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Abstract 

Background:  Data quality assessment is important but complex and task dependent. Identifying suitable measure-
ment methods and reference ranges for assessing their results is challenging. Manually inspecting the measurement 
results and current data driven approaches for learning which results indicate data quality issues have considerable 
limitations, e.g. to identify task dependent thresholds for measurement results that indicate data quality issues.

Objectives:  To explore the applicability and potential benefits of a data driven approach to learn task dependent 
knowledge about suitable measurement methods and assessment of their results. Such knowledge could be useful 
for others to determine whether a local data stock is suitable for a given task.

Methods:  We started by creating artificial data with previously defined data quality issues and applied a set of 
generic measurement methods on this data (e.g. a method to count the number of values in a certain variable or the 
mean value of the values). We trained decision trees on exported measurement methods’ results and corresponding 
outcome data (data that indicated the data’s suitability for a use case). For evaluation, we derived rules for potential 
measurement methods and reference values from the decision trees and compared these regarding their coverage of 
the true data quality issues artificially created in the dataset. Three researchers independently derived these rules. One 
with knowledge about present data quality issues and two without.

Results:  Our self-trained decision trees were able to indicate rules for 12 of 19 previously defined data quality issues. 
Learned knowledge about measurement methods and their assessment was complementary to manual interpreta-
tion of measurement methods’ results.

Conclusions:  Our data driven approach derives sensible knowledge for task dependent data quality assessment 
and complements other current approaches. Based on labeled measurement methods’ results as training data, our 
approach successfully suggested applicable rules for checking data quality characteristics that determine whether a 
dataset is suitable for a given task.
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Background
Reuse of electronic patient data, e.g. for medical 
research, is an active field of research [1, 2]. One chal-
lenge for valuable data reuse is data quality (DQ), where 
DQ denotes the ability of data to “serve the needs of 

a given user pursuing specific goals” [3]. Thus, DQ-
assessment (DQA) is dependent on the goals the data 
user is pursuing (also known as “task dependency”). 
Established DQA reporting standards determining rel-
evant measurement methods (MM) for different tasks 
are missing [3–7]. A MM is a specification of a method 
that quantifies a characteristic of a dataset (cf. [8]). An 
exemplary MM could be a method counting the num-
ber of existing values for a variable. The selection of 
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relevant MMs for DQA in a specific task alone is chal-
lenging. But complexity is even increased because dif-
ferent reference ranges indicating DQ-issues can be 
suitable. Even for a simple example, such as the patient 
height. The range for valid values, e.g. 250  cm could 
define the threshold for an implausible magnitude. The 
number of implausible values in a dataset that is toler-
able could be five implausible values per 1000 values 
(another possible type of threshold). Considering soft 
and hard limits (cf. [9]) even more reference ranges 
seem sensible, e.g. a magnitude of more than 230  cm 
is a suspicious (soft-limit) and more than 300  cm is a 
wrong value (hard-limit) for which different num-
bers for violations are tolerable. Even with a limited 
amount of variables, the number of MMs and possible 
assessments of their results grow quickly. Which MMs 
to apply in which situations and how to assess their 
results is what we refer to as “DQA-knowledge”. So far, 
applied DQA-knowledge is often intangible and based 
on experts’ personal experience [6, 8, 10]. Our previ-
ous work proposed an interoperable knowledge-based 
approach to DQA to support the application and col-
laborative governance of formalized task and domain 
dependent DQA-knowledge [11]. The work we report 
on here addresses the challenge of learning such DQA-
knowledge out of data. A common approach to identify 
relevant MMs and reference ranges for a given purpose 
is to review literature on DQA in similar situations, 
to study published DQA frameworks and to interview 
experts (cf. [12–16]). Complementing this with data 
driven methods, which are less dependent on experts’ 
opinions and that better support collaborative learning 
of DQA-knowledge is desirable. Johnson et al. proposed 
a method to quantify the impact of DQ in different var-
iables on a given purpose based on a linear regression 
fitted with MM-results and outcome data [17]. Their 
method allows to quantify the task dependent impact 
for MMs with results suitable for linear regressions 
but does not address thresholds. Other authors employ 
data driven methods for DQA directly on the data (in 
contrast to applying it on MM-results) to identify devi-
ant records [18, 19], deviant distributions [20] or to 
identify clusters representing DQ-issues [21] independ-
ent of the relevance for the task. In our work, we exam-
ine a new approach to derive DQA-knowledge from 
shared MM-results and corresponding outcome data.

