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Abstract

Background: There is an increasing interest in clinical prediction tools that can achieve high prediction accuracy
and provide explanations of the factors leading to increased risk of adverse outcomes. However, approaches to
explaining complex machine learning (ML) models are rarely informed by end-user needs and user evaluations of
model interpretability are lacking in the healthcare domain. We used extended revisions of previously-published
theoretical frameworks to propose a framework for the design of user-centered displays of explanations. This new
framework served as the basis for qualitative inquiries and design review sessions with critical care nurses and
physicians that informed the design of a user-centered explanation display for an ML-based prediction tool.

Methods: We used our framework to propose explanation displays for predictions from a pediatric intensive care
unit (PICU) in-hospital mortality risk model. Proposed displays were based on a model-agnostic, instance-level
explanation approach based on feature influence, as determined by Shapley values. Focus group sessions solicited
critical care provider feedback on the proposed displays, which were then revised accordingly.

Results: The proposed displays were perceived as useful tools in assessing model predictions. However, specific
explanation goals and information needs varied by clinical role and level of predictive modeling knowledge.
Providers preferred explanation displays that required less information processing effort and could support the
information needs of a variety of users. Providing supporting information to assist in interpretation was seen as
critical for fostering provider understanding and acceptance of the predictions and explanations. The user-centered
explanation display for the PICU in-hospital mortality risk model incorporated elements from the initial displays
along with enhancements suggested by providers.
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Conclusions: We proposed a framework for the design of user-centered displays of explanations for ML models.
We used the proposed framework to motivate the design of a user-centered display of an explanation for
predictions from a PICU in-hospital mortality risk model. Positive feedback from focus group participants provides
preliminary support for the use of model-agnostic, instance-level explanations of feature influence as an approach
to understand ML model predictions in healthcare and advances the discussion on how to effectively communicate
ML model information to healthcare providers.

Keywords: Machine learning, Explainable artificial intelligence, User-computer interface, Clinical decision support
systems, In-hospital mortality, Pediatric intensive care units
Background
Although numerous prior efforts have demonstrated the
successful application of machine learning (ML) models
to complex problems in medicine, there is a distinct ab-
sence of these models in practical applications [1–3].
Many discussions attribute this absence to a lack of model
interpretability, commonly described as the ability of a hu-
man to understand factors contributing to a model’s be-
havior [4–6]. With increasing societal concerns and
regulations on intelligent algorithms, [6–8] recognition of
the importance of incorporating providers’ and domain
knowledge in modeling processes, [1, 3, 6, 9, 10] and pro-
vider demand for model explanations, [2, 4–6] interpret-
ability will be vital to the future success of ML models in
healthcare.
The ML community has developed several approaches

to explaining models and predictions. Although user
goals, expertise, and time constraints play critical roles
in determining what information an explanation must
provide to meet user needs, [11–13] there is an apparent
lack of end-user involvement in the design and evalu-
ation of explanation approaches. The definition of what
constitutes a “good” or “useful” explanation is often left
to the judgment of novice and expert model developers,
whose knowledge and backgrounds are generally not
representative of end-user expertise [11]. Developers are
often exclusively concerned with the statistical and mod-
eling challenges of generating an explanation; the display
of the explanation often receives less attention and is
rarely informed by end-user needs or insights from the
literature [11, 12, 14]. Current evaluation studies provide
limited insight into how end-users interpret and utilize
explanations designed by modeling experts, [5] particu-
larly if accurate interpretation of those models requires
some level of understanding of ML models. This may
lead to a lack of usability and practical interpretability of
these explanations for real end-users.
Researchers in the human computer interaction (HCI)

and ML communities have proposed frameworks for
and provided guidance on user-centered design for ex-
plainable ML and artificial intelligence (AI) [14–19].
This literature focuses mainly on who an explanation is
provided to—the user of the system, and why the user
requires an explanation—the specific goals the user is
trying to accomplish [15, 17, 19]. While these are im-
portant elements in understanding the context of use of
an explanation, little attention seems to be paid to where
or when users require explanations. These questions re-
late to the environment in which a user is expected to
use an explanation, which can impact how an explan-
ation needs to be designed and evaluated. Environment
is particularly important to consider when designing dis-
plays of explanation tools for ML models to be used in
clinical decision support systems (CDSS), as research
has shown that CDSS that interfere with existing work-
flows are unlikely to be used and accepted by clinicians
[20].
Our goal was to use clinician perspectives to inform

the design of a user-centered display of an explanation
for an ML-based prediction tool. More specifically, we
propose an explanation display design framework that
considers the entire context of use of an explanation and
can thus account for healthcare provider explanation
needs when utilizing a predictive model in clinical prac-
tice. We demonstrate an application of our framework
by using it to suggest possible explanation displays for a
pediatric intensive care unit (PICU) in-hospital mortality
risk model. Finally, we solicit pediatric critical care pro-
vider feedback on proposed displays to gain a better un-
derstanding of explanation needs, identify successful
display elements, and inform the design of a user-
centered display of an explanation for the PICU in-
hospital mortality risk model.
Framework for designing user-centered displays of
explanation
Although previous conceptual frameworks and guidance
for user-centered explainable ML and AI [14–18] have
included the user perspective, key contextual and goal-
related questions have not been discussed. To close this
gap, we revise and extend existing frameworks—particu-
larly those of Wang, et al. [15] and Ribera and Lapedriza
[17]—to explicitly include contextual factors.
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The framework by Wang et al. [15] relies on theories of
human reasoning and explanation, and highlights specific
elements of AI explanation that support these processes
and mitigate errors. It promotes explanation design by
linking specific AI explanation techniques and elements to
the human cognitive patterns they can support (e.g., “what
if” type explanations support counterfactual reasoning)
and covers many concepts and techniques from the litera-
ture on model interpretability. Although useful for identi-
fying explanation techniques to support specific reasoning
goals and cognitive processes, this model does not account
for how these factors may differ by specific types of users
or how environmental constraints on the user may affect
these processes. Ribera and Lapedriza [17] rely on theories
that describe explanation as a social interaction and
present a framework focused on understanding explainee
(i.e., user) needs according to their background and rela-
tionship to the AI system. They define general user types
and identify specific explanation goals (why), the content
to include in an explanation (what), the type of explan-
ation or explanation approach (how), and suitable evalu-
ation approaches for each user type. Although the
framework helps elucidate general design elements to sup-
port the explanation goals for each user type, it includes
only a small portion of concepts and techniques from the
model interpretability literature and it also does not con-
sider how environment may affect explanation needs.
Our framework (Fig. 1) extends the why, what, how

