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Abstract 

Background:  In the early stages of the COVID-19 pandemic our institution was interested in forecasting how long 
surgical patients receiving elective procedures would spend in the hospital. Initial examination of our models indi-
cated that, due to the skewed nature of the length of stay, accurate prediction was challenging and we instead opted 
for a simpler classification model. In this work we perform a deeper examination of predicting in-hospital length of 
stay.

Methods:  We used electronic health record data on length of stay from 42,209 elective surgeries. We compare differ-
ent loss-functions (mean squared error, mean absolute error, mean relative error), algorithms (LASSO, Random Forests, 
multilayer perceptron) and data transformations (log and truncation). We also assess the performance of two stage 
hybrid classification-regression approach.

Results:  Our results show that while it is possible to accurately predict short length of stays, predicting longer length 
of stay is extremely challenging. As such, we opt for a two-stage model that first classifies patients into long versus 
short length of stays and then a second stage that fits a regresssor among those predicted to have a short length of 
stay.

Discussion:  The results indicate both the challenges and considerations necessary to applying machine-learning 
methods to skewed outcomes.

Conclusions:  Two-stage models allow those developing clinical decision support tools to explicitly acknowledge 
where they can and cannot make accurate predictions.
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Background
At the beginning of the COVID-19 pandemic, surgi-
cal leadership was tasked with determining which elec-
tive surgeries would necessitate the usage of additional 
resources, with the intention of potentially delaying them. 
In response, we developed and implemented a clinical 

decision support (CDS) tool to predict anticipated length 
of stay (LOS), need for intensive care unit, need for 
mechanical ventilation and need to be discharged to a 
skilled nursing facility [1]. Overall, the model had clini-
cally meaningful predictive performance (high sensitivity 
of the high-risk group and high negative predictive value 
of the low-risk group) and has been used by our opera-
tions team to make scheduling decisions when hospital 
resources became strained during various waves of the 
pandemic.
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Initially, we had intended to predict hospital LOS as a 
continuous outcome. However, internal testing yielded a 
poor performing model. Given the need to quickly imple-
ment a CDS tool we instead categorized LOS into 4 cat-
egories (0–2 days, 2–4 days, 4–7 days and 7 + days) and 
treated it as a classification task (Additional file 1: Tables 
S1 show the classification results on the test data). These 
cut-points were subjectively chosen, based on guidance 
from the clinicians that would be using the CDS. Our 
treatment of LOS is not unique, as many other stud-
ies have modeled LOS as a categorical variable [2–7]. 
While most statistical learning algorithms can be equally 
applied to classification and regression tasks, the right 
skewness (i.e. long tail) of LOS makes it challenging to 
model. Methods that have been applied to right-skewed 
data include truncation or log transformation [8] or the 
application of non-parametric machine learning meth-
ods [9]. Other modelling approaches also include time-
to-event based Cox models [10] and discrete time logistic 
regression models [11]. However as explored below, these 
approaches do not always achieve ideal performance.

Predicting LOS as a continuous outcome has the 
advantage of being able to provide the end user of a CDS 
with a more precise estimate of the outcome. As such, in 
this paper, we systematically consider different options 
for predicting in-hospital LOS after an elective surgery. 
Since we had to quickly implement a model in response 
to the COVID-19 pandemic, we were not able to consider 
more subtle questions of optimal modelling strategy. 
While the original model had good classification—par-
ticularly for the extreme long and short LOSs (Additional 
file  1: table  S1)—we wanted to see how best to develop 
a model that predicted LOS as a continuous outcome. 
Ultimately we approach modeling LOS as a two-stage 
process, first separating the majority of patients with a 
short LOS from the minority of patients with a long LOS. 
Then we seek to predict the continuous response for the 
majority with a short LOS, tacitly acknowledging that 
accurately predicting the long LOS is not possible. A two-
stage model is commonly applied to skewed outcomes in 
the health-economic area where the response variables is 
a combination of excessive zeros and positively skewed 
distribution. Smith et  al. [12] used simulation studies 
to show that a two-stage approach can produce results 
that are more robust. We tailored this idea to the clinical 
setting, where we strike a balance between discrimina-
tion of prolonged LOS and precise prediction of major-
ity of population. In other settings, we [13], and others 
[14], have used a two-stage models to predict skewed 
outcomes arising from zero-inflated problems in which 
excessive zeros are first modelled by a classifier and then 
positive values are modelled by a regressor. In our study, 
there is also excessive short LOSs resulting in imbalanced 

data as excessive zeros in the zero-inflation problem. We 
first identified short LOSs and modelled those samples by 
a regressor. We detail the impact of different considera-
tions such as loss-function, algorithm, data transforma-
tions, and data set-up. We ultimately conclude—based 
on our data—that a two-stage model that first separates 
out long stays from shorts stays and then tries to pre-
dict only on short stays has the most practical real-world 
performance.

Materials and methods
Setting
We abstracted data from the Duke University Health 
System (DUHS) electronic health record (EHR) system. 
DUHS consists of three hospitals—1 tertiary care center 
and 2 community hospitals—and has had an integrated 
EPIC EHR system since 2014.

Data
Case definition
As described previously [1], we abstracted informa-
tion on all elective inpatient procedures performed at a 
DUHS hospital from January 1 2017 to March 1 2020. 
While there is no formal definition of an elective proce-
dure, we included all procedures that had a designation 
of “Surgery Admit Inpatient.” This is an indication that 
the patient was admitted for the purposes of surgery and 
not via, for example, the emergency department. We 
included both adult and pediatric procedures.

