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Abstract

Background: Antimicrobial resistance is a serious threat against humankind and the search for new therapeutics is
needed. This study aims to investigate the antimicrobial and antioxidant activities of ethanol extracts and
compounds isolated from Dissotis senegambiensis and Amphiblemma monticola, two Cameroonian Melastomataceae
species traditionally used for the treatment of fever, malaria and infectious diseases.

Methods: The plant extracts were prepared by maceration in ethanol. Standard chromatographic and spectroscopic
methods were used to isolate and identify fourteen compounds from the two plant species [1–6 (from D.
senegambiensis), 3, 4 and 7–14 (from A. monticola)]. A two-fold serial micro-dilution method was used to determine the
minimum inhibitory concentration (MIC) against four bacterial strains including two resistant bacterial strains,
methicillin resistant S. aureus (MRSA3) and methicillin resistant S. aureus (MRSA4) and three yeast strains.

Results: The fractionation of EtOH extracts afforded fourteen compounds belonging to triterpenoid and phenolic
derivatives. The ethanol extracts, compounds 3, 5–8, 10 and the mixture of 10 + 12 were active against all the tested
bacterial and fungal species. Compound 7 (MIC = 16–32 μg/mL) and 10 (MIC = 8–16 μg/mL) displayed the largest
antibacterial and antifungal activities, respectively. Compounds 7, 10 and the mixture of 10 + 12 showed prominent
antibacterial activity against methicillin- resistant S. aureus (MRSA) which is in some cases equal to that of ciprofloxacin
used as reference antibacterial drug. Compound 8 also showed high radical-scavenging activities and ferric reducing
power when compared with vitamin C and butylated hydroxytoluene used as reference antioxidants. The tested
samples were non-toxic to normal cells highlighting their good selectivity.

Conclusions: The result of this investigation reveals the potential of D. senegambiensis and A. monticola as well as the most
active compounds in the search for new antimicrobial and antioxidant agents. So, further investigations are needed.
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Background
Infectious diseases are among the leading causes of death
accounting for approximately one-half of all deaths in de-
veloping countries [1]. Despite the successes of the
Millennium Development Goals era, the inhabitants of
low-income countries still suffer an enormous burden of
disease owing to diarrhoea, pneumonia, HIV/AIDS, tuber-
culosis, malaria and other infectious diseases. Increase in
infections as a result of emergence of drug-resistant micro-
organisms and hitherto unknown pathogenic microbes
pose enormous public health concerns [1]. These therefore,
necessitate continued search for compounds with anti-
microbial activities. Historically, plants have provided a
good source of anti-infective agents in the fight against mi-
crobial infections [2–5]. The genus Dissotis which belongs
to the Melastomataceae family comprises about 140 species
in Africa [6]. They are climbing shrubs, shrubs or small
trees found in some African countries such as Ivory Cost,
Benin, Democratic Republic of Congo, Nigeria and
Cameroon [7]. Several species are used in folk medicine as
antidiarrheic, antimicrobial, antioxidant, antitumoral, anti-
rheumatic, and anti-inflammatory agents, and also in the
treatment of skin diseases, fever, malaria, and to lower
blood cholesterol [8]. Dissotis senegambiensis (Guill. &
Perr.) Triana (Syn. Dissotis irvingiana Hook) belonging to
the Melastomataceae family, is a shrub reaching 120 cm in
height. The flowers are purple. In Africa, this plant species
is found in tropical areas of Cameroon, Senegal, Ethiopia
and Mozambique [7]. This species is used in traditional
medicine for the treatment of the kwashiorkor, anemia,
marasmus, avitaminose, drepanocytose, cutaneous erup-
tions and diarrhea [9]. To the best of our knowledge, no
phytochemical work has yet been done on D. senegambien-
sis. The genus Amphiblemma belonging also to the Mela-
stomataceae family, extends from tropical West Africa to
Ethiopia and Cabinda. It contains at least 14 species distrib-
uted in Africa [10]. They are herbaceous plants or shrubs
that grow in evergreen forests [10]. Amphiblemma monti-
cola Jacq.-Fél. is a prostrate herb or sub-shrub reaching
100 cm in height that generally grows in West and South-
West Regions of Cameroon [10–12]. This plant species is
used by the Bamena populations in West Region of
Cameroon against fever and stomach disorders [13]. Previ-
ous phytochemical studies of some species of the Melasto-
mataceae family reported the isolation of terpenoids,
steroids, simple phenolics, flavonoids and a vast range of
polyphenols [14–18]. According to some traditional healers
found in the Western region of Cameroon, maceration of
the studied plants in raffia wine (a traditional alcoholic bever-
age produced in several African countries) is used for the
treatment of different diseases. Traditional uses of D. sene-
gambiensis and A. monticola motivated our effort to investi-
gate the phytochemistry and pharmacological activity.
Fourteen compounds [β-amyrin palmitate (1), α-amyrin

