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Abstract 

Background:  Acute myeloid leukemia (AML) is a genetically heterogeneous blood disorder. AML patients are associ-
ated with a relatively poor overall survival. The objective of this study was to establish a machine learning model to 
accurately perform the prognosis prediction in AML patients.

Methods:  We first screened for prognosis-related genes using Kaplan–Meier survival analysis in The Cancer Genome 
Atlas dataset and validated the results in the Oregon Health & Science University dataset. With a random forest model, 
we built a prognostic risk score using patient’s age, TP53 mutation, ELN classification and normalized 197 gene expres-
sion as predictor variable. Gene set enrichment analysis was implemented to determine the dysregulated gene sets 
between the high-risk and low-risk groups. Similarity Network Fusion (SNF)-based integrative clustering was per-
formed to identify subgroups of AML patients with different clinical features.

Results:  The random forest model was deemed the best model (area under curve value, 0.75). The random forest-
derived risk score exhibited significant association with shorter overall survival in AML patients. The gene sets of 
pantothenate and coa biosynthesis, glycerolipid metabolism, biosynthesis of unsaturated fatty acids were signifi-
cantly enriched in phenotype high risk score. SNF-based integrative clustering indicated three distinct subsets of 
AML patients in the TCGA cohort. The cluster3 AML patients were characterized by older age, higher risk score, more 
frequent TP53 mutations, higher cytogenetics risk, shorter overall survival.

Conclusions:  The random forest-based risk score offers an effective method to perform prognosis prediction for AML 
patients.
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Background
Acute myeloid leukemia (AML) is a genetically hetero-
geneous blood disorder characterized by distinct cytoge-
netic alterations, dysregulated gene expression and bone 
marrow failure [1]. In recent years, the incidence of the 
disease has dramatically increased, with the number 
of newly diagnosed cases reaching 119.57 × 103 in 2017 
alone [2]. AML patients are usually associated with an 
unfavorable prognosis, with 2- and 5-year survival rates 
of 32% and 24%, respectively [3]. The prognosis of the 

disease is highly correlated with patient age; older AML 
patients are more likely to have a relatively poor overall 
survival (OS), and the majority of elderly patients (over 
70%) die within 1 year of AML diagnosis [4, 5].

European Leukemia-Net (ELN) has been widely uti-
lized for prognosis stratification based on specific 
cytogenetic alterations in clinical settings. AML patients 
are stratified into favorable, adverse and intermediate 
prognostic subgroups following the ELN recommenda-
tions [6]. Moreover, several recent studies illustrated the 
prognostic importance of somatic mutations in criti-
cal cancer genes, such as mixed-lineage leukemia-par-
tial tandem duplication, internal tandem duplication in 
Fms-like tyrosine kinase 3-internal tandem duplication 
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(FLT3-ITD), tumor protein p53 (TP53) and ASXL tran-
scriptional regulator 1 (ASXL1) mutations, and isocitrate 
dehydrogenase 1 (IDH1) mutations [7]. Furthermore, 
gene expression signatures have been proposed to be 
effective prognostic biomarkers and have shown prom-
ising potential for clinical applications [8, 9]. However, 
accurate prediction of patient prognosis remains a chal-
lenging task in AML.

Previous studies have mostly used certain genomic 
biomarkers [7, 10] or have performed linear regression 
analysis of gene expression signatures for prognosis pre-
diction [8, 9]; however, these methods might not scale 
well to high-dimensional data. Machine learning tech-
niques are known to handle high-dimensional data and 
offer more flexible alternatives for prognostic prediction 
using high-dimensional and heterogeneous data [11]. 
Recently, Karami et  al. utilized various machine learn-
ing models to assess the survival of AML patients and 
showed that the Gradient Boosted Tree (GBT) model 
has the best performance in predicting the survival rate 
of AML patients. However, the established model lacks 
independent validation [12]. Orgueira et  al. created a 
new machine learning model of AML survival using gene 
expression data and showed that the classifier achieved 
reasonable accuracy in predicting the survival rates of 
AML patients [13]. However, the accuracy of the clas-
sifier needs to be improved. Moreover, the molecular 
mechanism by which the classifier is predictive of AML 
patient survival remains unclear.