Definition of predictors
The intent of the CDS tool was to make predictions the 
week prior to when the case was scheduled. As such, 
we abstracted patient and procedure specific informa-
tion known prior to the procedure. This included demo-
graphic characteristics, procedure CPT codes, service 
line, medication history, comorbidities and service utili-
zation history. This resulted in a total of 44 unique pre-
dictor variables. (See Additional file 1: Table S2).

Analytic approach
We first describe the analytic data. We then took a sys-
tematic approach to considering different options for 
modeling LOS as outlined in Table 1. To do so, we first 
divided the data randomly into training (2/3) and test-
ing (1/3) sets. We used fivefold cross-validation on the 
training data to optimize each model’s performance and 
compare the overall performance of each model. After 
choosing the best modeling approach, we applied it to 
the held out testing set. We used bootstrap resampling to 
estimate 95% confidence intervals for the final estimates.



Page 3 of 12Xu et al. BMC Medical Informatics and Decision Making          (2022) 22:110 	

Algorithm choice
We first considered the performance of three different algo-
rithms: LASSO regression [15], Random Forest (RF) [16], 
Multi-Layer Perceptron (MLP). Each approach has their 
own relative strengths and weaknesses when considering 
skewed data. LASSO is a form of linear regression that con-
trols overfitting by penalizing the sum of the norm of the 
regression coefficients. While a powerful algorithm, it can 
be susceptible to outlier outcome values and may require 
specific transformations (e.g. log transformation) to satisfy 
linear assumption. It also ignores interaction terms unless 
manually added. In comparison, non-parametric methods 
do not make distributional assumptions nor require trans-
formation of outcomes and predictors. RF is an ensemble 
tree method that is less influenced by outliers. However, 
this can also make modeling such tails more challenging. 
Finally, an MLP is a deep-learning, neural network, model 
that can capture complex relationships. However, they 
also require much more data than LASSO and RF due to 
the larger number of parameters and can become incon-
sistent or unstable given different initial status [17]. While 
non-parametric methods offer more flexibility with fewer 
assumptions, producing strong results [18, 19], regression 
models can also produce reliable results given appropriate 
transformation of outcomes [20] and tend to do better for 
extrapolating to testing samples beyond the range of train-
ing samples [21]. We used fivefold internal cross-validation 
to optimize the tuning parameters of each algorithm.

Loss function
While mean squared error (MSE) is the most commonly 
used loss function for continuous outcomes, when the 
data are skewed, loss functions can have different inter-
pretations and performance. As such, we considered two 
additional loss functions: mean absolute error (MAE) 
and mean relative error (MRE). These loss functions are 
defined as follows:

MSE =

∑n
i=1

(
ŷi − yi

)2

n

MAE =

∑n
i=1

|̂yi − yi|

n

where n is the number of samples and ŷi is the predicted 
LOS of the i th observation and yi is the actual LOS of 
the i th observation. One primary drawback of MSE 
with skewed data is that it tends to be more influenced 
by errors from extreme values. Conversely, MAE does 
not suffer from this. Moreover, the clinical interpretation 
of MAE is the most straightforward, that is the average 
deviation from the true LOS. MRE is a less commonly 
used loss function. It represents the proportion of predic-
tion errors compared to the true values and in contrast 
to MSE is more likely to be influenced by smaller values.

We note that these loss functions were not designed 
to optimize the individual algorithms, but to guide our 
overall modeling process. These loss functions estimate 
error across the domain of the outcome while we ulti-
mately focused on those with short LOSs (0–7  days). 
Thus, we designed a customized loss function to evalu-
ate the two-stage model as a whole (see details in Cus-
tomized Loss Functions).

Data manipulation
As others have shown [8], performing transformations 
of the outcome can improve modeling performance. 
Taking the log of a right skewed outcome can produce 
a more symmetric distribution [22], while truncating 
the outcome to remove outliers can alleviate the influ-
ence of extreme values [23]. In a regression context a 
log transformation is similar to modelling LOS via a 
Poisson or negative binomial regression model which 
others have done [8, 24]. We assessed both using a 
log transformation as well as a truncation of the out-
come in the training data and compared the model 
performance given untransformed, truncated, log-
transformed data. We used a truncation threshold set 
to 7 days, i.e., LOS > 7 days were reduced to be 7 days in 
the training set while the outcome values in the testing 
set still remained the same. The base of log transforma-
tion in our study was the natural log.

MRE =

∑n
i=1

|̂yi−yi|
yi

n

Table 1  Overall analytic approach

This table guides the analytic approach in this study. We compared different algorithm choices, loss functions, data manipulations and modeling approaches

Algorithm choice Loss function Data manipulation Modeling approach

LASSO Mean squared error (MSE) Original data One-stage approach

Random forest Mean absolute error (MAE) Log data Two-stage approach

Multilayer perceptron Mean relative error (MRE) Truncated data
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Two‑stage approach
Finally, we assessed a two-stage approach for modeling 
LOS. In the first stage we constructed a classifier to pre-
dict a patient would have a short or long LOS (defined 
as >  = 7 days). The decision rule of identifying prolonged 
LOS was based on the obtaining a sensitivity of 15% for 
prolonged LOS on the training dataset. We chose this 
threshold based on inspection of the precision-recall 
curve (See Fig.  7). Next, among those with a predicted 
short LOS we fit an RF regressor to predict actual LOS. 
We again considered the impact of different data con-
structions for performing this two-stage model.