structure of explanation introduced by Ribera and Lape-
driza [17] to include when and where an explanation will
be used. Following Wang et al. [15]‘s approach, our sug-
gestions for explanation content (what) and presentation
Fig. 1 Proposed framework for designing user-centered displays of explana
(how) encompass many concepts from the model inter-
pretability literature; however, rather than mapping
specific reasoning processes to existing explanation tech-
niques, we consider the broader picture of how context of
use elements map to general concepts of explanation from
the literature. More specifically, our framework suggests
that answering target questions about the context of use
(who, why, when, where) can help answer target questions
about explanation design choices such as what informa-
tion the explanation needs to contain (i.e., the content)
and how that information needs to be provided (i.e., the
presentation). Fig. 1 lists general factors that should be
considered for each target question (e.g., cognition and ex-
perience for who) along with a few specific examples for
each factor (e.g., AI expert). These factors are discussed
along with supporting literature in the next few sections.
As indicated by the grey dashed lines in Fig. 1, the target
questions are not orthogonal and are often co-dependent
in that the answers to one question can and will be deter-
mined by the answers to other target questions.

Who
Prior work has tried to create categories of users to de-
fine explanation needs, but, as discussed in Ras et al.
[14], users often fall into multiple categories. We instead
argue that users can generally be defined by two aspects:
1) user cognition and experience and 2) the user’s rela-
tionship to the system at the time the explanation is pro-
vided. Ribera and Lapedriza’s [17] classifications of AI
experts, domain experts, and lay persons capture the
main categories of user cognition that appear in the
literature. Work by Ras et al. [14] provides sub-
tion
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categorizations of users (engineer, developer, owner,
end-user, data subject, stakeholder), capturing the vari-
ous relationships a user may have with an AI system. In
our model (Fig. 1), these sub-categorizations are general-
ized into the role of designer (engineer, developer), end
user, and other stakeholders (owner, data subject, stake-
holder). These dimensions overcome the problem of try-
ing to create mutually exclusive user categories to define
needs. A user may have several different relationships
with a system over time, and thus their explanation
needs may change with varying roles.

When/where
A broad classification of when and where an explanation
is being used can be related to the stage of the system,
which often defines a user’s relationship to the system
(e.g., during system development the user relationship to
the system is often that of designer). Explanations re-
quired during system development, implementation, and
deployment will likely differ in design due to the differ-
ent environmental settings associated with each system
stage. When/where can be answered by considering the
environment in which the explanation will be used and
how the explanation needs to be designed in order to
support use within that environment. Specifically, envir-
onment will dictate the constraints on the user (e.g.,
available time and cognitive capacity), the available tech-
nical resources, and social factors influencing the user’s
perception of the system, which are all elements that
may influence explanation needs.

Why
This target question depends on the answers to the who
and when/where target questions, as the user, their rela-
tionship to the system, and the environment in which
they will operate often affects why an explanation is
sought. Although several prior efforts have identified
various user needs and goals that drive the need for ex-
planations, most of these can be captured in four broad
categories defined by Samek et al. [21]: 1) verification—
examining how decisions are made by the system to
ensure it is operating as expected; 2) improvement—im-
proving system performance, efficiency, and/or utility; 3)
learning—extracting knowledge from the system; and 4)
compliance—ensuring the system adheres to an estab-
lished legal, moral or other societal standard. It should
be noted that these are not mutually exclusive categories
(e.g., explanations for verification are also often used to
guide improvement activities). When users request ex-
planations in the context of decision-making, they are
generally requesting explanations for verification (e.g.,
support for a specific decision suggested by the system)
and/or explanations for learning (e.g., knowledge to sup-
port a decision-making process).
What
Depending on who is receiving an explanation and why
they require it, an explanation may aim to clarify either
the internal processes of a system (i.e., how it specifically
relates inputs to outputs) or its general behavior (i.e., in-
put/output relationships only) and the explanation may
need to be provided at the global (i.e., explains the entire
model or system) or instance (i.e., explains a single pre-
diction) level. The target and level of the explanation
can generally be determined by the type of explanation
the user is seeking. Lim et al. [16] provide a useful tax-
onomy of explanation types based on the intelligibility
query they aim to answer: 1) “input” explanations, which
provide information on the input values being used by a
system; 2) “output” explanations, which provide informa-
tion on specific outcomes/inferences/predictions; 3)
“certainty” explanations, which provide information on
why an expected output was not produced based on
certain input values (i.e., contrastive explanations, coun-
terfactuals); 4) “why” explanations, which provide infor-
mation on how a system obtained an output value based
on certain input values (i.e., model traces or complete
causal chains); 5) “why not”/“how to” explanations,
which provide information on why an expected output
was not produced based on certain input values (i.e.,
contrastive explanations, counterfactuals); 6) “what if”
explanations, which provide information on expected
changes in output based on certain changes in the input
(i.e., explanations that permit outcome simulations); and
7) “when” explanations, which provide information on
which circumstances produce a certain output (i.e., proto-
type or case-based explanations). It should be noted that
these taxonomy categories are not mutually exclusive (e.g.,
it is possible to provide an “input”/“output”/“certainty”/
“why not” explanation). As discussed briefly in Wang et al.
[15], user cognition and needs may also require explana-
tions to be supported by additional information such as
source data (e.g., raw data the model was built from), sup-
plemental data (e.g., data not included in the modeling
process but is relevant to the situation or context), and
training materials (e.g., information on model develop-
ment or explanation interpretation).