The objective of this study was to use machine learn-
ing methods to establish a prognostic model to accurately 
predict the prognosis of AML patients regardless of clini-
cal characteristics. To this aim, we utilized the expression 
and clinical data of The Cancer Genome Atlas (TCGA) 
dataset [14] and screened for prognosis-associated clini-
cal features and genes. A machine learning model was 
established using OS as the response variable, and prog-
nosis-associated clinical features and genes were selected 
as predictor variables. The effectiveness of the machine 
learning model was independently validated in another 
Oregon Health & Science University (OHSU) dataset 
[15]. Finally, we performed similarity network fusion-
based integrative clustering analysis and defined three 
distinct subgroups of AML patients showing consider-
able differences in clinicopathological characteristics and 
overall survival.

Methods and materials
Data acquisition and processing
We acquired RNA-seq expression data of 20,531 genes 
and clinical characteristics of AML patients from the 
TCGA database (TCGA dataset, n = 171) [14]. We 
removed the genes with missing rates of more than 90%. 

We also downloaded the gene expression data of 18,366 
genes and clinical characteristics from Tyner’s study (the 
Oregon Health & Science University [OHSU] dataset, 
n = 403) [15] to independently validate the prognostic 
values of gene expression. We used Fisher’s exact test to 
study the correlations between the categorical features 
and patient OS and Student’s t test to analyze the corre-
lations between quantitative clinical factors and patient 
mortality.

Identification of prognosis‑associated genes
We used the z score formula z = (x − x)/s to normal-
ize gene expression in the TCGA and OHSU cohorts. 
In the formula, x, x and s represent the gene expression 
value and the mean and standard deviation of the gene 
expression value, respectively. We followed Sha’s method 
to investigate the associations between gene expression 
and overall survival [8]. The AML patients were grouped 
into two subgroups, namely, the "high expression" and 
"low expression" groups, according to the median gene 
expression. The survival difference was analyzed by 
Kaplan–Meier curves and log-rank methods between the 
two subgroups using the survival package [16, 17]. Genes 
with P values < 0.05 were further grouped into risk genes 
and protective genes based on their correlations with OS. 
There were 12 AML patients whose follow-up times were 
0 in the TCGA cohort, which caused several KM curves 
shown in the figures to not start at 1.

Establishment and validation of the machine learning 
model
With Kaplan–Meier survival analysis, we identified 
197 prognosis-associated genes common to the TCGA 
and OHSU cohorts. In this study, we aimed to build a 
machine learning model for prognosis prediction and 
used the caret package [18] to train four machine learn-
ing models, including support vector machine, random 
forest, neural network and ADABOOST classifier, using 
age, ELN classification, TP53 mutation and normal-
ized 197 gene expression as predictor variables and OS 
as response variables in the TCGA dataset. Sensitivity, 
specificity and accuracy values were computed by the 
caret package for the four models separately in the TCGA 
dataset using fivefold cross-validation. The median area 
under the curve (AUC) value was used for performance 
comparison among the four machine learning models 
in the TCGA dataset. The risk scores were predicted by 
the random forest model in the OHSU cohort for inde-
pendent validation. Receiver operating characteristic 
(ROC) curves were plotted using the R package pROC 
to investigate the prognostic value of the random forest-
based risk score (hereafter referred to as the risk score) 
[19]. We followed previously published studies [8, 9, 20] 
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and dichotomized the risk scores into high- and low-risk 
groups according to the median risk score and compared 
their survival differences. We also implemented multi-
variate Cox regression analysis to examine whether the 
risk score was independently predictive of OS regardless 
of clinical features. Finally, a linear regression model was 
utilized to analyze the correlations between the risk score 
and clinical characteristics.