We show the modeling process for the two-stage 
model in Fig.  1. In stage 1, we used all of the training 
samples to train the classifier. In stage 2 we used only 
the training samples with a LOS <  = 35 days to train the 
regressor. The threshold of the regressor was set higher 
than the threshold of the classifier to expose the regres-
sor more frequently to rare cases. The participants with 

extremely prolonged LOS (LOS > 35  days) were not 
included in the regressor. To generate a new prediction 
in the test data, the classifier first classified all of the 
testing samples and only those classified as short LOS 
were fed into the regressor. The regressor then made 
continuous predictions to those labeled as short LOS.

Customized loss function
In order to evaluate the two-stage model we intro-
duce a truncated loss function based on a hinge loss. 
We ascribe no loss if both predictions and true out-
comes were larger than the threshold of the classifier 
(i.e. 7 days). Otherwise, we applied the MAE. If the true 
outcome >  = 7 days but the prediction < 7 days, we only 
measured the difference between the prediction and 
the threshold of the classifier.

All analyses were performed through Python 3.7. This 
work was determined exempt by our institution’s IRB.

Fig. 1  Flow chart of the two-stage model
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Results
We identified 42,209 elective procedure performed at 
DUHS hospitals from January 1, 2017 to March 1, 2020. 
Table  2 has basic descriptions based on LOS. There 
were demographic differences among those with longer 

and shorter stays indicating that the input variables 
should be useful for generating predictions.

The distribution of the LOSs is shown in Fig.  2. As 
expected LOS is highly right skewed with the majority 

Table 2  Descriptive statistics of predictors by LOS*

*Procedure data, medicine history and comorbidities are not included in this table

**NHW: Non-Hispanic Whites

***NHB: Non-Hispanic Blacks

0–2 days
(n = 15,696)

2–4 days
(n = 15,122)

4–7 days
(n = 7226)

 >  = 7 days
(n = 4165)

Demographics

 Age, years (mean, SD) 58.09 (17.59) 57.12 (19.10) 57.07 (20.19) 57.40 (21.44)

 Sex = female (n, %) 7792 (49.6%) 8839 (58.5%) 3820 (52.9%) 1873 (45.0%)

Race (n, %)

      NHW** 12,020 (76.6%) 10,646 (70.4%) 5173 (71.6%) 2935 (70.5%)

NHB*** 2567 (16.4%) 3364 (22.2%) 1477 (20.4%) 869 (20.9%)

      Hispanic 342 (2.2%) 371 (2.5%) 181 (2.5%) 99 (2.4%)

      Other 767 (4.9%) 741 (4.9%) 395 (5.5%) 262 (6.3%)

Smoke status = Ever (n,%) 4887 (31.1%) 4893 (32.4%) 2707 (37.5%) 1741 (41.8%)

BMI (n, %)

      Underweight 478 (3.0%) 605 (4.0%) 389 (5.4%) 311 (7.5%)

      Normal 3248 (20.7%) 3235 (21.4%) 1767 (24.5%) 1108 (26.6%)

      Overweight 5076 (32.3%) 4319 (28.6) 2167 (30.0%) 1253 (30.1%)

      Obese 6866 (43.7%) 6950 (46.0%) 2895 (40.1%) 1490 (35.8%)

Service utilizations

      Hospital encounter counts (mean, SD) 0.24 (0.74) 0.26 (0.73) 0.36 (0.93) 0.55 (1.13)

      Ambulatory encounter counts (mean, SD) 15.76 (17.12) 16.77 (18.29) 17.99 (19.45) 20.67 (22.90)

      Emergency encounter counts (mean, SD) 0.16 (0.83) 0.20 (0.83) 0.23 (0.86) 0.32 (2.20)

Fig. 2  Histogram of LOS in Days (X-axis of left in original scale and right in logarithmic scale) Note the x-axis of the left hand side is truncated to 
35 days
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of patients has 0–4 days of LOS and 9.9% patients hav-
ing a LOS >  = 7. The longest LOS was 323.35 days.

Algorithm comparison
We compared the performance of LASSO regression, RF, 
and MLP algorithm. We then compared the best models 
selected from each algorithm through CV results on the 
training set, shown in Table 3. Across all loss functions, 
RF had the best performance, and we chose it as the algo-
rithm to use going forward.

Loss functions
We further explored the impact of using different loss 
functions by grouping the evaluation metrics into bins 
for people with LOSs of 0–2, 2–4, 4–7 and >  = 7  days, 
respectively (Fig.  3). This highlights how each evalua-
tion metric focuses on different clinical representations. 
For example, MSE has a greater loss on larger LOSs while 
MRE has greater loss on the smaller LOSs. Thus, if we 
choose to select our procedures based on MSE, our pro-
cedures will try to perform the best for extreme values 
(> = 7 days). Conversely, when evaluating based on MRE, 
our procedures seek to perform best on shorter LOSs 
(0–2 days).

After consultation with clinical collaborators, we ulti-
mately decided that MAE was the best selection metric 
to use. We chose it because (1) it has the most straight-
forward clinical interpretation as the absolute difference 
between prediction and true values in days, and (2) MAE 
more evenly assigns weight on longer LOSs values (com-
pared to MSE) while still placing greater weight on the 
longer LOSs (compared to MRE).