How
Summarizing and expanding upon the work of Doshi-
Velez and Kim [18], the presentation of an explanation
can generally be summarized using four main categories:
1) the unit of explanation, or the form or the cognitive
chunk being processed (e.g., raw features, feature sum-
maries, images, or instances); 2) the organization of the
explanation units, or the compositionality and relation-
ship between the units, which may include groupings,
hierarchical or relational organizations, or summary ab-
stractions (e.g., a free text summary of a combination of
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units); 3) the dimensionality, or processing size/levels of
explanation information, which may include the overall
size of an explanation or interactive exploration options;
and 4) the manner in which information is represented,
which includes the vocabulary, data structures, and visu-
alizations used to express information. The specific
choices in each of these four main categories will be de-
termined by the target user for an explanation (i.e., who)
and the environment in which it is being provided (e.g.,
when/where).

Scope of framework
The proposed framework aims to outline a general ap-
proach to designing user-centered displays of explan-
ation that can be applied to existing explanation
approaches and to the development of new approaches.
Therefore, specific design suggestions (e.g., a specific ex-
planation approach) are not included and examples are
not meant to be comprehensive. Additionally, the frame-
work was developed for empirically-based predictive
models, or data-driven models based on statistical asso-
ciations that aim to minimize prediction error. It is not
intended to be used for explanatory models, or theory-
driven models that aim to test causal relationships be-
tween variables and that may be used in prediction tasks.
Similarly, our framework is intended to address model
explainability and not causability, defined by Holzinger
et al. [22] as follows:

Explainability: “in a technical sense highlights
decision-relevant parts of the used representations
of the algorithms and active parts in the algorithmic
model, that either contribute to the model accuracy
on the training set, or to a specific prediction for
one particular observation. It does not refer to an
explicit human model”.
Causability: “the extent to which an explanation of
a statement to a human expert achieves a specified
level of causal understanding with effectiveness, effi-
ciency and satisfaction in a specified context of use”.

Therefore, when we refer to an “explanation display”, we
are referring to a graphical display and related user
interface designed to promote user understanding of
factors contributing to a classification from a machine-
learning model. Similarly, “explanation design” refers
either to the process of creating such a display, or the el-
ements included in such a display. We refer readers to
Holzinger et al. [22] for more in depth discussions on
explainability vs. causability.

Methods
We provide a brief overview of the PICU in-hospital
mortality risk model and utilize the proposed framework
to suggest explanation displays for the model. Finally, we
describe the methodology employed to conduct focus
groups to solicit pediatric critical care provider feedback
on the proposed displays.

PICU in-hospital mortality risk model
Our motivating example was a mortality risk predic-
tion model for PICU patients. As the main purpose
of this work was to explore the potential benefit of
user-centered explanation displays for the model, we
utilized a small, readily available dataset and made no
attempt to learn a best performing model. The Insti-
tutional Review Board (IRB) of the University of Pitts-
burgh approved the use of this data for the purposes
of this work (PRO17030743).
The dataset included all discharged patients with a

PICU admission at the Children’s Hospital of Pittsburgh
(CHP) between January 1, 2015 and December 31, 2016.
Variables included demographic information (age, sex,
race), hospitalization data (time of admission and dis-
charge), outcome data (discharge disposition and de-
ceased date), assigned diagnoses, recorded locations,
mechanical ventilation information, physical assessment
measurements (vital signs, pupil reaction results, and
Glasgow Coma Scale [23] measurements), and labora-
tory test results. The target outcome to predict was in-
hospital mortality, defined as an encounter with a re-
corded deceased date that occurred on or prior to the
recorded discharge date. The goal was to use all data
collected prior to the time of the prediction to predict
in-hospital mortality 24 h prior to the event. For death
cases, this included all data collected up to 24 h prior to
death; for control cases all data collected prior to dis-
charge were included.
Data cleaning procedures included standardizing

values for categorical data (e.g., race, diagnoses), group-
ing laboratory test and vital sign values measured by
more than one technique (e.g., invasive/non-invasive
blood pressures), removing text and invalid characters
(e.g., “<”, “>”) from numeric results, and dropping invalid
and duplicate test results. Features were defined for
non-temporal (age, sex, race, length of stay, mechanical
ventilation information, recorded locations, diagnoses)
and temporal data (physical assessment measurements,
laboratory test results). The final feature set included
422 features (see Additional file 1). Numerical features
were discretized using the minimum description length
criterion discretization method, [24] which accounts for
class information (e.g., in-hospital mortality status) when
defining discretization bins. After discretization, a “miss-
ing” category was introduced to each feature to account
for missing values.
Using encounters from 2015 as training data and en-

counters from 2016 as testing data, we trained and
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evaluated several different models using a variety of fea-
ture selection techniques (information gain, correlation-
based feature subset selection [25]) and learning algo-
rithms (logistic regression, random forest, Naïve Bayes,
support vector machine). We proposed explanation dis-
plays for the highest performing model, which was a
100-tree random forest model using features that had
non-zero information gain scores, i.e., features that ex-
hibited at least some predictive value. The model in-
cluded 146 features and exhibited an area under the
receiver operating characteristic curve (AUROC) of 0.94
and an area under the precision-recall curve (AUPRC) of
0.78.

