data on the development of the epidemic

No I R No I R

1 67 13 16 942 60

2 74 13 17 1019 77

3 105 14 18 1122 92

4 138 14 19 1258 109

5 180 14 20 1465 109

6 204 20 21 1554 109

7 272 20 22 1617 177

8 318 21 23 1718 226

9 378 26 24 1834 289

10 432 26 25 2125 318

11 491 26 26 2349 346

12 620 26 27 2466 386

13 733 26 28 2628 398

14 832 28 29 2876 422

15 880 49 30 3117 493

Fig. 5  The average model of epidemic system dynamics in the form of flows and stocks

Fig. 6  The computational window in iThink

http://www.iseesystems.com
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stream determines the number of cases per unit of time, 
and the Rate of recovery stream determines the number 
of recoveries per unit of time. The iThink program allows 
one to describe the relationships between model vari-
ables, as well as derive a system of equations for relation-
ships between variables:

I(t) = I(t—dt) + (Rate_of_disease—Rate_of_recovery) * 
dtINIT I = 624.

INFLOWS:
Rate_of_disease = Bet*I*S/N.
OUTFLOWS:
Rate_of_recovery = I*Gam.
R(t) = R(t—dt) + (Rate_of_recovery) * dtINIT R = 669.
INFLOWS:
Rate_of_recovery = I*Gam.
S(t) = S(t—dt) + (- Rate_of_disease) * dtINIT 

S = 199,769.
OUTFLOWS:
Rate_of_disease = Bet*I*S/N.
Bet = 0.16.
Gam = 0.045.
N = 200,000.
The iThing program allows one to display the results of 

calculations both in the form of a graph with curves and 
in tables (Figs. 7 and 8).

The calculation shall include the following initial 
conditions:

N = 300,000.
I = 48;
R = 8;
S = 299,944;

β = 0.2455e-0.0414t;
γ = 0.0041 + 0.0005t.

Results
Actual data on the development of an epidemic are gen-
erally represented by the following datasets: the num-
ber of infected individuals detected, and the number of 
patients recovered. The number of infected cases (I) is 
defined as the difference between the number of cases 
established and recovered. The dR and dI increments 
were determined using a 3-point scheme that provided a 
more precise definition of derivatives. Parameters γ and β 
were determined by formulas (2). An example of calcula-
tion (the full table comprises 30 rows) of the parameters 
of model γ and β is given in Table 3:

Changes in γ and β parameters during the outbreak 
show that these parameters are not constant in the real 
epidemiological situation, and they present both random 
differences and a trend line (Figs. 9 and 10):

There is a large amount of computing data associated 
with a small number of individuals who recovered during 
the first month of the disease. It allows using only a linear 
function to estimate the calculated data on the number of 
people who recovered from the disease.

The high variability of the data defined the low coeffi-
cient of determination R2 = 0.2.

Data on variation in the intensity of β (B) infection 
allow choosing an exponential dependence as a proxy 
function.

(5)γ = 0.0041+ 0.0005× t

Fig. 7  The results of calculations both in the form of a graph with curves and in tables
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A larger sequence of data on infection intensity β 
(B) results in a higher coefficient of determination, 
R2 = 0.6736.

The results of the calculations are presented as charts 
(Figs. 11 and 12).

The comparison of baseline and calculated number 
of infected I-s allows concluding that the discrepancy 
reaches a significant value at the end of the time range. 
To eliminate this discrepancy, approximate parameter 
β = 0.2455e-0.0414t can be adjusted. By changing this 

(6)β = 0.2455× e−0.0414×t time-related parameter, a value can be found that pro-
vides a better match between the calculated and base-
line data (Fig. 13).

The modified formula is as follows:

In this case, the exponent index coefficient is reduced 
from 0.0141 to 0.039.