Data set‑up
Figure  4 shows a comparison of the predicted versus 
observed values from the RF model. It is clear that the 
longer LOSs are under-predicted. In particular, it was 
very hard for our model to make predictions greater than 
14 days (which account for only 0.62% of all encounters).

We assessed the impact of a log transformation 
and a truncation at 7  days. Table  4 presents the mod-
els’ MAE and calibration as well as sensitivity for pre-
dicting >  = 7  days. The log and truncated models did 

not meaningfully improve modeling performance. In 
particular, the truncated model had a sensitivity of 0 
since the model was not exposed to observations with 
LOS >  = 7  days. The lack of ability to predict patients 
with prolonged LOS might cause underestimation of 
overall hospital utilization.

Two‑stage model
Finally, we considered a two-stage modeling approach 
where we first generated a classifier to discriminate long 
from short LOS (stage 1) and then a regressor to predict 
LOS as a continuous variable among those with a short 
LOS (stage 2). We set LOS > 7  days as prolonged LOS 
and LOS < 7 days as short LOS. This threshold was based 
on empirical examination of the modeling results where 
most models have trouble predicting LOS of greater than 
7  days (Fig.  4) and based on consultation with clinical 
collaborators.

We set the decision rule of the classifier by the sensitiv-
ity of prolonged and short LOSs. Based on the consist-
ency with the one-stage model, we set this threshold to 
99%. To make continuous predictions for the majority of 
observations, we selected a threshold with sensitivity of 
short LOS = 0.99 based on the fivefold internal CV on the 
training dataset.

To allow the model to predict beyond 7 days, we used 
training data within the regressor higher than the thresh-
old of the classifier. Here, we referred the threshold of the 
regressor to the upper boundary of the training data fed 
into the regressor. The increased threshold of the regres-
sor can also expose the model to more samples of rare 
cases. This method improves the model performance 
for those with 5–7  days LOS (Fig.  5) which results in 
decrease of MAE (Table 5).

Besides the decrease in MAE, increasing the thresh-
old when training the regressor also has an advantage 
of improving sensitivity and calibration slope (Table  5). 
If the thresholds of the regressor and the classifier were 
equal, the model would underestimate higher values. 
The increased threshold adds more variability to the data 
while the majority predictions remain accurate. The final 
regressor threshold was set to 35 days.

One thing we noted was that using the natural data 
tended to overestimate the lower values. Log transfor-
mation eliminates this problem to some degree since log 
transformation enlarges the difference between lower 
values and shrinks the difference between large val-
ues. Figure  6 shows the trend of truncated MAE as the 
threshold of regressor increases. Although the MAE of 
untransformed data increases as the threshold increases, 
MAE of log transformed outcome decreases. Thus, log 

Table 3  Comparison of model performance between lasso, 
random forest and multilayer perceptron

Bolded values indicate minimized loss

Lasso Random forest Multilayer 
perceptron

CV-MSE 22.924 21.185 24.370

CV-MAE 1.958 1.877 2.305

CV-MRE 1.006 0.972 1.036
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transformation has the advantage eliminating the adverse 
effects of introducing more extreme values.

Results on the testing data
Based on the tests performed on the training data we 
concluded that the best performing model is a two-stage 
model, using RF and log transforming the outcome on 
the second stage. We used the one-third held-out dataset 

to evaluate the performance of this model. The average 
precision (AP) of the classifier is 0.38 (Fig. 7).

The truncated MAE is 1.1 on the testing dataset, indi-
cating there is 1.1 days error of LOS prediction on aver-
age. The calibration slope is 0.44 indicating that there is 
still some under-prediction of LOS. This is primarily due 
to LOS > 4 days (Fig. 8).

The truncated MAE for those with 4–7  days LOS is 
1.76 days while the MAE for those with 0–4 days is less 

Fig. 3  Stratified evaluation metrics of the full model
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than 1  day (Table  6). Our two-stage model performs 
slightly better than the one-stage model with log data. 
Log transformation improves the model performance 
significantly on the majority of data (0–4  days) while it 
performs worse on longer LOSs (> 4  days). The two-
stage model compensates for the worse performance on 
LOS > 4 days to some degree. Patients with a larger true 
LOS are more likely to be misclassified as prolonged 
LOS (shown as horizontal blue dotted line in Fig. 8). Our 
model can predict patients with 0–4  days well while it 
tends to underestimate the LOS > 4 days.

Finally, we tested the performance of the two-stage 
model during the COVID-19 period. While the LOSs 
stayed nearly identical (pre-March 2020: 2.30 [1.32, 4.18], 
post-March 2020: 2.29 [1.30, 4.18]) overall model perfor-
mance was meaningful worse during the COVID-19, par-
ticularly for shorter LOSs (Table 7).

Fig. 4  Predictions versus true values of untransformed data (RF)

Table 4  Comparison between untransformed, log, truncated, and two-stage outcome

*This is the two-stage loss function described in the methods section

Untransformed LOS Log LOS Truncated LOS Two-
stage 
model

Customized loss function* 1.338 1.126 1.183 1.118

MAE 1.880 1.695 1.796 1.730

Calibration 0.528 0.429 0.317 0.418

Sensitivity < 7 days 0.970 0.990 1.00 0.990

Fig. 5  The comparison between different thresholds of the regressor and untransformed and log transformed LOS
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Discussion
In this paper, we explored the challenge of developing 
a predictive model for a highly skewed outcome, LOS. 
When we first developed our clinical decision support 
tool, we decided to change LOS into a categorical out-
come because we were not able to derive a satisfactory 
prediction when treating it as a continuous outcome [1]. 