Similarity network fusion‑based integrative clustering 
analysis
SNFtool is an R package for similarity network fusion 
(SNF) that takes multiple views of a network and merges 
them into a combined view [21]. There were two different 
data types used in the SNF clustering, the first of which 
was clinical factors, including age, ELN classification, and 
TP53 mutation, and the second of which was normalized 
to 197 gene expression levels. To integrate the two data 
types together, SNF was applied to preprocessed data 
using the SNFtool package. We utilized Fisher’s exact test 
for count variables and Student’s t test for quantitative 

clinical factors to characterize the differences between 
subgroups of patients. Kaplan–Meier survival analy-
sis was performed among the three subgroups of AML 
patients using the R package survival [16]. P < 0.05 was 
predefined as statistically significant.

Gene set enrichment analysis
The AML patients were divided into high- and low-risk 
groups based on the median risk score. Gene set enrich-
ment analysis (GSEA) [22] was implemented to analyze 
the dysregulated gene sets between the high- and low-
risk groups with the default parameters.

Results
Identification and validation of survival‑related clinical 
characteristics
We first used different statistical methods to identify 
survival-related clinical characteristics. Detailed results 
regarding the association between clinical information 
and OS of the TCGA dataset are presented in Table  1. 
Patient age, TP53 mutation and ELN classification were 

Table1  Association between the clinical features and patients’ mortality in 171 AML patients of the TCGA dataset

Variables Group Alive Dead P value Statistical method

Age 49.63 58.86 0.00 Student t test

PBMBC 44.25 40.28 0.48 Student t test

Gender Female 21 50 0.86 Fisher’s exact test

Male 27 59

European Leukemia Net classifica-
tion

Favorable 10 7 0.03 Fisher’s exact test

Intermediate 30 72

Poor 8 28

TP53 mutation Mutant 0 14 0.003 Fisher’s exact test

Wild-type 59 100

ASXL1 mutation Mutant 0 3 0.55 Fisher’s exact test

Wild-type 59 111

RUNX1 mutation Mutant 3 13 0.27 Fisher’s exact test

Wild-type 56 101

IDH1 mutation Mutant 7 9 0.26 Fisher’s exact test

Wild-type 41 100

IDH2 mutation Mutant 5 12 1 Fisher’s exact test

Wild-type 43 97

DNMT3A mutation Mutant 10 33 0.25 Fisher’s exact test

Wild-type 38 76

NP1 mutation Mutant 15 33 1 Fisher’s exact test

Wild-type 33 76

CEBPA mutation Mutant 4 9 1 Fisher’s exact test

Wild-type 44 100

FLT3 mutation Mutant 12 32 0.7 Fisher’s exact test

Wild-type 36 77

Neoadjuvant treatment Yes 12 31 0.7 Fisher’s exact test

No 36 78
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shown to be negatively related to OS in the TCGA cohort 
(P < 0.05 for all cases, Table 1). Similar results were also 
observed in the OHSU cohort (P < 0.05 for all cases, 
Additional file 1: Table S1). Chemotherapy, targeted ther-
apy and bone marrow transplant were demonstrated to 
be protective factors for OS in AML patients (P < 0.05 for 
all cases, Table 1).

The random forest‑based risk score is a negative 
prognostic factor in AML
Kaplan–Meier survival analysis identified 1352 protective 
genes and 1099 risk genes in the TCGA cohort (P < 0.05 
for all cases, Fig. 1). The associations between the expres-
sion profiles of 2451 genes and OS were analyzed in the 
OHSU dataset. We confirmed that there were 110 pro-
tective genes and 87 risk genes in the OHSU cohort 
(P < 0.05 for all cases, Fig.  1). With the above 197 prog-
nosis-associated genes, we trained four different machine 
learning models, including support vector machine, ran-
dom forest, neural network and ADABOOST classifier, 
for the prediction of OS using age, ELN classification, 
TP53 mutation and normalized expression of 197 genes 
as predictor variables and OS as the response variable 
in the TGCA dataset. We performed fivefold cross-val-
idation to assess the performance of the four different 