By changing one of the approximation formula 
parameters for the infection intensity, a fairly satisfac-
tory agreement between the calculation data and the 
original data can be achieved. As a result, data from the 

(7)β = 0.2455× e−0.038×t

Fig. 8  The results of calculations both in the form of a graph with curves and in tables
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Table 3  Calculation of model parameters

Date Number of people 
recovered

Number of people 
infected

Incremental R Incremental I γ β

R I dR dI γ = dR/I β = γ + dI/I

08.04.2020 13 67

09.04.2020 13 74 0.5 19 0.0074 0.2910

10.04.2020 14 105 0.5 32 0.0067 0.4391

11.04.2020 14 138 0 37.5 0 0.3571

12.04.2020 14 180 3 33 0.0217 0.26087

4.05.2020 386 2466 26 139.5 0.0110 0.0704

5.05.2020 398 2628 18 205 0.0072 0.0904

6.05.2020 422 2876 47.5 244.5 0.0180 0.1111

7.05.2020 493 3117 44 250 0.0152 0.1022

Fig. 9  Changes of parameter γ with time (G(t))

Fig. 10  Changes of the parameter β with time (B(t))
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first month of the outbreak can help determine the fol-
lowing parameters of the simulation model.

t is a model parameter that specifies a discrete calen-
dar time since the start of the epidemic. At any given 
time point, individuals in the susceptible compartment 
may become infected by contacting individuals in the 
infectious compartment.

The equation for involves time-shifted terms and can 
be solved explicitly. The function e to the power of x is a 

(8)
β = 0.2455× e−0.038×t

γ = 0.0041+ 0.0005×

special case of the exponential function, where the num-
ber e, otherwise called the Euler number, acts as the base. 
Otherwise, such a function is called exponential, it can be 
written in several forms: =exp(x).

β—intensity factor of contacts with subsequent infec-
tion; γ—intensity factor of infected individuals’ recovery. 
Based on these dependencies, the expected epidemic 
development for the following month, from May 8 to 
June 8, was calculated (Fig. 14).

The comparative results of the predicted values and 
data on the evolution of the epidemic in May–June 

Fig. 11  Calculation of the number of infected I’s

Fig. 12  Results of calculating the number of R’s
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allow concluding the correspondence between the pre-
dictive data and the actual situation.

To assess the forecast, the following criteria must be 
considered:

where σ is the mean square of the relative prediction error 
of the epidemic indicator; Xip—forecast value of the epi-
demic parameter on the forecast interval; Xi is the actual 
value of the epidemic parameter in the forecast interval.

(9)σ(X) = M

(

Xip − Xi

Xi

)2

The accuracy of the prediction for the number of 
infected I’s and the number of overexposed R’s was esti-
mated (Table 4).

The calculations yielded the following results (Fig. 15):

–	 Mean square of relative error for number of σ(I) 
infected = 0.0129,

–	 The mean square of the relative error of the number 
of people who have had a disease σ(R) = 0.0058.

Fig. 13  Results of calculating the number of I’s infected using the modified formula

Fig. 14  Results of predicting the number of I’s infected
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Discussion
To date, an entire clone of succeeding SIR models using 
more complex prognostic algorithms has been known. 
That is because at different times and under different 
circumstances, scientists have had to consider a variety 
of additional epidemic factors [26–28]:

•	 SIRS—susceptible-infected-recovered-susceptible. 
Suitable to describe the propagation dynamics of 
infections following which only temporary immu-
nity occurs.

•	 SEIR—susceptible-exposed-infected-recovered. It 
considers the particularities of the spread of infec-
tions during a pronounced incubation period.

•	 SIS—susceptible-infected-susceptible. Suitable for 
describing the spread of infections without develop-
ing immunity.

•	 MSEIR—maternal derived immunity-susceptible-
exposed-infected-recovered. The model considers 
children whose immunity is acquired in utero.