Proposed explanation displays
We applied our proposed conceptual framework to de-
fine an initial context of use and identify promising de-
sign requirements for explanations of the PICU in-
hospital mortality risk model. Figure 2 summarizes ini-
tial answers for each target question in the framework.
These answers were derived from our prior experiences
in developing predictive models as well as from an infor-
mal review of the literature on interpretable ML, social
science work on human explanation and medical
decision-making, HCI, information visualization, CDSS
(specifically barriers, facilitators, and provider percep-
tions), and predictive models evaluated by providers or
implemented in practice. As we anticipated that input
from clinical users would be necessary to identify needed
supporting information and dimensionality preferences,
these fields were labeled as “TBD”.
We focused specifically on using the predictive model

as a tool to support clinical decision-making in the crit-
ical care setting. As summarized in Fig. 2, explanations
Fig. 2 Summary of an initial context of use and a possible space of explan
dimensionality preferences would be determined based on input from use
for the PICU in-hospital mortality risk model would
likely be used by critical care providers who: 1) have
varying clinical experience and limited knowledge on
interpreting risk information from statistical and ML
models (who), 2) work in a cognitively demanding, time-
constrained environment where access to updated, real-
time information is critical (when/where), and 3) would
likely be seeking explanations to assist in verifying indi-
vidual predictions from the model and learning informa-
tion that can assist in decision-making (why). The
answers to the who and why target questions suggest
that a successful explanation design might contain
(what) contrastive explanations (type: “why not”) for in-
dividual predictions (level: instance) that demonstrate
which inputs push the prediction toward one output
over another (target: behavior).
The aforementioned design requirements can be

met by existing post-hoc explanation approaches that
provide instance-level explanations based on feature
influence values. Utilizing a model-agnostic explan-
ation approach (i.e., an explanation approach that is
not tied to any specific model or algorithm) would
provide further benefit, as it allows the predictive
model to adapt over time with minimal changes to
the explanation display. However, the literature pro-
vides little to no insight on what supporting informa-
tion (what) and presentation methods (how) would be
effective for model-agnostic, instance-level, explan-
ation approaches based on feature influence methods.
Inquiries with critical care providers were required to
validate the appropriateness of these explanations and
understand what supporting information and presen-
tation methods would contribute to a successful ex-
planation display.
ation designs. Note that any supporting information needs or
rs
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To facilitate these discussions, we proposed prelimin-
ary explanation displays for predictions from the PICU
in-hospital mortality risk model. To generate model-
agnostic, instance-level explanations of feature influence
for the PICU in-hospital mortality risk model, we choose
to utilize the Shapley additive explanations (SHAP) algo-
rithm [26, 27]. We developed five low-fidelity prototype
displays for the SHAP explanations, utilizing a variety of
design options for the presentation of an explanation
(how). Design options and rationales are described in
Table 1.
Each prototype included the predicted risk of mortality

from the PICU in-hospital mortality risk model, an
explanation for the predicted risk from the SHAP algo-
rithm, and supporting information to assist in interpret-
ing the risk and explanation. Figure 3 depicts the
explanation portion and design options used in each
prototype. Prototypes with feature groups and tornado
plots also included an interactive hover-box option to
view the individual level features within each group (i.e.,
modifiable granularity of explanation unit). Figure 4 de-
scribes and provides an example of the supporting infor-
mation included in each prototype. SHAP explanations
were generated using the Python shap package version
0.27.01 [34] and prototypes were generated as interactive
HTML pages using the Python bokeh graphing package,
version 1.0.4 [35].

Focus groups to refine explanation display
We conducted focus groups with critical care providers
to solicit feedback on the proposed explanation displays
Table 1 Design options and rationales for main factors to consider

Factor Design Options Rationale

Unit of explanation Individual features Lower infor
Evidence su
experts via
laboratory t

Feature groups

Explanation unit organization None Explanation
might be p
(e.g., feature
groups mig
demograph

Influence groups

Assessment groups

Dimensionality
(size & granularity)

Static Dimensiona
explanation
dimensiona
suggesting
include con
explanation

Interactive

Risk representation Probability Critical care
Risk informa
terms of od
representati

Odds

Explanation display format Force plot Visual repre
Tornado plo
feature influ
has not bee