acetate (2), ursolic acid (3), sitosterol-3-O-β-D-glu-
copyranoside (4), vitexin (5) and trans-tiliroside (6)
(from D. senegambiensis), ursolic acid (3), sitosterol-
3-O-β-D-glucopyranoside (4), 3,4′-di-O-methylellagic
acid (7), dimethyl 4,4′,5,5′,6,6′-hexahydroxybiphenyl-
2,2′-dicarboxylate (8), lupeol (9), ellagic acid (10), 3-
hydroxy-4,5-dimethoxybenzoic acid (11), 3-O-methy-
lellagic acid 4′-O-β-D-xylopyranoside (12), oleanolic
acid (13) and amphiblemmone A (14) (from A. monticola)
] were isolated and characterized. This is the first report
on the isolation of compounds 1–6 from D. senegambien-
sis. Compounds 3, 4 and 7–14 were previously isolated
from the same source (A. monticola) [13]. Antimicrobial
and antioxidant activities of ethanol extracts of D. sene-
gambiensis and A. monticola and some compounds
(3–10, a mixture of 3 and 13, and a mixture of 10 and 12)
isolated in sufficient quantities are reported here for the
first time.

Methods
General experimental procedures
MS data were measured on JEOL MS Station JMS-700
spectrometer or JEOL 600 MS Route spectrometer. 1H
NMR (500 and 400 MHz) and 13C NMR (125 and
100 MHz) were recorded using JEOL spectrometers or
Bruker Avance AV-400 spectrometer. The chemical
shifts were reported in parts per million (ppm) with
TMS as internal standard. Deuterated solvents, metha-
nol (CD3OD), dimethyl sulfoxide (DMSO-d6), pyridine
(C5D5N) and chloroform (CDCl3) were used as solvents
for the NMR experiments. CC was performed on silica
gel 60 F254 (70–230 mesh; Merck) and gel permeation
on Sephadex LH-20. TLC was carried out on precoated
silica gel Kieselgel 60 F254 plates (0.25 mm thick), and
spots weredetected with UV lights (254 and 365 nm)
and further sprayedwith 20% H2SO4 reagent followed by
heating to 100 °C.

Sample collections
Plant materials were collected in two locations of the
Western Region of Cameroon: the whole plant of Dissotis
senegambiensis (Guill. & Perr.) Triana in Bansoa (January
2013) and the roots of Amphiblemma monticola Jacq.-Fél.
in Bamena (May 2016). Their identification was done by
Mr. Fulbert Tadjouteu, a botanist of the Cameroon
National Herbarium in Yaoundé, where voucher specimens,
No 24736/SRF/Cam (D. senegambiensis) and No 45094/
HNC (A. monticola), were deposited.