Although the mathematical models mentioned are 
more accurate, they do not take into account: the scope 
of anti-epidemics/quarantine measures, such as strict 
observance of social distance and masking regime; 
climatic conditions; the age of the population; logis-
tics of passenger flows between countries and regions; 
immunity features, except for MSEIR; and other factors 

Table 4  Evaluation of the COVID-19 outbreak prediction accuracy

No Xi Xip σIi Xi Xip σRi

1 3376 3199.69 0.0027 510 550.04 0.0062

2 3531 3377.98 0.0019 649 615.34 0.0027

3 3781 3554.57 0.0036 661 685.89 0.0014

4 4039 3728.58 0.0059 694 761.82 0.0095

5 4343 3899.13 0.0104 744 843.26 0.0178

6 4594 4065.39 0.0132 764 930.29 0.0474

7 4511 4226.57 0.0040 1085 1022.97 0.0033

8 4683 4381.91 0.0041 1220 1121.34 0.0065

9 4809 4530.69 0.0033 1323 1225.42 0.0054

10 5040 4672.26 0.0053 1373 1335.18 0.0008

11 5282 4806.03 0.0081 1410 1450.6 0.0008

12 5413 4931.47 0.0079 1539 1571.61 0.0004

13 5572 5048.09 0.0088 1637 1698.13 0.0014

14 5657 5155.49 0.0079 1756 1830.03 0.0018

15 5609 5253.32 0.0040 2006 1967.2 0.0004

16 5569 5341.33 0.0017 2257 2109.46 0.0043

17 5649 5419.28 0.0017 2398 2256.63 0.0035

18 5806 5487.04 0.0030 2470 2408.53 0.0006

19 5852 5544.52 0.0028 2652 2564.93 0.0011

20 5830 5591.7 0.0017 2905 2725.6 0.0038

21 5719 5628.61 0.0002 3244 2890.28 0.0119

22 5778 5655.34 0.0005 3466 3058.72 0.0138

23 5896 5672.02 0.0014 3637 3230.64 0.0125

24 6141 5678.84 0.0057 3693 3405.75 0.0061

25 6402 5676.03 0.0129 3747 3583.76 0.0019

26 6523 5663.86 0.0173 3980 3764.38 0.0029

27 6598 5642.62 0.0210 4252 3947.28 0.0051

28 6718 5612.66 0.0271 4451 4132.17 0.0051

29 6887 5574.33 0.0363 4612 4318.74 0.0040

30 7025 5528.03 0.0454 4795 4506.66 0.0036

31 7300 5474.16 0.0626 4837 4695.64 0.0009

32 7564 5413.14 0.0809 4878 4885.37 0.0000

σ(I) 0.0129 σ(R) 0.0058
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that can significantly affect the accuracy of forecast-
ing. However, major drawback is the complexity of 
their use, which makes them much less convenient for 
forecasting and assessing the situation in extreme situ-
ations, when decisions need to be made in a situation 
where time, resources, and reliable information are not 
sufficient [29–31]. This may be supported by an exam-
ple using the SEIR pattern, whose algorithms were used 
to make decisions regarding the introduction of restric-
tive measures in the city of Chicago. Unfortunately, it 
could not make a significant contribution to stopping 
the spread of the epidemic in the United States [32].

Mathematical modeling of the COVID-19 pan-
demic following the SEIR variant was also performed 
by Celestial experts, considering the peculiarities 
of Chinese population migration, the role of public 
health, and the variability of the incubation period. It 
served as the basis for introducing a system of restric-
tive measures by the country’s government, which 
helped to combat the pandemic. However, any human-
caused suppression of natural epidemic evolution is 
an interference with the free development of events 
that changes the conditions for the formation of herd 
immunity, which may even make the population more 
vulnerable to repeated epidemic waves [33, 34].

Prediction of the outbreak peak in the city of Moscow 
(with an error of 2 days and 174 less cases detected than 
in reality) was obtained by a group of Russian scientists 
from March to May 2020 using amendments from mul-
tiple authors of the SEIR model under the acronyms 
SEIR-D and SEIR-HCD. They proposed a prognostic 
scenario for disease progression in the city of Moscow 
and the Novosibirsk region for different numbers of 

data tested. At the same time, they believe that the use 
of coarser mathematical models that take into account 
fewer homogenous groups is justified only in the case 
of the availability of larger statistical datasets and a 
shorter time horizon. However, for modelling and pre-
diction, additional constraints on model parameters 
other than the mortality parameter were not taken into 
account. Furthermore, they emphasized that there was 
no need to generate cluster calculations [35].