machine learning models. Compared with the other three 
models, the random forest model showed the highest 
median AUC value (0.75) and was considered the opti-
mal model for prognosis prediction (Additional file 2: Fig. 
S1). PLA2G4A, PLXNC1, RPS6KA1, IL2RA, LRRC16A, 
ATP13A2, IRAK1, DOCK1, ZG16B and LRCH4 were the 
top ten most important features in the random forest 
model (Fig. 2A and Additional file 1: Table S2). Kaplan–
Meier survival analysis showed that high risk scores were 
associated with worse OS in the TCGA cohort (P < 0.001, 
Fig.  2B). Then, we performed multivariate analysis 
between patient OS and survival-associated clinical fea-
tures and the risk score and confirmed that a high risk 
score was a negative prognosticator in AML patients fol-
lowing adjustment for prognosis-associated clinical fea-
tures (P < 0.001, odds ratio [OR]: 5.25, 95% confidence 
interval [CI]: 3.16–8.71, Table 2). The inverse association 
between the risk score and OS was verified in the OHSU 
dataset (Table  2 and Fig.  2C). The AUC values were 1 
and 0.72 in the TCGA and OHSU cohorts, respectively 
(Fig. 2D). We also compared the performance of our ran-
dom forest model with the 5-gene risk score in the OHSU 
dataset and demonstrated that our model outperformed 
the 5-gene risk score in the prediction of overall survival 
(AUC 0.72 vs. 0.65, Additional file 2: Fig. S2).

The risk score is an accurate prognostic predictor in AML
We carried out linear regression model analysis to char-
acterize the association between clinical factors and the 
risk score. In the TCGA cohort, the risk score showed 
significantly positive correlations with patient age, ELN 
classification, and mutations in DNMT3A and TP53 
(P < 0.05 for all cases, Fig. 3A). Similar correlations were 
also observed in the OHSU cohort (P < 0.05 for all cases, 
Fig. 3B). Next, we aimed to analyze whether the negative 
correlation between the risk score and OS was independ-
ent of clinical characteristics. For each clinicopathologi-
cal characteristic, we stratified LGG patients into two 
subgroups based on the median risk score and compared 
the OS difference using Kaplan–Meier survival analysis. 
A high risk score was significantly associated with shorter 
OS independent of age, sex, ELN classification, DNMT3A 
mutation, FLT3 mutation, NP1 mutation, IDH1 muta-
tion, CEBPA mutation, and neoadjuvant treatment in 
the TCGA cohort (P < 0.05 for all cases, Additional file 2: 
Figs. S3–S6). As expected, similar results were confirmed 
in the OHSU cohort (P < 0.05 for all cases, Additional 
file 2: Figs. S7–S10), suggesting that the risk score could 
accurately predict prognosis regardless of clinicopatho-
logical characteristics.

Fig. 1  The overlap of survival-related genes between the OHSU 
and TCGA datasets. A The common protective genes determined by 
Kaplan–Meier survival analysis between the OHSU and TCGA datasets. 
B The common risk genes determined by Kaplan–Meier survival 
analysis between the OHSU and TCGA datasets
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Gene set enrichment analysis
The GSEA results showed that six signaling path-
ways were significantly enriched in the high risk score 
group, with fructose and mannose metabolism, panto-
thenate and CoA biosynthesis, cytosolic DNA sensing 
pathway, glycerolipid metabolism, and biosynthesis of 

unsaturated fatty acids being the top five most enriched 
pathways. Pathways such as glycosaminoglycan deg-
radation and glycosylphosphatidylinositol gpi anchor 
biosynthesis were significantly enriched in the low 
risk score group (Fig.  4, P < 0.05 for all cases, Addi-
tional file  1: Table  S3, the TCGA cohort). We also 

Fig. 2  The risk score is a negative prognosticator in AML. A The top ten most important genes in the random forest model. B The difference in 
overall survival between the high- and low-risk groups stratified by the median risk score in the TCGA cohort. C The difference in overall survival 
between the high- and low-risk groups stratified by the median risk score in the OHSU cohort. D The ROC curves of the risk scores in the TCGA and 
OHSU datasets