Objectives
In this work, we aim at assessing the applicability of a 
data driven approach to support the learning of tangible 
DQA-knowledge, i.e. reference ranges of MM-results 

and their prioritization depending on result’s values. In 
detail, we address the following questions:

1.	 Are machine learning methods able to derive sensi-
ble DQA-knowledge from exported MM-results and 
corresponding outcome data?

2.	 Does applying machine learning complement the 
manual identification of DQA-knowledge?

Methods
We imagine a fictive scenario of a clinical decision sup-
port system (CDSS) in cardiology predicting a score for a 
patient based on anamnesis data. We assume that the DQ 
of its input data influences the quality of its predictions 
(cf. [17, 22]). Our fictive CDSS is a black box, so that we 
don’t know its underlying algorithms. In a real world 
scenario, we would not know by which mechanisms DQ 
affects correct or incorrect predictions. In our fictive 
scenario, we predefine how DQ affects CDSS success. 
This enables us to assess whether the DQA-knowledge 
derived by our data driven approach is correct. Figure 1 
depicts our overall proceeding. One of the authors (ET) 
performed the data preparation and DQA steps. Three 
researchers independently derived DQA-knowledge 
from the machine learning results. Thus, one did this 
knowing the present data quality issues and two without 
having any prior knowledge about them.

Fig. 1  Process overview—vertical lines on the right side indicate 
the participation of researchers in the different phases of the work. 
Grey = ET, red = NG and AW
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Data preparation
Generating clinical dummy data
First step was the generation of 10,500 openEHR com-
positions (comparable to a message or document) of 
dummy data using an open source dummy data genera-
tor [23] (The script used to generate the dummy data for 
this work is available in commit f28dedd0 from 2021-
02-19). Each composition represented one clinical case/
patient with multiple variables and values. The cases 
were distributed to 20 fictive hospital sites with a differ-
ent number of cases for each hospital. Generated com-
positions complied with the openEHR specifications [24] 
and based on a real world specification for a cardiology 
anamnesis [25]. The data was stored in a local installation 
of an openEHR data repository [26]. The generated data 
contained different kinds of DQ-issues. These issues were 
defined in advance based on knowledge from literature 
and were intended to cover a range from obvious issue 
to very hard to detect. An example for an obvious DQ-
issue is a case without any blood pressure measurements, 
which causes the fictive CDSS to fail. A possibly hard-to-
detect issue example would be a case with less than ten 
heart rate measurements, which only causes a slightly 
lower CDSS performance. Additional file 1: Appendix A 
lists the number of occurrences, the issue’s effect and an 
explanation for each defined DQ-issue.

Generating outcome data
Key to our learning approach is to have a dataset with 
labeled data, i.e. we need a variable indicating whether 
the task, e.g. a CDSS, succeeds or not in granular sub-
sets of the data. In a real world scenario, information on 
correctness of the CDSS prediction would base on data 
retrieved from the patients’ EHRs. For example, we could 
retrieve the predictions and the actual outcomes from the 
data repository and apply a function to decide whether 
the prediction was good enough or not. Since our CDSS 
is fictive, we generated our outcome and added it to the 
data sets as follows. For each case, a script checked the 
data regarding the initially defined DQ-issues (cf. Fig. 1) 
to determine the probability of a correct prediction. For 
example, an issue could be that a patient’s data is missing 
a needed information. The fictive CDSS could use infor-
mation about patient gender and predictions could be 
less accurate if this information was missing for a patient 
(Additional file  1: Appendix A lists all issues). The like-
lihood for a correct prediction in a patient with perfect 
data quality was defined as 95%. For each issue present 
in a patient’s data, the script reduced the success prob-
ability by a factor specific to that issue (and counted 
that this issue influenced a patient’s outcome). Thus, 
bad DQ in a patient’s data led to a lower probability of 