Tornado plot
for the PICU in-hospital mortality risk model. Findings
from the focus group were used to inform a final user-
centered explanation display for predictions from the
model. This study was reviewed and approved by the
IRB at the University of Pittsburgh (STUDY19020074).
Setting and participants
Focus groups were conducted at CHP during March
2019–June 2019. A convenience sample of pediatric crit-
ical care providers of differing clinical expertise (e.g.,
nurses, residents, fellows, attending physicians) was re-
cruited through professional connections of one of the
authors (CMH).
Procedures and data collection
We conducted three focus group sessions, each ~ 1.5 h
in length and comprising 5–8 participants. Each partici-
pant attended only a single focus group session, during
which they were asked to complete three activities: 1) a
guided group discussion about their perceptions of the
PICU in-hospital mortality risk model based on informa-
tion about its development; 2) a guided group review
and critique of the five display prototypes; and 3) a ques-
tionnaire to indicate preferred design options. A focus
group script and question guides were developed and
followed for each session. See Additional file 2 for copies
of the question guides for the group discussions. Focus
group sessions were moderated by 1–2 researchers and
a separate researcher took notes during each session. All
sessions were audio-recorded.
for explanation presentation

mation granularity can reduce cognitive load and processing time.
pports the use of lower information granularity for non-AI/ML
feature groupings or extractions [28]. We can group features by
est/vital sign.

s including causes that are abnormal or controllable (i.e., modifiable)
referred [11]. Feature influence on risk might differ in abnormality
that increases risk might be considered abnormal). Assessment type

ht differ in controllability (i.e., laboratory tests are modifiable,
ics are not).

lity can be reduced through information removal (e.g., reducing
size) or aggregation (e.g., reducing explanation granularity). The desired
lity of an explanation may vary by individual and prediction, [29, 30]
that interactive control over dimensionality could be beneficial. Examples
trol over the granularity of explanation units and size (e.g. number of
units).

providers should be comfortable with the risk representation format.
tion in feature influence explanations has been previously reported in
ds and probability, [31, 32] but provider preferences on these
ons are unknown.

sentations of risk information may facilitate comprehension of risk [33].
ts and custom visualizations called force plots have been used for
ence explanations, [31, 32] but the effectiveness of these visualizations
n validated in user studies.



Fig. 3 Prototypes of explanation displays utilizing different design options. Design options used in each prototype are listed as follows: a) unit of
explanation, b) organization of explanation units, c) dimensionality, d) risk representation, and e) explanation display format. Prototype 1 options: a)
individual features, b) none, c) interactive explanation size, static explanation unit granularity, d) odds, e) tornado plot. Prototype 2 options: a) feature
groups, b) influence groups, c) interactive explanation size, interactive explanation unit granularity, d) probability, e) tornado plot. Prototype 3 options:
a) feature groups, b) influence groups, c) static explanation size, static explanation unit granularity, d) probability, e) force plot. Prototype 4 options: a)
individual features, b) influence groups, c) interactive explanation size, static explanation unit granularity, d) probability, e) tornado plot. Prototype 5
options: a) feature groups, b) influence groups and assessment groups, c) interactive explanation size, interactive explanation unit granularity, d)
probability, e) tornado plot
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Data analysis
Audio recordings of the sessions were transcribed verba-
tim and analyzed using descriptive coding [36]. One ana-
lyst (AJB) developed an initial codebook based on
concepts and definitions from the proposed framework.
Additional codes were included to subjectively capture
participant perceptions of the credibility, utility, and
usability of the model, which have been shown to in-
fluence adoption of predictive models in practice [37].
The analyst then applied the codes to the transcripts,
refining definitions and adding codes to more finely
represent the participants’ responses. A second analyst
(HH) used the codebook to independently code one
session transcript. The two analysts discussed coding
differences to resolve disagreements and achieve con-
sensus on a final codebook (see Additional file 3).
The first analyst (AJB) then recoded all transcripts.
Session notes recorded by the researchers were not
coded, but were used to assist in coding and inter-
pretation. QSR International’s NVivo 12 software [38]
was used to assign and organize codes. This analysis
was intended to identify findings related to each of
the target questions in the proposed framework. Find-
ings from the coding process were analyzed in con-
junction with questionnaire responses to summarize
findings about the context of use and explanation
design preferences, identify perceived influences on
critical care provider perceptions of the PICU in-



Fig. 4 Example of complete prototype explanation display with supporting information. In addition to the explanation plot and model prediction
(top left), each prototype included demographic information (bottom left), a list of current diagnoses (bottom right), a table of raw values of the
features used in the model (middle right), and an interactive plot where the raw values of time series data from laboratory tests and vital signs
could be viewed (top right). Please note that length of stay has been redacted to protect patient privacy
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hospital mortality risk model, and suggest a final
user-centered explanation display for predictions from
the model.

Results
Twenty-one critical care providers participated in the
focus group sessions. We describe the participants’ per-
ceptions of the proposed explanation displays and
present a final user-centered explanation display.

Perceptions of participants on context of use
Table 2 summarizes focus group participants’ perceptions
regarding context of use and summarizes our perceptions
of participant comments regarding the credibility, utility,
and usability of the PICU in-hospital mortality risk model.
See additional file 4 for specific findings for each of the
target questions related to context of use (who, when/
where, why) with supporting quotes.
Providers sought explanations for two main reasons

(why), with two main provider characteristics (who)
influencing explanation information needs. Our
participants wanted to use explanations to verify model
information and assess model credibility. These explan-
ation needs were influenced by the level of predictive
modeling knowledge of a provider. While providers were
concerned about the predictive performance of the
model and how well its information aligned with domain
knowledge, providers with more detailed knowledge of
predictive modeling also wanted information about
model development processes and how the model com-
pared to similar existing models, such as the Pediatric
Risk of Mortality-IV score [39]. High predictive perform-
ance and alignment with domain knowledge were
viewed favorably, while limitations in the modeling
process (e.g., not accounting for feature correlations)
and predictions based on outliers, erroneous data, or
counterintuitive risk factors were viewed unfavorably.
Healthcare providers also wanted to use explanations

to extract knowledge or learn from the model, which re-
lated to perceptions of model utility and usability. These
explanations needs were mainly influenced by the clin-
ical position of the provider and factors relating to work