Extraction
The powdered material of D. senegambiensis (1.8 kg) was
extracted three times (72 h for each time) by maceration
with ethanol (8 L) at room temperature. Evaporation of
solvent under vacuum afforded 78 g of crude extract. A
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portion of this extract (76 g) was successively triturated
with n-hexane, EtOAc and n-butanol. TLC analysis
showed that the n-hexane and EtOAc extracts (19.5 and
20.5 g, respectively) were qualitatively the same. They
were thus combined to afford 40 g of extract called
“EtOAc extract”.
Dried and pulverized roots (1.5 kg) and aerial part

(0.08 kg) of A. monticola were respectively macerated
with ethanol (5 L with roots and 1 L with aerial part)
for 24 h (3 times) at room temperature. Evaporation
of solvent under reduced pressure afforded 49 g and
4.28 g of crude extracts, respectively.

Phytochemical analysis
The extracts were screened for secondary metabolites using
standard procedures as previously described [19–22]. The
plant extracts were screened for the presence of different
classes of compounds including triterpenoids, steroids, fla-
vonoids, phenols, glycosides, tannins and alkaloids.

Isolation of constituents
A portion (38 g) of “EtOAc extract” of D. senegambiensis
was subjected to silica gel (70 to 230 mesh) column
chromatography (CC) eluted with gradient of n-hexane-
EtOAc (100:0, 9:1, 4:1, 7:3, 3:2, 1:1 and 0:100) followed
by gradient of EtOAc-MeOH (19:1, 9:1, 4:1, 7:3, 1:1 and
0:100). Fifty-five fractions of 300 mL each were collected
and combined into six major fractions on the basis of
their TLC profiles: A (1–6; 4.0 g), B (7–12; 4.5 g), C
(13–17; 3.6 g), D (18–26; 4.7 g), E (27–36; 5.5 g), and F
(37–55; 9.1 g). Fraction A crystallized to afford a mixture
of two compounds. This mixture was subjected to silica
gel CC and eluted with n-hexane- EtOAc (49:1) to yield
β-amyrin palmitate (4.2 mg; 1) and α-amyrin acetate (3.
5 mg; 2). Fraction C crystallized to afford ursolic acid
(15.0 mg; 3). Fraction E was subjected to silica gel CC
and eluted with CH2Cl2 –MeOH mixture of increasing
polarity to yield sitosterol-3-O-β-D-glucopyranoside (35.
1 mg; 4) and vitexin (28.5 mg; 5). Similarly as with
fraction E, fraction F afforded trans-tiliroside (25.0 mg;
6). A portion (18 g) of the n-BuOH extract was also
subjected to silica gel CC eluted with gradient of
CH2Cl2-MeOH (100:0, 19:1, 9:1, 4:1and 0:100). Twenty-
two fractions of 300 mL each were collected and com-
bined into four major fractions on the basis of their TLC
profiles: G (1–7; 2.7 g), H (8–12; 3.5 g), I (13–18; 3.6 g)
and J (19–22; 3.7 g). Fraction G was subjected to silica
gel CC and eluted with CH2Cl2 –MeOH mixture of
increasing polarity to yield vitexin (15.1 mg; 5) and
trans-tiliroside (13.1 mg; 6). An attempt to purify frac-
tions B, D, H, I and J failed.
A portion (47 g) of EtOH extract of the roots of A.

monticola was fractionated on silica gel CC eluted with
CH2Cl2-MeOH of increasing polarity to give 25 fractions