a correct CDSS prediction for this patient. For our gen-
der issue, this factor is set to 0.95. A patient with miss-
ing data about gender and apart from that perfect data 
would have a probability for a correct CDSS prediction 
of 0.9025 (factor 0.95 applied to reduce the initial 95% 
chance for correct prediction). Based on this probability 
we generated the outcome value for each patient as true 
for a correct CDSS prediction or false. In a real world 
scenario, each patient would have one outcome value 
indicating whether the CDSS prediction was correct or 
not. We generated three outcome values for each patient. 
Now a patient with probability for a correct CDSS pre-
diction of 0.66 could have the outcome values: Outcome 
1 = true, Outcome 2 = false, Outcome 3 = true. We did 
this to perform the subsequent steps three times with dif-
ferent outcome data in order to reduce the chance that 
good results in our work occur just due to a lucky coin-
cidence in outcome generation (we refer to the different 
sets of outcome data as Outcome 1 to Outcome 3). The 
script for generating the outcome values is available in 
Additional file 2: Appendix B. We used the counts about 
DQ-issue occurrences influencing outcome generation 
to validate the correct implementation of outcome gen-
eration by comparing the counted DQ-issues that had an 
effect on outcome to expected counts (expected based on 
DQ-issue frequency in dummy data creation—cf. Addi-
tional file 1: Appendix A).

DQ‑assessment
Defining and applying measurement methods
We used the open source tool openCQA ([11, 27] com-
mit c0a8a784 from 2021-02-19) for DQA. We generated 
simple MMs based on variables’ datatypes calculating 
results per patient and per site. For example, the mean 
value of all systolic blood pressure measurements of a 
patient (per case) and an overall average value for the 
entire hospital (per site). The openEHR specifications 
enable us to generate advanced MMs like checking for 
contradicting entries stating presence and exclusion of a 
certain diagnosis at the same time. openCQA can gen-
erate such MMs semi-automatically. We did not include 
such MMs to avoid bias due to leaking prior knowledge 
about the DQ-issues (ET knew that there is one issue 
involving contradicting entries). Applied MMs included:

•	 Count of compositions for each case and the overall 
count of compositions per site.

•	 Currency of all compositions, i.e. the timespan 
between documentation time and current date/time 
for each patient and per site.

•	 The number of values for each variable, per patient 
and per site.
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•	 Minimum, maximum, median, mean, standard devi-
ation, lower quartile and upper quartile for numeric 
variables (overall per site and per case)

•	 Minimum-, maximum-, median- and mean-density 
(distance between timepoints) for timestamps (over-
all and per case)

All MMs applied during DQA were stored as a repro-
ducible knowledge base ([27], commit c0a8a784, file 
kb_ML_Knowledge.json). Such a knowledge base unam-
biguously defines an applicable compilation of MMs. The 
script in Additional file 2: Appendix B automated calcu-
lations for MM-results and their export. To simulate a 
collaborative DQA-knowledge learning process, MM-
results were calculated and exported as if each fictive site 
had done this independently (using the same knowledge 
base). openCQA was also used to aggregate the outcome 
values per case and per site (used MMs for outcome 
aggregation are part of the commit in file kb_Outcome_
Measures.json).

Inspecting MM‑results using the GUI
Next step was to inspect MM-results to check if built-
in DQ-issues and expected dataset characteristics were 
observable. These would be unknown in a real world 
use case. By doing this, we also verified correct process-
ing of the data and ensured that the MM-results con-
tained the required information that gives the machine 
learning algorithm the possibility to identify the DQA-
knowledge. ET inspected the MM-results using the GUI 
of openCQA. While checking if a built-in DQ-issue was 
observable, ET also rated the difficulty of identifying the 
DQ-issue’s influence on the CDSS success when using 
the GUI without subsequent machine learning. This sub-
jective rating based on two questions: 1. Is the issue eas-
ily identifiable as DQ-issue in the displayed MM-results? 
For example, a count of zero for a mandatory variable’s 
value is an obvious problem, whereas an 8 days old com-
position is not suspicious. 2. Is it difficult to identify the 
relationship between the issue and the effect on outcome 
using the GUI? Figure 2 illustrates how MM-results were 

Fig. 2  Example GUI-view on MM-results tables. Yellow rows mark cases without blood pressure values
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displayed. An issue that causes the fictive CDSS to fail 
produces results tables in which each line holding a prob-
lematic value in one table matches one line with CDSS 
success value zero in another table. It is reasonable to 
assume that a human can identify such a relationship. In 
contrast, if the issue just causes a slightly lower perfor-
mance, only a targeted statistical test between the results 
in both tables uncovers this effect.

MM‑results export
We used the export functionality of openCQA to export 
the MM-results (MM-results contained both aggregated 
outcome data and MM-results about the clinical data). 
We concatenated the exports from all sites into one file 
for the following machine learning.