Page 6 of 11Lai et al. BMC Medical Informatics and Decision Making           (2022) 22:57 

implemented GSEA in the OHSU cohort and deter-
mined that the gene sets of pantothenate and CoA bio-
synthesis, glycerolipid metabolism, and biosynthesis 
of unsaturated fatty acids were significantly enriched 
in the phenotype high risk score (P < 0.05 for all cases, 
Additional file  1: Table  S4). These results suggest that 
the aforementioned pathways might largely contribute 
to the association between the risk score and OS.

Similarity network fusion‑based integrative clustering 
analysis
The SNF clustering analysis indicated three classes of 
AML patients in the TCGA dataset (Fig.  5A). Com-
pared to Cluster 1 and Cluster 2 patients, Cluster 3 AML 
patients were characterized by older age, higher risk 
score, more frequent TP53 mutations, higher cytoge-
netics risk, and shorter OS (P values < 0.05 for all cases, 
Fig.  5B and Additional file  1: Table  S5). We also con-
ducted SNF clustering analysis in the OHSU dataset and 
uncovered three subgroups of AML patients (Fig.  5C). 
Similar to the results in the TCGA cohort, Cluster 3 
samples exhibited older age, higher risk score, higher 
cytogenetics risk, more male cases, higher frequencies of 
RUNX1 mutations, less frequent chemotherapy and bone 
marrow transplant, and shorter OS than Cluster 1 and 
Cluster 2 samples (P values < 0.05 for all cases, Fig.  5D 
and Additional file 1: Table S6).

Discussion
The performance of the 2017 ELN classification to evalu-
ate prognostic risk is well recognized in clinical settings 
[23]. Over the past five years, several gene expression 
signatures have been proposed to perform prognosis pre-
diction and have shown potential clinical applicability 
in AML. For instance, Sha et al. selected five prognosis-
associated genes, CALCRL, PLA2G4A, FCHO2, DOCK1 

and LRCH4, and used a linear regression model to com-
bine the five genes and establish a 5-gene risk score [8]. 
In this study, we established a random forest-based risk 
score that accurately predicts prognosis regardless of 
clinicopathological characteristics in AML. Our method 
performed better than the 5-gene risk score (AUC, 0.65) 
in the OHSU cohort [24], suggesting that our method is 
superior to the existing risk stratification method. Given 
that the random forest-based risk score is independent of 
known prognosticators, such as ELN classification and 
DNMT3A, FLT3, NP1, IDH1, and CEBPA mutations, the 
risk score may be useful for the risk stratification of AML 
patients who have favorable or indeterminate cytogenet-
ics risk or no mutations in key driver genes.

The mechanisms by which a high risk score is impli-
cated in unfavorable prognosis in AML remain to be 
investigated. GSEA indicated that the gene sets of panto-
thenate and CoA biosynthesis, glycerolipid metabolism, 
and biosynthesis of unsaturated fatty acids were signifi-
cantly enriched in the high risk score phenotype.

Glycerolipid metabolism and fatty acid metabolism 
play critical roles in the regulation of cell survival and 
proliferation [25, 26]. Several lipid signaling molecules 
and enhanced glycerolipid/free fatty acid cycling have 
been shown to enhance cell proliferation in many cell 
types [27–29]. We believe the prognostic importance 
of the risk score is, to a large extent, attributable to the 
upregulated expression of glycerolipid metabolism and 
the biosynthesis of unsaturated fatty acids in AML.