However, discretizing a variable leads to loss of informa-
tion and is generally not recommended [25]. Based on 
our empirical study, we found that the best approach was 
a hybrid two-stage approach that first uses a classifier to 
identify shorter LOSs and then uses a regressor to more 
finely predict the actual LOS. While the classification 
model we originally implemented had reasonably good 
performance—particularly for the shortest and longest 
LOSs—the continuous model adds additional predictive 
specificity for shorter LOS less than 7 days. Specifically, 
our final MAE suggests that our models predictions are 
off by less than 1 day (~ 16 h) for LOS < 4 days and less 
than 2 days for LOS between 4 and 7 days.

This work highlights some of the challenges with pre-
dicting LOS. There are many analytic choices one has to 
make when modeling such as outcome: including algo-
rithm type, loss function, and variable transformations 
(see Table  1). Each of these choices had impacts on the 
final model. In our analysis, we concluded that RF per-
formed best. While there is no universally best algorithm, 
in our setting, RF strikes a balance between being non-
parametric (compared to LASSO) and less data demand-
ing (compared to MLP).

Table 5  Different thresholds for the classifier and the regressor in the two-stage model

Untransformed LOS Log LOS

7 21 35 7 21 35

MAE 1.150 1.202 1.242 1.175 1.119 1.118

Calibration 0.339 0.454 0.476 0.320 0.408 0.418

Sensitivity < 7 days 0.991 0.984 0.978 0.991 0.989 0.988

Fig. 6  Truncated evaluation metrics of different regressor thresholds

Fig. 7  Precision-recall curve (average precision = 0.38) and receiving operating characteristics (AUC = 0.80) of the classifier (stage 1) on the testing 
dataset
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We decided to use a MAE as our evaluation loss func-
tion. While MSE is most commonly used for continuous 
outcomes, it is recognized [24] that it is not appropriate 
for skewed outcomes since it places too much weight 
on the tails. We considered MRE, however note that it 
placed most of its weight on the shorter LOSs, inappro-
priate for our use case.

Finally, we assessed the impact of transformations of 
the outcome by log and truncation. While others have 
had success with such transformations [8, 9, 26], they 
did not perform as well in our data. Interestingly, the log 
transformation was preferable within the context of the 
two-stage model suggesting that such a transformation is 
only useful when the skew is minimal.

Ultimately, we concluded that we could not create a 
single continuous prediction model, settling on a two-
stage model. While such models are typically used in 
zero-inflated problems [12, 14], we applied the two-stage 
model to identify a space where we could make finer 
predictions and where we could not. In particular, we 
concluded that we could predict LOSs less than 7  days 
accurately but could not predict those longer than that. 
While the improvement in MAE from the one to two 
stage model is statistically different, the difference is not 
very clinically meaningful. Since long LOSs are relatively 
rare, the miss-predictions do not overly affect the esti-
mation of MAE. Based on reported work by others, it is 
likely that others would similarly benefit from a two-stage 
approach. Liu et  al. [8] developed a series of regression 
models for LOS, reporting a MSE of 29,000, with only 
55% of predictions being within 48 h of the actual LOS. 
Similarly, Verburg et al [24]. reported MAEs of no-better 
than 3 days for predicting ICU LOS. By implementing a 
one-stage model, we believe that we would be mislead-
ing clinical users. Instead, by choosing a two-stage model 
we are acknowledging that we cannot make accurate pre-
dictions for the longer LOSs. Ultimately, we believe that 
doing this ultimately helps to engender more trust in a 
CDS tool.

Fig. 8  Predictions versus true values on the testing dataset

Table 6  Stratified customized loss functions (MAE) of one-stage and two-stage models with 95% bootstrap confidence intervals

One-stage model (log data) Two-stage model (log data) LASSO RF MLP

0–2 days 0.744 (0.739, 0.749) 0.736 (0.731, 0.741) 1.596 (1.585, 1.607) 1.313 (1.305, 1.321) 1.638 (1.626, 1.648)

2–4 days 0.713 (0.709, 0.718) 0.705 (0.700, 0.709) 1.046 (1.037, 1.058) 1.035 (1.027, 1.047) 1.155 (1.142, 1.168)

4–7 days 1.782 (1.771, 1.794) 1.760 (1.750, 1.772) 1.492 (1.474, 1.509) 1.586 (1.571, 1.600) 1.730 (1.713, 1.746)

0–7 days 0.927 (0.922, 0.930) 0.915 (0.911, 0.919) 1.358 (1.351, 1.366) 1.254 (1.248, 1.261) 1.464 (1.456, 1.471)

Table 7  Performance of two-stage model during COVID-19 
period

Two-stage model 
(01/01/17–03/01/20)

Two-stage model 
(03/01/20–
02/22/22)

0–2 days 0.736 (0.731, 0.741) 2.298 (2.280, 2.313)

2–4 days 0.705 (0.700, 0.709) 1.251 (1.236, 1.263)

4–7 days 1.760 (1.750, 1.772) 2.324 (2.315, 2.333)