In the example of Table 1 the second to fourth columns 
hold the mean value of the correct/incorrect predic-
tions, e.g. 53 if 53% of predictions were correct. We used 
shorter meaningful column names in Table 1. Names in 
the actual export were more verbose, e.g. “mean_ON_
heigth_-1103246106_magnitude_1579900770” (numbers 
solely ensure unique names).

Data driven learning from MM‑results
Machine learning
We chose decision trees (DTs) as machine learning 
method to explore the feasibility of data driven DQA-
knowledge learning. DTs have the advantage to be a 
well-known method, they are easy to interpret and the 
implementation of MMs based on DQA-knowledge 
derived from DTs’ splits is straightforward. Furthermore, 
DTs have no special requirements for their input data, 
e.g. normalizing or centering of the data. We used rpart 
[28] as implementation of DTs in the language R. Analy-
sis of variance (ANOVA) determined the best splits. The 
MM-results constituted the input variables for the deci-
sion tree (cf. Table  1 starting with column Composition 

count to the right). For each decision tree, we used one 
of the three outcome columns as label/training target 
(cf. column Outcome 1/2/3: mean CDSS success rate in 
Table  1). We used the entire dataset’s rows to train the 
model since the purpose of the resulting DT was its inter-
pretation without evaluating the machine learning mod-
el’s performance.

The applied machine learning workflow consists of two 
phases. The first phase trains a DT on the data for the 
entire site to determine MM-results, i.e. columns of our 
training data, which provide relevant information aggre-
gated per site. An example would be the number of data-
set rows, i.e. the number of compositions in the data for 
one site. These variables are attached to the “per case”-
data, e.g. in each row with results aggregated for a single 
patient a variable holding the number of compositions in 
the whole site is added. The second phase trains the DT 
on the data with MM-results aggregated per case (includ-
ing the added relevant MM-results per site). Additional 
file 3: Appendix C provides the R-script of our machine 
learning workflow.

Deriving DQA‑knowledge
Last step to learn DQA-knowledge from the exported 
MM-results was to interpret the tree, i.e. to derive rules 
covering the DQ-issues that influence the CDSS predic-
tions. Figure  3 shows an example split from a decision 
tree. The split indicates that before the split was applied, 
the CDSS predictions for this subset of 9018 cases (88% 
of all cases) had 60% correct predictions. This subset was 
divided into two groups depending on the count of sys-
tolic blood pressure values per case, i.e. cases with no val-
ues (191 cases) and cases with one and more values (8827 
cases). The subset of cases without blood pressure values 
had no correct predictions while the other subset had 
62% correct predictions.

Table 1  Structure of concatenated MM-results exports for machine learning

The first column’s value indicates the dimension in which MM-results in this row were aggregated, i.e. for the entire site (overall) or for one patient (per case). 
Following columns hold aggregated MM-results. Each row with dimension “overall” marks the start of a new site’s export

Dimension Outcome 1: mean 
CDSS success rate

… Outcome 3: mean 
CDSS success rate

Composition 
count

… Mean body 
height

Currency min 
composition

Heart 
rate value 
count

Overall 53 … 52 50 … 174.6 89,252 495

Per case 100 … 0 1 … 179 1,383,032 10

… … … … … … … … …

Per case 0 … 100 1 … 189 1,203,752 10

Overall 67 … 68 750 … 183.5 2836 982

Per case 100 … 100 1 … 190 1,724,492 8

… … … … … … … … …
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Thus, the split in Fig.  3 gives a hint to a DQ-issue 
(patient without blood pressure values) and its effect 
(CDSS fails). A knowledge base (applicable compila-
tion of MMs for a certain task, cf. [11]) considering this 
derived DQA-knowledge could for example include an 
MM that lists all patients without blood pressure values 
(Additional file 4: Appendix D shows an example of such 
a MM for openCQA).

Comparing data driven learning results
One author (ET) applied the machine learning work-
flow three times, each time using another of the gener-
ated outcomes. This author knew the DQ-issues and 
their effect on CDSS predictions (cf. Fig. 1), thus, he was 
able to compare rules indicated by the DTs’ splits to the 
actual defined DQ-issues. This produced three ratings 
for each DQ-issue addressing the question, which DQ-
issues the DTs covered. The other two authors (AW and 
NG) each conducted the DQA learning process including 
the DT interpretation once with Outcome 1, leading to 
a list of free text rules describing the derived knowledge 
about DQ-issues for each author. They both had no prior 
knowledge about the actual DQ-issues that were present 
in the data (not even the number or category of issues). 
We did this to accommodate for the first authors bias in 
interpreting the trees due to his prior knowledge about 
the issues. Finally, ET and each author (i.e. ET + AW and 
ET + NG) compared the free text rules to the gold stand-
ard list of DQ-issues present in the dataset. Later we refer 
to the result of this comparison as Control.