It is common knowledge that the risk of infection is 
by no means constant over time. Control strategies can 
alter the frequency of human interaction, which is con-
sidered to remain constant in simpler models, as a pan-
demic progresses. The frequency of interaction will 
change as a result of countermeasures like masks, social 
isolation, and social distancing, slowing the spread of the 
pandemic. This is connected with the manifestation of 
the phenomenon of nonlinear parametric resonance in 
dynamic systems. If the value of the integral in the math-
ematical expression

is greater than 1, then this means that the disease will 
not disappear, and there may be such resonances. One 
can discover, for instance, that the output is a periodic 
function whose period is a multiple of the input period 
when the changing contact frequency is used as the sys-
tem input. This enables the relationship between the 
period of fluctuations in the frequency of contact and the 
pseudo-period of damped oscillations near the endemic 
equilibrium to be used to explain periodic epidemic 

1

T

∫ T

0

β(t)

µ+ γ
dt < 1 ⇒ lim

t→+∞

(S(t), I(t)) = DFE = (N , 0)

Fig. 15  Results of predicting the number of people who have had a disease
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breakouts of infectious diseases. It is noteworthy that 
the behavior of infectious disease waves can occasion-
ally be chaotic or quasi-periodic [33]. A model for esti-
mating the likelihood of global spread of a pandemic was 
recently developed by Valdez et  al. [36]. How a stable 
equilibrium is eventually established is a crucial question 
for any dynamical system. Do the trajectories change as 
they get closer to the equilibrium state or do they usu-
ally go from one to the other smoothly? The SIR model 
has high oscillatory dynamics, but as the system balances 
over time, the magnitude of these fluctuations reduces.

An attractive aspect of the SIR model is that it can be 
easily modified to simulate vaccination. For this, a special 
additional parameter V for vaccinated persons is usually 
used. Using this approach provides an accurate infection-
free periodic solution for a fluctuating epidemic situa-
tion, which is very attractive even on a global scale if the 
vaccination rate is high enough. Moreover, this approach 
demonstrates that if the level of vaccination is less than 
some critical value, then the disease continues to persist 
[37].

The SIR model extension can be used to describe the 
effects of lockdowns within a population, in particular, 
to simulate the decay of an epidemic over time by repro-
ducing a lattice network model of the spread of an epi-
demic based on concepts taken from percolation theory. 
Percolation theory in statistical physics and mathematics 
defines how a network behaves when new nodes or links 
are added. To accurately determine how far a virus has 
spread throughout a region or the entire country and to 
put appropriate lockdowns in place in each specific loca-
tion, tracking sick people in a population and their move-
ments is crucial [38].

It is noteworthy that the SIR model is the base one. 
In the classical version, it does not provide for the pos-
sibility of vaccinating the population; herd immunity is 
assumed to be acquired naturally. Very often, the stand-
ard SIR model seems too simple and unrealistic, as it 
does not take into account the life cycles of the popu-
lation and assumes that human is contagious immedi-
ately after infection. However, for example, in the SEIR 
model, it is assumed that the infection has a latent 
period, during which individuals are infected, but not 
yet infectious. The SEIR model grows more slowly after 
a pathogen invasion, despite the fact that the SIR model 
and SEIR behave similarly at equilibrium (when the 
parameters are scaled appropriately). This is because 
individuals must first pass through the exposed class 
before they can contribute to the transfer process. In 
addition, one of the serious disadvantages of SIR is that 
people who died from this disease are among the recov-
ered [39]. However, the basic SIR model serves as a 
starting point for developing more complex models that 

include characteristics such as demographic groups 
with different health risks, the impact of public health 
interventions, natural birth and death rates, and the 
impact of stochasticity. New pathogens are constantly 
emerging in the world, which can lead to a pandemic 
and which humanity has yet to defeat. Therefore, sci-
ence does not stand still, offering more and more new 
methods for predicting the behavior of infections, here 
the role of mathematical modeling is great, which is 
based on SIR. The topic considered in the article is very 
extensive and relevant, especially in the context of our 
time, when humanity has been suffering from a corona-
virus infection for several years now.