0–7 days 0.915 (0.911, 0.919) 1.934 (1.922, 1.944)
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Given the nature of our predictor data, which consisted 
of pre-surgical information, it is not surprising that it is 
harder to predict longer LOSs. It is likely that if someone 
has a longer LOS that is going to be due to post-surgi-
cal complications that may not be predictable based on 
pre-procedure information. It is also possible that the 
sample size of patients with prolonged LOS will not be 
large enough to capture the characteristics of this sub-
group of patients. Essentially, one can think of the clas-
sifier (i.e., the first-stage of the two-stage model), as first 
predicting likelihood for surgical complications. If there 
is low likelihood, we predict LOS, if there is high likeli-
hood we acknowledge we cannot do any better given the 
information we have. Kumar et  al.27 developed a two-
stage model that first predicted LOS before admission 
and then utilized predictors 5 days after admission. The 
predictors after admission improved the predictive accu-
racy of prolonged LOS. Such an appropriate would not 
be applicable here because we wanted to be able to assess 
LOS prior to surgery. However, it does confirm the chal-
lenges of predicting longer LOSs.

There is a trade-off between precise prediction on pro-
longed and short LOS. For example, if we want to predict 
as many patients who tend to have a high LOS as pos-
sible, we can adjust the sensitivity of the classifier in our 
two-stage model to be higher. However, such an approach 
will misclassify more patients into the prolonged group 
and they will not receive a continuous prediction. The 
clinical assumption we made in the two-stage model is 
that the differences within the prolonged LOS group 
is less important from an overall resource management 
perspective, given the relative infrequency of prolonged 
LOS hospitalizations. We can adjust the model depend-
ing on the specific clinical requirements.

While our study provides some interesting insights 
into modeling LOS, there are some important limita-
tions. Most importantly, one cannot conclude that the 
two-stage approach outlined herein will be optimal in 
other settings. Instead, we outline key principles for 
consideration when approaching this problem. It is 
likely that in different settings different workflows will 
be optimal. Concerning our own findings, we still under 
predict longer LOSs within 7  days, indicating that the 
potential for further optimization exists. Moreover, our 
modeling strategy, explicitly acknowledges that we can-
not predict long LOS with any fidelity. Future work is 
needed to better model rare tail events. Additionally, 
we suggest, anecdotally, that that the two stage model 
is preferable since it is likely to engender more trust in 
a CDS. This is something worthy of explicit study from 
an implementation science perspective. Finally, while 
the model performs well on test data, assessment dur-
ing the COVID-19 period showed worse performance, 

highlighting challenges of transporting models devel-
oped on pre-COVID-19 data into the COVID-19 
period.

In conclusion, we have outlined different approaches 
for modeling a highly right skewed data like LOS. The 
optimal approach is driven by both empirical factors as 
well as the clinical use-case. We settled on a two-stage 
model that first classified people into long and short 
LOSs and then predicted actual LOS for those with a 
short LOS. By doing so, we make an explicit acknowl-
edgement that we cannot predict long LOSs accurately. 
Doing so will hopefully engender more trust with the 
CDS tool. While the final model is specific to our insti-
tution and not meant to be generalizable, the modeling 
approach and various considerations highlight some 
of the complex challenges one needs to consider when 
developing CDS tools.

Abbreviations
CDS: Clinical Decision Support; CV: Cross Validation; DUHS: Duke University 
Health System; EHR: Electronic Health Record; LOS: Length of Stay; MAE: Mean 
absolute error; MLP: Multilayer perceptron; MRE: Mean relative error; MSE: 
Mean squared error; RF: Random Forests.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12911-​022-​01855-0.

Additional file 1. Table S1: Performance of the original model when clas-
sifying length of stay. Table S2: Variables used in the prediction model.

Acknowledgements
None.

Author contributions
ZX: Designed and performed initial data analyses. CZ: Performed additional 
data analysis. CS: Helped interpret results. RH: Helped edit manuscript and 
interpret results. BAG: Conceived and helped write manuscript. All authors 
read and approved the final manuscript.

Funding
This research did not receive any specific grant from funding agencies in the 
public, commercial, or not-for-profit sectors.

Availability of data and materials
The source data contain protected health information (PHI) and are not 
available for sharing. Analytic code are available upon request from Benjamin 
Goldstein at ben.goldstein@duke.edu.

Declarations

Ethics approval and consent to participate
All work was performed in accordance with all relevant ethical guidelines. 
Experimental protocols were approved by the Duke University Health System’s 
(DUHS) IRB under protocol number: Pro00065513. The consent to participate 
requirement for the study was waived by the DUHS IRB.

Consent for publication
Not applicable

https://doi.org/10.1186/s12911-022-01855-0
https://doi.org/10.1186/s12911-022-01855-0


Page 12 of 12Xu et al. BMC Medical Informatics and Decision Making          (2022) 22:110 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Competing interests
The authors have no conflict of interests to declare.

Author details
1 Department of Biostatistics and Bioinformatics, Duke University, 2424 Erwin 
Road, Suite 1104, Durham, NC 27705, USA. 2 Duke Clinical Research Insti-
tute, Duke University, Durham, NC, USA. 3 Department of Population Health 
Sciences, Duke University, Durham, NC, USA. 4 Department of Surgery, Duke 
University, Durham, NC, USA. 5 Department of Electrical and Computer Engi-
neering, Duke University, Durham, NC, USA. 