Results
The generated dummy data, outcome data and MM-
results are available ([29], folder “dummy data, outcome 
data, MM-results”). The numbers of counted DQ-issues 

affecting outcome generation are available in folder “trig-
gered issue rules”. Counts were in the expected ranges. 
The exported MM-results used for machine learning can 
be found in file “MM-results_export_for_machine_learn-
ing.csv”. MM-results for 122 MMs were exported as 
10,315 rows of data available for machine learning (20 for 
dimension per site, 10,276 per case and 19 rows had data 
on cases with missing case-id). Additional file 5: Appen-
dix E contains the DTs resulting from machine learning 
on Outcomes 1 to Outcome 3.

Table  2 column GUI shows the results of manually 
inspecting MM-results in openCQA. The values for each 
DQ-issue indicate how well MM-results shown in the 
tool’s GUI indicate the respective issue and its effect. 
Columns Outcome 1 to Outcome 3 show the results from 
comparing the DQ-issues indicated by the DTs’ splits to 
the actual DQ-issues (knowing the truth). Values indi-
cate how well the splits cover the respective issue and its 
effect. Column Control shows the results from learning 
DQA-knowledge without prior knowledge about DQ-
issues. Value “no” indicates the DQ-issue was not derived. 
“yes” indicates both controls (AW and NG) derived this 
DQ-issue as influencing factor for the CDSS. “yes/no” 
indicates that only one of them derived the knowledge 
about this issue. The free text lists AW and NG created 
contained no rules where any of the authors had doubt 
or divergent opinions on how to rate it compared to the 
gold standard.

The DTs for Outcome 1 to Outcome 3 had only minor 
differences. Of the 19 DQ-issues present in the data, 
eleven/twelve were visible in the DTs (prior knowledge). 
DTs contained only few splits in lower parts of the tree 
that indicated rules without justification in an actual DQ-
issue. Four of the issues were found by both controls and 
five issues by at least one control, indicating that at least 
nine of the issues could be derived without prior knowl-
edge. One of the controls derived one unjustified rule.

We perceived six groups of DQ-issues in our results 
on learning success as indicated by column Group in 
Table  2. (1) The issues case_id_missing and contradict-
ing_entries_risk_factor are both obvious problems for 
humans inspecting MM-results. Thus, targeted MMs for 
checking them can be applied. To estimate the effect on 
CDSS performance, a human could perform a targeted 
statistical analysis regarding the correlation between 
affected cases and their CDSS outcome. We did not 
apply any targeted MMs in our work to avoid creating 
a bias due to prior knowledge about issues. Our simple 
machine learning approach did not consider cases with 
missing case-id since these were aggregated as one row 
during export. To identify cases with contradicting val-
ues in risk factor entries, the risk factor’s name is neces-
sary (e.g. “diabetes”). The exported MM-results consisted 

Fig. 3  Example split from decision tree indicating the effect 
of missing blood pressure values. Node captions contain CDSS 
prediction accuracy in subset (e.g. 60), absolute (e.g. n = 9018) and 
relative (e.g. 88%) number of instances in subset. Splitting condition 
below node, left side fulfills the condition
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of numeric values only, i.e. the export was missing the 
necessary information to distinguish cases with contra-
dicting entries. Thus, manual DQA-knowledge learning 
for these two issues had good ratings and the machine 
learning supported approach was rated with “no”. (2) The 
issues cases_per_site_low and cases_per_site_very_low 
were not visible in the GUI, since data was not pooled 
(GUI only showed results for one site). The DTs had splits 
in prominent positions indicating these issues with sat-
isfying precision for thresholds (e.g. row_count < 375 
where actual issue threshold is 400). (3) Issues start_
time_21 and start_time_7 were visible in the GUI when 
MM-results were aggregated per day (only applied in 
GUI, not exported for machine learning). start_time_21 
was visible through a clear cutoff in aggregated outcomes 
per day, because predictions on data older than 21 days 
failed completely. For start_time_7 the cutoff was less 
obvious because predictions were only less accurate but 
did not fail completely. If the DQ was already bad, e.g. 
because the site had a low number of cases, the effect was 
hardly noticeable in the GUI. The DTs had splits in prom-
inent positions with good precision for thresholds (e.g. 
currency ≥ 21 and currency ≥ 7. For Outcome 3 the split 
for 7  day rule was shown as ≥ 8). (4) For gender_miss-
ing, height_or_weight_missing, missing_info_risk_factor, 
blood_pressure_outlier, HF_outlier, blood_pressure_den-
sity_0 and HF_density_0 the odd values are apparent 
for humans (e.g. missing values, a systolic blood pres-
sure > 300 or a density of 0, where the density of 0 means 