Table 2 Perceptions of focus group participants on context of use and perceived influences on model perceptions

User goal
(why)

User characteristic (who) Desired information Positive (+) and negative (−)
influences on perceptions

Verification Predictive modeling
knowledge

Detailed Predictive performance
Alignment with domain knowledge
Comparison with existing models
Modeling processes

Credibility
+ high predictive performance
+ predictions that aligned with clinical
knowledge
- influential outliers or
data errors
- counterintuitive risk factors
- model limitations

Basic Predictive performance
Alignment with domain knowledge

Learning Clinical role Physician Obtain patient insights:
Prioritization
Assessment of status
Highlight patients/info of concern

Utility
+ training on use/interpretation
- clinically irrelevant information

Nurse Actionable information
Alerts to changes
Information to intervene or justify
consult

Usability
+ appropriate alerts
- high cognitive effort or attention
- large time investments
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environment (when/where). Specifically, participating
physicians wanted explanations to obtain insights that
would help them prioritize patients, assess patient sta-
tuses, and identify high-risk patients and information of
concern. Nurses sought directly actionable information,
such as alerts to important changes in patient status and
information to assist in intervention or in justifying a re-
quest for a physician consult. Regardless of clinical role,
information seen as clinically irrelevant (e.g., a high-risk
prediction driven by a low Glasgow Coma Score meas-
urement for a sedated and paralyzed patient) was viewed
unfavorably. Participants raised concerns about the need
for training to ensure proper interpretation and use of
the model. Concerns about appropriate alerts (i.e., rele-
vant and at proper time) and limiting the time and at-
tention required to use the model suggested that
perceptions of model usability might be influenced by fit
with clinical workflow.
Finally, while providers did not generally seek explana-

tions with the goal of improving the model, we found that
providers used the information provided in the prototypes
to suggest improvements. Suggestions for improvement
mainly involved incorporating domain knowledge into the
model, such as including additional relevant predictors
(e.g., medications) and defining normal ranges for vari-
ables (e.g., setting age- or patient-specific baselines). Par-
ticipants also suggested improving model utility by
examining alternative prediction targets, such as morbid-
ity, disease-specific mortality, and event-specific mortality
(e.g., mortality as a result of a cardiac event).

Explanation design preferences
Table 3 summarizes provider preferences for explanation
display content and design. See additional file 5 for spe-
cific findings for each of the target questions related to
explanation design (what, how) with supporting quotes.
Figure 5 summarizes healthcare provider preferences.
All providers preferred explanation displays that re-
duced information processing effort, such as expressing
risk as percent probability and aggregating information
(e.g., grouping all features related to a measurement
such as blood pressure instead of showing individual fea-
tures). Differences in clinical roles and individuals led to
mixed preferences on other design options. Nurses
wanted minimal, actionable information and tended to
prefer simpler, static explanations organized by assess-
ment groups. Physicians preferred more dynamic expla-
nations. To support efficient data exploration for
different users, providers suggested interactive explana-
tions in which additional details could be obtained on
demand (e.g., viewing individual risk factors in a group)
and users could have control over how they organize
and view explanation content.
Supporting information in the prototypes was vital to

provider interpretation of the predictions and explana-
tions. Providers found the table of raw feature values
helpful when examining trend-based features and inter-
preting the discretized features used in the explanation.
For example, if the most predictive feature in the explan-
ation was “Cr change from min > 0.35” (i.e., the most re-
cent value of creatinine has increased more than 0.35
since the minimum value), the exact amount of the in-
crease, the current value, and the minimum value were
all described by providers as helpful information. Pro-
viders' suggestions for improving the usability of the
prototypes included the addition of indicators of the dir-
ectionality of trend-based features in this table (e.g.,
trend has increased) and the adoption of simpler termin-
ology for trend-based features in the explanation plot
(e.g., “Cr has increased since minimum value”). Providers
frequently used the time-series plot of raw laboratory
tests and vital sign data to investigate suspicious values
(e.g., outliers or errors), assess trend-based features, and
determine patient baselines. Providers suggested



Table 3 Explanation design preferences

Desired content (what) Benefits Preferred design
(how)

Explanations Help assess model credibility and utility Risk expressed as percent probability
High-level information with details available on demand
Interactive options to support different displays/organizations
for various users

Table of raw feature values Interpret discretized features
Examine trend-based features

Directionality for trend-based features
Simpler terminology

Time-series data plot Investigate suspicious values
Assess trends and baselines

Multiple plots
Highlight points related to features
Auto-population of data

Contextual information Clinically meaningful interpretation
Context for risk prediction

Providing clinical context information
Prominent display of baseline risk
Inclusion of risk trends
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improving the usability of these plots by including mul-
tiple plots to view and compare data, highlighting the
specific points used to derive features in the model, and
auto-populating data on these plots when an element
was selected in the explanation plot or table of raw fea-
ture values.
Although the prototypes contained only minimal con-

textual patient information, those details were consid-
ered to be important in assessing the clinical relevance
of a prediction. Interventions were seen as particularly
important. For example, a high-risk prediction driven by
a low Glasgow Coma Score measurement would be of
less concern to a provider if they knew the patient was
sedated and paralyzed at the time of the measurement.
Informants also noted that baseline risk levels provided
important context when interpreting predictions (e.g., a
predicted risk of 40% was more concerning if they knew
the baseline risk was 2%), and suggested moving this in-
formation to a more prominent display location.
Fig. 5 Provider preferences on prototype design options by clinical role
Additionally, providers suggested that including risk
trends would improve model utility, as a change in risk
might be more clinically relevant than a single predicted
risk (e.g., a patient that has had a high predicted risk for
several days might be of less concern than a patient with
a lower predicted risk that recently increased).
Participants’ interest in contextual information ex-

tended to the exploration of clinician responses to ele-
vated risk. Several participant comments in our focus
groups indicated a desire for actionable information, in-
cluding ways to mitigate risk.