Thus, the findings of this study confirmed the effective-
ness of using simpler SIR models for operational fore-
casting. Their low precision can be compensated by an 
adaptive parameter calibration based on monitoring of 
current situation and real-time data updates. It should be 
noted that the results of forecasting the number of out-
breaks are entirely consistent with data on the evolution 
of the outbreak. Available data volume was used in the 
following way: in the 1st month of the epidemic to build 
a forecast model, and in the 2nd month – to compare the 
forecast results with actual indicators. The equations of 
changes in the parameters of γ and β models were calcu-
lated based on the data of the first month.

As COVID-19 is a new virus, the R0 parameter is not 
known exactly. The R0 during the outbreak at Wuhan 
City was estimated by different authors between 2.2 and 
6.5. The problem with the coronavirus is that it has a long 
incubation period of up to 14 days, and probably a very 
large proportion of carriers remain asymptomatic. These 
asymptomatic carriers play an active role in spreading 
infections. Different R0 values may be present even in 
the same city, but in different segments of society. Con-
sequently, the issue of determining R0 for coronavirus is 
not completely closed. At R0 < 1, the pandemic subsides, 
while at R0 > 1, it spreads. According to data obtained 
in this study, the coefficient R0 changed exponentially, 
decreasing from R0 = 5.0 to values below 1 with time.

In the present work, the authors could not pass over 
in silence the latest achievements in the field of machine 
learning architecture of neural networks, which could be 
used to support and make the proposed model more effi-
cient. It is no secret that an already trained and debugged 
neural network does not respond well to the transition 
from task to task. Therefore, for each especially specific 
task, this neural network must be retrained. Significant 
progress in solving the problem of universality has been 
made at Google Brain. The neural network, designed 
to work simultaneously on sets of tasks from different 
domains, had a complex architecture with blocks for pro-
cessing different input data and generating a result [40]. 
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Expert level users sometimes need information about 
data markup. These labels are stored in the database and 
are available for use by the orchestrator with datasets 
for training, validation, or testing. The question of what 
data should be marked up can be defined manually or 
programmed into the orchestrator. For this, input pro-
duction data are used when the neural network worked 
correctly, but uncertainly; and when it was confident, 
it did not work right. This is one of the foundations of 
active machine learning architecture.

In implementing a full-scale inclusive health policy, 
the state provided the Nizhny Novgorod region with all 
the necessary organizational, material, and financial sup-
port. The Government of the Nizhny Novgorod Region, 
acting in full compliance with the recommendations of 
the Government of the Russian Federation, has taken 
measures to prevent the spread of the COVID-19 both 
to neighboring regions and the penetration of coronavi-
rus from them. These measures included: severe restric-
tions on the movement of migration flows through total 
checks with the identification of infected and disinfec-
tion of vehicles, the transition of educational institutions 
to an online learning format, the closure of public cater-
ing establishments, shopping centers, etc., the maximum 
transition of workers to teleworking. There was also can-
cellation of public events, limiting the number of people 
who can gather, decrease in public transport, the obliga-
tion to stay at home (especially for children and people 
of retirement age), quarantine measures in health facili-
ties, as well as travel restrictions not only inside country, 
but also abroad. The measures described have been very 
effective in reversing the upward trend in the number of 
cases and deaths from the COVID-19.