that all timepoints for different measures of a vital 
parameter have the same timestamp). However, to iden-
tify the correlation, for each issue it would be necessary 
to compare two tables with 50–1000 rows, i.e. one table 
with the MM-results per case and the CDSS prediction 
accuracy per case (cf. Fig.  2). Thus, some effects may 
be overlooked. Dependent of the strength of the effect 
and other confounding issues, a statistical test is likely 
to show a significant difference (e.g. height_or_weight_
missing) or not (e.g. gender_missing). The DTs contained 
splits for the DQ-issues which had stronger effect in the 
respective subset of the data (e.g. heigth count = 0, miss-
ing_info_risk_factor, blood pressure magnitude ≥ 274, 
blood pressure density < 334, heart rate standard devia-
tion or maximum value). Some DQ-issues with weak 
effect were not visible in the DTs but were listed in alter-
native splits, indicating that the impact of the issue was 
too low to be selected as split but maybe some advanced 
machine learning methods would be able to detect them 
(e.g. gender_missing, HF_density_0). For the height_or_
weight_missing rule, only a split on height is present in 
the DTs because weight was missing less often. (5) For 
blood_pressure_none and HF_0, a human would need to 
compare two big tables, but since the effect is very strong 
(CDSS fails), we deemed it as noticeable. The DTs showed 
a split in prominent positions in the tree (blood pressure 
count or heart rate count < 1). (6) The last group of issues 
(blood_pressure_2, HF_5, HF_10, HF_density_2min) did 
not stand out with obviously odd values. Furthermore, 

Table 2  Overview DQA-knowledge learning success

DQ-issue Group GUI Outcome 1 Outcome 2 Outcome 3 Control
case_id_missing 1 Good No No No No
contradicting_entries_risk_factor 1 Good No No No No
cases_per_site_very_low 2 No Good Good Good No
cases_per_site_low 2 No Good Good Good Yes/No
start_time_21 3 Good Very good Very good Very good Yes
start_time_7 3 Weak Very good Very good Good Yes/No
gender_missing 4 No No No No No
height_or_weight_missing 4 Weak Weak Weak Weak Yes/No
missing_info_risk_factor 4 Ok Good Good Good Yes
blood_pressure_outlier 4 Ok Good Good Good Yes/No
blood_pressure_density_0 4 Ok Good Weak Weak No
HF_density_0 4 Ok No No No No
HF_outlier 4 Ok Good Good Good Yes
blood_pressure_none 5 Ok Very good Very good Very good Yes/No
HF_0 5 Ok Very good Very good Very good Yes
blood_pressure_2 6 No No No No No
HF_5 6 No No No No No
HF_10 6 No No No No No
HF_density_2min 6 Weak No Good Good No
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their effect was weak. Thus, statistical tests may not be 
significant if correlations with outcome were investi-
gated. Since the effects were small, the DTs only contain 
splits indicating HF_density_2min in two of three DTs. 
blood_pressure_2 and HF_5 were visible in alternative 
splits but not shown in DTs.

Discussion
Finding suitable MMs for DQA adjusted to a certain 
task and defining reference ranges that indicate note-
worthy MM-results is typically resource intensive and 
often based on personal experience of involved experts. 
Our research explored the applicability of a data driven 
approach with the aim to support learning of tangible 
DQA-knowledge. Our results show that even simple 
machine learning methods can derive sensible knowledge 
from exported MM-results and respective outcome data. 
The derived rules sensibly complemented the rules likely 
to be found in a manual approach.