Received: 30 November 2021   Accepted: 19 April 2022

References
	1.	 Goldstein BA, Cerullo M, Krishnamoorthy V, et al. Development and per-

formance of a clinical decision support tool to inform resource utilization 
for elective operations. JAMA Netw Open. 2020;3(11): e2023547. https://​
doi.​org/​10.​1001/​jaman​etwor​kopen.​2020.​23547.

	2.	 Hachesu PR, Ahmadi M, Alizadeh S, Sadoughi F. Use of data mining 
techniques to determine and predict length of stay of cardiac patients. 
Healthc Inform Res. 2013;19(2):121–9. https://​doi.​org/​10.​4258/​hir.​2013.​
19.2.​121.

	3.	 Hilton CB, Milinovich A, Felix C, et al. Personalized predictions of patient 
outcomes during and after hospitalization using artificial intelligence. NPJ 
Digit Med. 2020;3:51. https://​doi.​org/​10.​1038/​s41746-​020-​0249-z.

	4.	 Launay CP, Rivière H, Kabeshova A, Beauchet O. Predicting prolonged 
length of hospital stay in older emergency department users: use of a 
novel analysis method, the artificial neural network. Eur J Intern Med. 
2015;26(7):478–82. https://​doi.​org/​10.​1016/j.​ejim.​2015.​06.​002.

	5.	 Carter EM, Potts HWW. Predicting length of stay from an electronic 
patient record system: a primary total knee replacement example. 
BMC Med Inform Decis Mak. 2014;14:26. https://​doi.​org/​10.​1186/​
1472-​6947-​14-​26.

	6.	 Morton A, Marzban E, Giannoulis G, Patel A, Aparasu R, Kakadiaris IA. A 
comparison of supervised machine learning techniques for predicting 
short-term in-hospital length of stay among diabetic patients. In: 2014 
13th international conference on machine learning and applications. 
IEEE; 2014, pp. 428–431. https://​doi.​org/​10.​1109/​ICMLA.​2014.​76

	7.	 Al Taleb AR, Hoque M, Hasanat A, Khan MB. Application of data mining 
techniques to predict length of stay of stroke patients. In: 2017 Interna-
tional Conference on Informatics, Health & Technology (ICIHT). IEEE; 2017. 
pp. 1–5. https://​doi.​org/​10.​1109/​ICIHT.​2017.​78990​04

	8.	 Liu V, Kipnis P, Gould MK, Escobar GJ. Length of stay predictions: improve-
ments through the use of automated laboratory and comorbidity vari-
ables. Med Care. 2010;48(8):739–44. https://​doi.​org/​10.​1097/​MLR.​0b013​
e3181​e359f3.

	9.	 Mekhaldi RN, Caulier P, Chaabane S, Chraibi A, Piechowiak S. Using 
machine learning models to predict the length of stay in a hospital 
setting. In: Rocha Á, Adeli H, Reis LP, Costanzo S, Orovic I, Moreira F, 
editors. Trends and innovations in information systems and technolo-
gies. Advances in intelligent systems and computing, vol. 1159. Berlin: 
Springer; 2020. p. 202–11. https://​doi.​org/​10.​1007/​978-3-​030-​45688-7_​21.

	10.	 Sessler DI, Sigl JC, Manberg PJ, Kelley SD, Schubert A, Chamoun NG. 
Broadly applicable risk stratification system for predicting duration of 
hospitalization and mortality. Anesthesiology. 2010;113(5):1026–37. 
https://​doi.​org/​10.​1097/​ALN.​0b013​e3181​f79a8d.

	11.	 Levin SR, Harley ET, Fackler JC, et al. Real-time forecasting of pediatric 
intensive care unit length of stay using computerized provider orders. 
Crit Care Med. 2012;40(11):3058–64. https://​doi.​org/​10.​1097/​CCM.​0b013​
e3182​5bc399.

	12.	 Smith VA, Neelon B, Maciejewski ML, Preisser JS. Two parts are better than 
one: modeling marginal means of semicontinuous data. Health Serv 
Outcomes Res Methodol. 2017;17(3–4):198–218. https://​doi.​org/​10.​1007/​
s10742-​017-​0169-9.

	13.	 Moehring RW, Phelan M, Lofgren E, et al. Development of a machine 
learning model using electronic health record data to identify antibiotic 
use among hospitalized patients. JAMA Netw Open. 2021;4(3): e213460. 
https://​doi.​org/​10.​1001/​jaman​etwor​kopen.​2021.​3460.

	14.	 Guikema SD, Quiring SM. Hybrid data mining-regression for infrastruc-
ture risk assessment based on zero-inflated data. Reliab Eng Syst Saf. 
2012;99:178–82. https://​doi.​org/​10.​1016/j.​ress.​2011.​10.​012.

	15.	 Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc 
Ser B Methodol. 1996:267–288.

	16.	 Breiman L. Random forests. Mach Learn. 2001;45:5–32.
	17.	 SubbaNarasimha PN, Arinze B, Anandarajan M. The predictive accuracy of 

artificial neural networks and multiple regression in the case of skewed 
data: exploration of some issues. Expert Syst Appl. 2000;19(2):117–23. 
https://​doi.​org/​10.​1016/​S0957-​4174(00)​00026-9.