Proposed user-centered explanation display
Based on the findings from the previous sections, we
proposed a final user-centered explanation display for
individual predictions from the PICU in-hospital mortal-
ity risk model. The final user-centered display is shown
and described in Fig. 6. It should be noted that although
providers exhibited mixed preferences on the



Fig. 6 Final user-centered explanation display. The predicted risk and baseline risk are displayed in percent probability at the top of the figure.
The explanation plot (top left) uses feature groups as the unit of explanation, but has hover-box capability to view individual features within each
feature group. In the hover-box, trend-based features are summarized by trend direction (e.g., “Cr has increased since minimum value”). The plot
includes interactive controls to view additional feature groups (e.g., scrolling down the explanation plot) and view different sets of feature groups
(e.g., view laboratory test feature groups). The table of raw feature values (bottom left) includes the description, value, and contribution to the
predicted risk for each individual feature. This table also includes the trend direction for trend-based features. The time-series plots to display raw
values of laboratory test and vital sign data (right) highlight the points used to compute features and include interactive controls to zoom in on
and select regions of data. These plots also have hover functionality that can be used to show the value and time of a specific point. To facilitate
data exploration, interactivity is linked across plots and tables (e.g., selecting a predictor on the explanation plot will highlight it in the raw feature
table and load the appropriate laboratory test/vital sign in the time-series plot)
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explanation display format, we selected the tornado plot
as some providers had found that the force plot was
confusing to interpret. The final display also excluded
the contextual information requested by participants
(e.g., interventions), as we assume this display would be
integrated into an electronic health record (EHR) system
where such information would be readily available.

Discussion
The premise underlying this work is that explanation
displays designed to meet the information needs of
healthcare providers might be a means of making ML-
based clinical predictive tools that are more acceptable
to clinicians.
Toward that end, we proposed a qualitative research

framework of explanation design that addresses all con-
text of use factors relevant to utilizing a predictive
model in clinical practice. This framework provides a
starting point for exploring the impact of design
choices, specifically considering the impact that the
environment may have on the information needed in
an explanation display. We demonstrated an applica-
tion of the framework by utilizing insights from the
literature and prior experiences to suggest explanation
displays that were then refined through healthcare
provider feedback.
In addition to the proposed framework, our work con-

tributes some perspective on the design of displays cap-
able of effectively communicating predictive model risk
information to healthcare providers. Focus group com-
ments suggested that providers found the prototype dis-
plays of the SHAP explanations useful in assessing the
credibility and utility of a prediction from the model
(i.e., comparing the influential risk factors to domain
knowledge to determine if the prediction seemed rea-
sonable and clinically relevant). This suggests that
model-agnostic, instance-level explanation approaches
based on feature influence methods may be a viable ap-
proach to explaining model predictions in a way that is
both comprehensible and useful to healthcare providers.
Although other studies have utilized these approaches to
explain predictive models in healthcare, [4, 31, 40] to the
best of our knowledge this is the first study to verify that
these explanations would be positively received by
healthcare providers.
Participants in our focus groups were enthusiastic

about the ability to visually assess which risk factors
were contributing most to an individual’s predicted risk.
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This finding is consistent with claims in the literature
that visualizations of risk information for individuals can
improve healthcare provider interpretation and accept-
ance of predictive models [33, 41]. Additionally, our in-
formants suggested that providing the appropriate
contextual information was vital to provider interpret-
ation of risk. In particular, access to raw patient data
(e.g., laboratory values, vital signs, interventions) was
seen as useful for assessing the clinical credibility and
utility of predictions and explanations. This finding is
consistent with results from studies by Wang et al. [15]
and Jeffery et al., [42] both of whom also found that pro-
viders utilized raw patient data when working with
probability-based decision support systems to verify pre-
dictions and to integrate them with their clinical
knowledge.
In addition to raw patient data, baseline risks and

risk trends were identified by several nurses in our
focus groups as important information necessary to
assess the clinical relevance of a risk prediction. More
specifically, a change in risk from a patient-specific or
population baseline was deemed more clinically rele-
vant than a single risk prediction. This finding is con-
sistent with results from Jeffrey et al., [42] who also
found that nurses wanted to see risk trends when
using probability-based CDSS. This suggests that dis-
playing risk trends for individual patients might improve
the perceived utility of a risk prediction model. As we
intended to design explanations for single-risk predictions
from the PICU mortality risk model, we did not incorpor-
ate risk trends into our final user-centered explanation
display. However, future work should consider examining
how the display of risk trends in conjunction with individ-
ual prediction explanations affects provider perceptions of
model utility.
The focus group sessions also suggested that inter-