Sensible DQA‑knowledge
We applied DTs to support deriving knowledge about 
DQ-issues and their effects. DTs indicated DQ-issues 
with satisfying values for their respective thresholds. 
Researchers without prior knowledge about the DQ-
issues (control) were able to derive sensible rules. DTs 
contained only a few nonsense splits in lower parts of 
the trees. Control derived only one false DQ-issue rule. 
When control shared their individually found rules, both 
noted a lack of context about the original data and the 
interpretation of the exported MM-results. This was due 
to the efforts to prevent knowledge leaking about DQ-
issues, i.e. keeping control out of data generation and 
manual DQA (cf. Fig. 1). A lack of context could handi-
cap the identification of rules from the DTs, but there is 
no reason to assume that it could help. Thus, a bias from 
this would distort our results towards less success, i.e. it 
does not impair our finding, that the presented approach 
is suitable to identify sensible DQA-knowledge.

The data, DQ-issues and how issues influenced the out-
come were fictive. Furthermore, we pragmatically cre-
ated rules defining how DQ-issues affect the outcome 
because these were straightforward to check in out-
come generation and to compare with DQA-knowledge 
learning results. Real world data is complex, it may not 
be possible to model a DQ-issue’s effect (e.g. as a rule) 
and probably many confounding factors regarding out-
come exist. To address this, we performed the probabil-
istic outcome data generation with probabilities based 
on DQ. Thus, DQ-issues had no pure effect on the out-
come. Central idea is that in some cases there may be a 
correlation between some MM’s result value (indicating 
an issue) and the outcome. Motivation of our work is 

to provide an approach that helps to identify such rela-
tions between MMs’ results and outcomes. Testing our 
method in an artificial setting was essential, since expe-
rience shows “[…] it is too easy to ‘get a result’ in the 
data science space. […] and even more likely that one 
can then come up with some ‘intuitions’ to rationalize 
the results.” [30]. Thus, we needed a truth to check our 
learned DQA-knowledge. This check, i.e. comparing our 
learned DQA-knowledge to the actual defined DQ-issues 
to determine values for Table 2, involved a subjective rat-
ing (e.g. rating the split displayed in Fig. 3 as “very good” 
indicator for the DQ-issue “blood pressure none” and its 
effect of a failing CDSS). Therefore, we justified the val-
ues in the results section. Even with this small subjective 
factor, we deem the check as robust enough to substanti-
ate the finding that the derived rules were accurate. In a 
real world use case, no instance verifying the correctness 
of the learned DQA-knowledge exists. Our results with 
artificial data give us some confidence that our approach 
indicates sensible issues and thresholds and only few mis-
leading results. We are aware that this is no guarantee for 
sensible results in real world use cases, but we think this 
is not critical, since we see the value of our approach in 
indicating interesting measures and thresholds to con-
sider and not in taking any automated decisions. The 
consequence if our approach fails in a use case is that 
some irrelevant measures for DQA are proposed.

DQ-tools like openCQA provide us with function-
alities to quickly generate many MMs, e.g. by generat-
ing MMs based on datatype, based on constraints from 
information models, by adding aggregations in sensible 
dimensions, by adding MMs resulting in plots, relative 
values and more. Our approach cannot relieve the expert 
completely from the burden to select sensible MMs for 
DQ-assessment. But it can help the expert by allowing to 
automatically generate common statistical measures and 
constraint checks aggregated in sensible dimensions and 
then assisting in the identification of the relevant MMs 
and result thresholds for certain tasks. Our approach 
can be applied to all MMs with results that can be trans-
formed into a structure like Table 1. By cooking down the 
results of 122 MMs to 12 relevant MM-results our DQA-
knowledge learning approach already provided a valuable 
prioritization. Respective thresholds for the MM-results 
additionally enable to support DQA by highlighting only 
the MM-results with relevant values. Beyond that, DTs 
are hierarchical structures. They build the tree structure 
by repeatedly seeking for binary splits explaining the 
most variance in the current data subset. Thus, splits in 
the upper part of the tree indicate the DQ-issues caus-
ing the most effect on the outcome. That way DTs pro-
vide an additional prioritization of MMs. We are aware 
of only one other work that considers the learning of 
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task dependent prioritization for MM-results [17]. While 
Johnson et  al. aim to quantify the effects of changes in 
DQ, they proposed a method that calculates weights for 
MMs on certain variables. This could also serve as prior-
itization. Because these weights base on a linear regres-
sion, their method only works for MMs with results that 
suit the requirements for linear regressions. Many intui-
tive conceptions of DQ do not define good or bad DQ in 
a linear way where a low MM-result value is bad and a 
higher value is steadily indicating better DQ. For exam-
ple, the number of heart rate measurements per case 
should be in a normal range. Having no values would be 
bad for our fictive CDSS, having more than ten would be 
good, but having 1000 values for a single case would be 
odd again (even the range from one to ten measures per 
case was not linear in our scenario). Our approach allows 
to identify reference ranges that indicate MM-results that 
need attention. Thus, it is an important addition to cur-
rently published methods.