	18.	 Hoodbhoy Z, Noman M, Shafique A, Nasim A, Chowdhury D, Hasan B. Use 
of machine learning algorithms for prediction of fetal risk using cardioto-
cographic data. Int J Appl Basic Med Res. 2019;9(4):226–30. https://​doi.​
org/​10.​4103/​ijabmr.​IJABMR_​370_​18.

	19.	 Sushmita S, Newman S, Marquardt J, et al. Population cost prediction 
on public healthcare datasets. In: Proceedings of the 5th international 
conference on digital health 2015. ACM; 2015. Pp. 87–94. https://​doi.​org/​
10.​1145/​27505​11.​27505​21

	20.	 Kumar U. Comparison of neural networks and regression analysis: a new 
insight. Expert Syst Appl. 2005;29(2):424–30. https://​doi.​org/​10.​1016/j.​
eswa.​2005.​04.​034.

	21.	 Zhang H, Nettleton D, Zhu Z. Regression-Enhanced Random Forests 
Published online April 23, 2019. Accessed 18 Oct 2021. http://​arxiv.​org/​
abs/​1904.​10416

	22.	 Diehr P, Yanez D, Ash A, Hornbrook M, Lin DY. Methods for analyzing 
health care utilization and costs. Annu Rev Public Health. 1999;20:125–44. 
https://​doi.​org/​10.​1146/​annur​ev.​publh​ealth.​20.1.​125.

	23.	 Cots F, Elvira D, Castells X, Sáez M. Relevance of outlier cases in case mix 
systems and evaluation of trimming methods. Health Care Manag Sci. 
2003;6(1):27–35. https://​doi.​org/​10.​1023/a:​10219​08220​013.

	24.	 Verburg IWM, de Keizer NF, de Jonge E, Peek N. Comparison of regres-
sion methods for modeling intensive care length of stay. PLoS ONE. 
2014;9(10): e109684. https://​doi.​org/​10.​1371/​journ​al.​pone.​01096​84.

	25.	 Collins GS, Ogundimu EO, Cook JA, Manach YL, Altman DG. Quantifying 
the impact of different approaches for handling continuous predictors 
on the performance of a prognostic model. Stat Med. 2016;35(23):4124–
35. https://​doi.​org/​10.​1002/​sim.​6986.

	26.	 Fletcher D, MacKenzie D, Villouta E. Modelling skewed data with many 
zeros: a simple approach combining ordinary and logistic regres-
sion. Environ Ecol Stat. 2005;12(1):45–54. https://​doi.​org/​10.​1007/​
s10651-​005-​6817-1.

	27.	 Kumar A, Anjomshoa H. A two-stage model to predict surgical patients’ 
lengths of stay from an electronic patient database. IEEE J Biomed Health 
Inform. 2019;23(2):848–56. https://​doi.​org/​10.​1109/​JBHI.​2018.​28196​46.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1001/jamanetworkopen.2020.23547
https://doi.org/10.1001/jamanetworkopen.2020.23547
https://doi.org/10.4258/hir.2013.19.2.121
https://doi.org/10.4258/hir.2013.19.2.121
https://doi.org/10.1038/s41746-020-0249-z
https://doi.org/10.1016/j.ejim.2015.06.002
https://doi.org/10.1186/1472-6947-14-26
https://doi.org/10.1186/1472-6947-14-26
https://doi.org/10.1109/ICMLA.2014.76
https://doi.org/10.1109/ICIHT.2017.7899004
https://doi.org/10.1097/MLR.0b013e3181e359f3
https://doi.org/10.1097/MLR.0b013e3181e359f3
https://doi.org/10.1007/978-3-030-45688-7_21
https://doi.org/10.1097/ALN.0b013e3181f79a8d
https://doi.org/10.1097/CCM.0b013e31825bc399
https://doi.org/10.1097/CCM.0b013e31825bc399
https://doi.org/10.1007/s10742-017-0169-9
https://doi.org/10.1007/s10742-017-0169-9
https://doi.org/10.1001/jamanetworkopen.2021.3460
https://doi.org/10.1016/j.ress.2011.10.012
https://doi.org/10.1016/S0957-4174(00)00026-9
https://doi.org/10.4103/ijabmr.IJABMR_370_18
https://doi.org/10.4103/ijabmr.IJABMR_370_18
https://doi.org/10.1145/2750511.2750521
https://doi.org/10.1145/2750511.2750521
https://doi.org/10.1016/j.eswa.2005.04.034
https://doi.org/10.1016/j.eswa.2005.04.034
http://arxiv.org/abs/1904.10416
http://arxiv.org/abs/1904.10416
https://doi.org/10.1146/annurev.publhealth.20.1.125
https://doi.org/10.1023/a:1021908220013
https://doi.org/10.1371/journal.pone.0109684
https://doi.org/10.1002/sim.6986
https://doi.org/10.1007/s10651-005-6817-1
https://doi.org/10.1007/s10651-005-6817-1
https://doi.org/10.1109/JBHI.2018.2819646

	Predicting in-hospital length of stay: a two-stage modeling approach to account for highly skewed data
	Abstract 
	Background: 
	Methods: 
	Results: 
	Discussion: 
	Conclusions: 

	Background
	Materials and methods
	Setting
	Data
	Case definition
	Definition of predictors

	Analytic approach
	Algorithm choice
	Loss function
	Data manipulation
	Two-stage approach
	Customized loss function


	Results
	Algorithm comparison
	Loss functions
	Data set-up
	Two-stage model
	Results on the testing data

	Discussion
	Acknowledgements
	References