The features of the state health policy during the pan-
demic were as follows: a self-isolation regime was intro-
duced in the Nizhny Novgorod region, which led to an 
almost complete obstruction of the movement of the 
population between neighboring regions. Therefore, in 
fact, it was decided not to include other regions when 
considering the application of the simulation model. This 
could certainly make it excessively heavy and not in the 
best way affect the accuracy of forecasting. In addition, 
turning again to the policy of the constituent entity of the 
Russian Federation in the field of healthcare, it should be 
noted that during the pandemic, for objective reasons, 
many medical institutions had to temporarily abandon 
some non-urgent planned surgical interventions and pro-
cedures, since a large number of medical personnel were 
sent to work in COVID-19 hospitals. However, this did 
not lead to any negative consequences associated with an 
increase in mortality or social tension in society. Simi-
lar indirect effects of the COVID-19 epidemic in other 
countries have often been more severe in this respect. 

Poor citizens and disadvantaged groups were more likely 
to miss out on basic health care there. However, in the 
Nizhny Novgorod region and in Russia as a whole, such 
unfavorable phenomena were avoided thanks, among 
other things, to the use of the model proposed here.

As the incidence of COVID-19 declined, the provision 
of medical services, which were temporarily suspended, 
was promptly resumed. Decisions on changes in the pro-
vision of services by the leadership of the Ministry of 
Health of the Nizhny Novgorod Region were made based 
on accurate and timely data on the real demand for the 
main set of essential medical services. The COVID-19 
pandemic has exposed dangerous gaps in health system 
preparedness, coverage, and access to health services. 
Simulation models must play an objectively important 
role in the prevention of such risks.

Conclusions
In the event of an epidemic, forecasting is necessary to 
determine how many hospital beds, ventilators, and how 
many months’ worth of supplies of medical personnel 
protective equipment should be made. It is up to officials 
to determine if the current limitations and prohibitions 
are adequate or if more need to be put in place. To maxi-
mize productive efforts, judgments that turned out to be 
useless should be canceled so that the model accurately 
captures reality and may be used to determine the effec-
tiveness of each newly adopted measure. With the help 
of both the SIR model and its other modifications, a lot 
can be explained and taken into account, but they can-
not absolutely accurately predict something in the distant 
future. It is a matter of finding the sweet spot where the 
system is easy enough to learn to be accessible. Alexan-
der Pope wrote about this: “There is a certain majesty in 
simplicity which is far above all the quaintness of wit.”

The algorithm described in the paper provides a real 
quantitative basis for prediction, which is required to 
understand the VDD and the impact of surveillance 
activities on it. At the same time, it is important to note 
that the key information for decision-makers in the 
region should be real-time follow-up data on the epide-
miological situation. Using the SIR model, a prognosis 
algorithm was proposed based on real-time COVID-19 
data. The data analysis revealed an interesting feature: 
the β infection parameter is not a constant but decreases 
exponentially. However, a thorough examination of this 
item is beyond the scope of this paper. The reliability 
of the proposed algorithm is rather high, even though 
the results can naturally differ numerically over a long 
forecast period. Over a 10–15  day horizon, the fore-
cast results normally coincide with the actual data. The 
authors believe that the model-based approach for dis-
ease prediction is much more valuable than the use of 
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formal mathematical methods only since it enables func-
tional inter-relationships between epidemiological vari-
ables to be taken into account.

Thus, in case of repeated pandemic waves of new coro-
navirus infection, the proposed algorithm can be effec-
tively used as a convenient prognostic tool to timely 
adopt adequate measures and prevent the spread of 
COVID-19 both in a particular region and in the country 
in general. However, despite the great importance that 
predictive algorithms have, it should be clear that they 
can never be an integral substitute for objective reality. 
Their role is to serve as a useful tool for obtaining further 
information, which will certainly prove useful in control-
ling the spread of this dangerous infectious disease. To 
enhance the effectiveness of these measures, it is advis-
able to establish a constant and close professional inter-
action between epidemiological predictors and public 
health authorities. After emerging out of this crisis, it is 
of paramount importance to continue research problem-
atic aspects of forecasting.
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