active risk explanation tools would be beneficial. By sup-
porting “drill-down” to additional details, these details
would support a range of information needs, as clini-
cians interested in seeing details could “zoom in” from
overviews designed to minimize information overload.
Interactive explanations would also facilitate inclusion of
multiple explanation types into a single explanation dis-
play, such as incorporating “what if” type explanations
that allow users to simulate how changes in model in-
puts affect predicted risk. The need for integrating mul-
tiple explanation types into a single explanation display
was previously mentioned by Wang et al., [15] who
found that providers utilized a variety of different ex-
planation types to support various reasoning processes
when diagnosing patients. Our proposed framework
could support the exploration of combinations of expla-
nations to support healthcare provider explanation needs
in various tasks.
Our previous experience suggested that clinical pre-
dictive tools were potentially less likely to be used if cli-
nicians did not have a means of responding to
predictions of high risk of adverse outcomes. Comments
from our focus group were consistent with this experi-
ence, as several participants indicated that they would
like the explanation displays to emphasize actionable in-
formation. This suggests that providing recommended
actions might be beneficial. This approach has been sug-
gested in prior literature as a way to improve model ac-
ceptance [20, 43]. Developing clinical recommendations
for data-driven models can be challenging, as reasoning
processes of statistically-driven models often do not cor-
relate with clinical knowledge. However, some providers
in our focus groups were able to translate the explan-
ation displays into clinically relevant explanations (e.g., a
set of risk factors indicating multi-system organ failure
in a high-risk patient) that could potentially be mapped
to recommended actions. Accommodating provider re-
quests for more specific prediction outcomes (e.g.,
disease-specific or event-specific mortality) might have
further improved their ability to use the explanation dis-
plays to identify potential avenues for risk mitigation
and develop recommended actions. Explanation displays
could be beneficial tools in developing recommended ac-
tions to pair with data-driven model predictions.
One could argue that there may be scenarios in which

explanations are not required at all. For example, if a
model was able to achieve perfect performance on a pre-
diction task or when it is obvious whether the model
correctly predicts the outcome (e.g., image classifications
that can be verified by visual inspection), explanations
might be considered unnecessary. Often, the argument
for explanations centers around instilling user trust in
the model; however, Elish [10] argues that trust is not
predicated on model interpretability, and can instead be
developed by involving stakeholders throughout the
model development process. Even if explanations are not
required to verify model accuracy or instill trust in a
model, they may still prove valuable by providing action-
able information. For a general mortality model like the
one in this study, a provider’s ability to intervene would
depend on knowing why the model predicts that a spe-
cific patient will die. Thus, an explanation might still be
valuable in this context. The need for explanations for
predictive models in healthcare will be context-
dependent and should be discussed with stakeholders in
the early stages of model development.
This study has some limitations that should be ad-

dressed in future work. Our focus group sessions only
included providers from a single institution. Our claims
regarding explanation design in healthcare should be
validated in other groups of providers across a multitude
of institutions. To maximize the number of participants
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in our study, we scheduled sessions based on participant
availability which resulted in participant groups that
lacked diversity in clinical role (e.g., all nurses attended
one session). We also only utilized focus groups to so-
licit healthcare provider feedback on our proposed ex-
planation displays. We may have missed important
insights that would arise from discussions between pro-
viders in different roles and under different approaches
to user-centered design, such as a participatory design
exercise like the one utilized by Jeffrey et al. [42] Future
applications of the proposed framework should ex-
plore alternative approaches to soliciting user feed-
back on explanation displays, including the use of
psychometrically-validated studies for assessing atti-
tudes toward the potential utility of the explanations
and preferences regarding the explanation interfaces.
The recently proposed System Causability Scale (SCS)
[44], designed to measure explanation quality and
based on the notion of causability, might be used to
evaluate and compare the utility of explanations. An-
other limitation of this study is that we do not report
on a validation of the final user-centered explanation
display for the PICU mortality risk model. Results of
a completed study of the impact of the user-centered
explanation display on impact provider acceptance
and use of the PICU mortality risk model in decision-
making processes will be presented in a forthcoming
publication.
Providers’ reactions to the SHAP explanations sug-

gest another direction for future work. Providers
used the explanation displays to identify possible im-
provements to the clinical credibility and utility of
the PICU in-hospital mortality risk model, suggesting
that instance-level explanations could be used to fos-
ter improved communications between model devel-
opers and clinical domain experts. Potential designs
might include interfaces that providers use to indi-
cate when and why individual predictions might be
inaccurate. This feedback could then be used to in-
form refinements to the predictive models and ex-
planations. This approach is supported by Holzinger
et al. [22], who state that AI systems not based on
causal models (e.g., statistical models) are limited by
their inability to understand context and reason
about interventions. They propose interactive ML in-
terfaces as tool to incorporate human expertise into
probabilistic models as an intermediate step leading
to causal models [44]. Incorporating healthcare pro-
vider feedback and knowledge into models has also been
shown to improve acceptance of predictive models in
practice, [9, 10] providing further support for the need to
develop interactive interfaces. Future studies will apply
our framework to inform the design of interfaces that fa-
cilitate these interactions.
Conclusions
We proposed a framework for designing user-centered
explanation displays for ML models and demonstrated
its use in the design of an user-centered explanation dis-
play for predictions from a PICU in-hospital mortality
risk model. Focus group discussions with healthcare pro-
viders confirmed that the proposed model-agnostic,
instance-level explanations of feature influence were vi-
able approaches to explaining model predictions to
healthcare providers and informed the iterative redesign
of an explanation display. This work also revealed sev-
eral insights about the effective communication of pre-
dictive model risk information to healthcare providers. It
is our hope that findings from this work will facilitate
conversations with healthcare providers about the devel-
opment, deployment, and continuous improvement of
ML-based tools that can promote positive changes in
clinical practice.
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