Compared to the two previously published machine 
learning methods [12, 13], our random forest model 
showed three main advantages. First, our random forest 
model was trained in the TCGA dataset and indepen-
dently validated in the OHSU dataset, indicating a high 
reproducibility of survival prediction. Second, we dem-
onstrated that the gene sets of pantothenate and CoA 
biosynthesis, glycerolipid metabolism, and biosynthesis 

Table2  Multivariate analyses between OS and the risk score in the TCGA and OHSU datasets

Notably, OR and CI refers to odds ratio and confidence interval respectively

The TCGA dataset The OHSU dataset

Variable OR 2.5%-97.5%CI P value Variable OR 2.5–97.5%CI P value

Age 1.02 1.01–1.04 0.004 Age 1.02 1.01–1.03 < 0.001

Cytogenetics risk 1.07 0.71–1.62 0.75 Cytogenetics risk 1.16 0.96–1.41 0.13

TP53.mutation 1.47 0.76–2.86 0.25 Chemotherapy 0.4 0.22–0.71 0.002

Risk score 5.25 3.16–8.71 < 0.001 Transplant 0.42 0.29–0.6 < 0.001

Targeted therapy 0.91 0.66–1.26 0.58

TP53.mutation 2.32 1.5–3.57 < 0.001

Risk score 1.87 1.4–2.49 < 0.001
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Fig. 3  Linear regression model analysis of the correlations between risk score and clinical characteristics in the TCGA cohort (A) and the OHSU 
cohort (B). Notably, *, ** and *** refer to P values < 0.05, < 0.01 and 0.001, respectively
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of unsaturated fatty acids were significantly enriched in 
the high risk score phenotype, suggesting that these sign-
aling pathways might partially contribute to the survival 
prediction. Third, we also performed SNF-based inte-
grative clustering on AML patients and uncovered three 
distinct subsets of AML patients in the TCGA cohort. 
Cluster 3 AML patients were characterized by older age, 
higher risk score, more frequent TP53 mutations, higher 
cytogenetics risk, and shorter overall survival. SNF-based 
integrative clustering might provide rational guidance for 
future treatment and follow-up for AML patients.

Among the 197 survival-related genes, many genes 
might have oncogenic functions in the tumorigen-
esis of cancers. For example, the overexpression of the 
PLA2G4A gene has been identified in several cancer 

types [30–33]. Silencing the expression of PLA2G4A con-
siderably suppresses the survival and proliferation of lung 
cancer cells, glioblastoma cells [30], and colon cancer 
cells [33]. Dock family proteins, comprising 11 DOCK 
proteins (DOCK1-11), play crucial roles in the regulation 
of actin cytoskeleton, cell adhesion and migration [34]. 
Selective knockdown of DOCK1 abolished cell motil-
ity and cell invasion and suppressed cancer growth and 
metastasis in a mouse model [35]. In line with the results 
in our study, higher DOCK1 expression was a risk fac-
tor for overall survival in AML [36]. Last, knockdown of 
the two genes, PLA2G4A and DOCK1, caused significant 
reductions in cellular growth, invasion and tumorigenic 
capability; therefore, the two genes might become thera-
peutic targets for AML patients.

Fig. 4  GSEA revealed significantly enriched pathways in the high risk score group, including fructose and mannose metabolism (A), pantothenate 
and CoA biosynthesis (B), cytosolic DNA sensing pathway (C), glycerolipid metabolism (D), and biosynthesis of unsaturated fatty acids (E). For each 
gene set, the positions of genes within the ranked list are shown as vertical bars along the x-axis of the GSEA plot. A negative enrichment score 
curve represents downregulated pathways, and a positive curve denotes upregulated pathways
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Conclusion
Taken together, we developed a novel random forest-
based risk score. The risk score outperforms established 
risk stratification method and is predictive of a poor OS 
in AML patients.
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Oregon Health & Science University; ELN: European Leukemia-Net; OS: Overall 
survival; ROC: Receiver operating characteristic; AUC​: Area under curve; LSC: 
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Fig. 5  The SNF-based clustering analysis uncovered three classes of AML patients. A SNF-based clustering uncovered three classes of AML patients 
in the TCGA cohort. B The three subgroups of AML patients exhibited significant differences in overall survival in the TCGA cohort. C SNF-based 
clustering uncovered three classes of AML patients in the OHSU cohort. D The three subgroups of AML patients exhibited significant differences in 
overall survival in the OHSU cohort
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