Complementing DQA‑knowledge
The results indicate that our applied learning approach 
is suitable to complement DQA-knowledge with new 
insights (compared to manually derived knowledge dur-
ing DQA). From comparing the results in Table 2 column 
GUI (manual approach) to the results based on machine 
learning (columns Outcome 1 to Control), we identified 
three groups of issues where adding our approach was 
beneficial. (1) Combining the MM-results of multiple 
sites enabled us to identify DQ-issues that were not visi-
ble in results from just one site (low and very low number 
of cases per site). Sharing MM-results instead of patient 
data can be an advantage for collaborative learning of 
DQA-knowledge, although sharing of MM-results as well 
needs attention to ensure that no privacy issues occur. (2) 
If values were obviously odd (e.g. missing value or outlier) 
or had a strong effect on the outcome (e.g. CDSS fails 
without blood pressure values) a human inspecting MM-
results could notice these issues, but we noticed a risk of 
overlooking rare effects in big result tables. Furthermore, 
to investigate the effect of the DQ-issue on the outcome 
in most cases a statistical test would be necessary. Thus, 
the manual approach is more labor intensive and error-
prone for such issues. (3) We deemed DQ-issues with-
out obviously odd values and without obvious effect on 
outcome (e.g. compositions that were older than 7 days) 
to be likely to be overlooked in the manual approach. To 
identify a correlation between such a DQ-issue and its 
effect on the outcome, a human needed an anticipation 
to trigger a targeted statistical test investigating the cor-
relation. DTs basically perform automated statistical tests 
(ANOVA) on each variable and possible splitting value. 

By this, the need for anticipating DQ-issues is removed 
improving the identification of such issues.

In our results, the DQ-issues case_id_missing and con-
tradicting_entries_risk_factor were found to be obvious 
for humans but not detected using DTs. Another exam-
ple where other approaches are more suitable would be 
typing errors. In strings with a limited amount of eligible 
values, these are easy to identify manually by listing all 
unique values and the number of their occurrences. Data 
driven methods that work directly on the data are also 
suitable to identify cases (e.g. [18], 19) or distributions 
(e.g. [20]) that somehow deviate from “normal”. However, 
these approaches do not consider the task. For exam-
ple, a composition that is older than 21 days or a patient 
with less than x measurement values is nothing that 
deviates from normal, but it is a relevant DQ-issue if we 
consider the task. As we can combine DQA-knowledge 
that we derive with our approach with knowledge from 
other approaches, manual or data driven, combining 
approaches to complement each other seems favorable.

Conclusions
Our machine learning supported approach for task 
dependent learning of DQA-knowledge is suitable to 
derive sensible and practical knowledge about relevant 
MMs and their reference ranges for interpreting MM-
results. The derived DQA-knowledge can sensibly com-
plement other currently common approaches by closing 
blind spots for DQ-issues with undeniable practical 
relevance. For example, DQ-concepts that do not cre-
ate MM-results suitable for linear regressions or task 
dependent DQ-issues that are not identifiable as obvi-
ously abnormal values. Our approach derives applicable 
knowledge for task dependent DQA, e.g. which measur-
able requirements does a local data stock have to fulfill 
to apply a given CDSS with good prediction accuracy? 
To the best of the authors’ knowledge, this is the first 
work on an approach providing tangible answers to such 
questions.

Although our approach provides task dependent DQA-
knowledge it is flexible regarding the studied task, i.e. 
whether the task is a CDSS system or some other data use 
is not important. For initial learning of DQA-knowledge 
the task has to provide values about the task dependent 
DQ of subsets of the dataset. These values constitute the 
label data in the training instances for the machine learn-
ing model. DTs can deal with numeric as well as with 
textual labels (class labels). An obvious future research 
direction would be to apply our approach on textual DQ-
issue labels. Other important future research directions 
concern the applicability of our approach in real world 
use cases and the elaboration of advanced machine learn-
ing methods for the learning process.
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