of 300 mL each. After comparative TLC, they were com-
bined into 4 major fractions: A (1–8; 7.6 g), B (9–16;
11 g), C (17–21; 5.1 g) and D (22–25; 5.8 g). Fraction A
was chromatographed on a silica gel column eluted
with a continuous gradient of n-hexane-EtOAc to af-
ford lupeol (9, 120.8 mg) and a mixture of sterols.
Similarly, fractions B and C were eluted with CH2Cl2-MeOH
of increasing polarity yielding four (B1-B4) and three
(C1-C3) sub-fractions, respectively. B2 (1.9 g), B3 (2.3 g), C2
(1.9 g) and C3 (1.2 g) were passed separately on LH-20
Sephadex CC eluted with CH2Cl2-MeOH (1:1) to give
3,4′-di-O-methylellagic acid (20.0 mg; 7) from B2, di-
methyl 4,4′,5,5′,6,6′-hexahydroxybiphenyl-2,2′-dicar-
boxylate (15.0 mg; 8) from B3, ellagic acid (23.0 mg;
10), 3-hydroxy-4,5-dimethoxybenzoic acid (4.0 mg;
11) and a mixture of 10 and 12 (7.0 mg) from C2,
and 3-O-methylellagic acid 4′-O-β-D-xylopyranoside
(2.3 mg; 12) from C3. Re-crystallization of B4 (0.7 g)
in EtOAc afforded a mixture (31.9 mg) of ursolic acid (3)
and oleanolic acid (13). Fraction D was subjected to silica
gel CC eluted with a gradient mixture of CH2Cl2-MeOH to
afford four sub-fractions (D1-D4). Repeated silica gel CC of
D2 (0.8 g), eluted with CH2Cl2-MeOH (from 49:1 to 9:1)
gave sitosterol-3-O-β-D-glucopyranoside (45.0 mg; 4) and
amphiblemmone A (9.7 mg; 14).
Due to the small quantity of plant material, the aerial

part of A. monticola (4.28 g of crude EtOH extract),
compared to the roots (same collection in the field), was
not further studied in this work.

Antimicrobial activity of extracts and compounds
Tested microorganisms
The microorganisms used in this study include four bacterial
(Staphylococcus aureus ATCC25923, methicillin sensitive S.
aureus MSSA1, methicillin resistant S. aureus MRSA3 and
methicillin resistant S. aureus MRSA4) and three yeast
strains (Candida albicans ATCC10231, Candida tropicalis
PK233 and Cryptococcus neoformans H99). These microor-
ganisms were taken from our laboratory collection. The fun-
gal and bacterial strains were grown at 37 °C and maintained
on Sabouraud Dextrose Agar (SDA, Conda, Madrid, Spain)
and nutrient agar (NA, Conda) slants respectively.

Inocula preparation
The inocula of bacteria and yeasts were prepared from
overnight cultures as previously described [23]. Absorbance
was read spectrophotometrically at 530 nm and 600 nm for
yeasts and bacteria respectively. The final concentrations of
microbial suspensions were 2.5 × 105 cells/mL for yeasts
and 106 CFU/mL for bacteria.

Antimicrobial assay
The antimicrobial activity was evaluated by determining
the minimum inhibitory concentrations (MICs). MICs of
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extracts and compounds were determined by broth
micro dilution [24]. Each test sample was dissolved in
10% v/v aqueous dimethylsulfoxide (DMSO) to give a
stock solution. This was serially diluted two-fold in
Mueller-Hinton Broth (MHB) for bacteria and Sabouraud
Dextrose Broth (SDB) for fungi to obtain a concentration
range of 4096 to 0.25 μg/mL. Then, 100 μL of each sample
concentration was added to respective wells (96-well micro
plate) containing 90 μL of SDB/ MHB and 10 μL of inocu-
lum to give final concentration ranges of 2048 to 4 μg/mL
(for extracts) and 256 to 0.125 μg/mL (for compounds).
Dilutions of nystatin (Sigma-Aldrich, Steinheim, Germany)
and ciprofloxacin (Sigma-Aldrich, Steinheim, Germany) were
used as positive controls for yeasts and bacteria respect-
ively. Broth with 10 μL of DMSO was used as
negative control. The cultured micro plates were cov-
ered; then, the contents of each well were mixed
thoroughly using a plate shaker (Flow Laboratory,
Germany) and incubated at 37 °C for 24 h (bacteria)
and 48 h (yeasts) under shaking. After the incubation
period, MICs were assessed visually and were taken
as the lowest sample concentration at which there
was no growth or virtually no growth. The lowest
concentration that yielded no growth after the sub-
culturing was considered as the minimum microbici-
dal concentrations (MMCs). All the tests were per-
formed in triplicate.

Antioxidant assay
Ferric reducing antioxidant power (FRAP) assay
The FRAP was determined by the Fe3+-Fe2+ transformation
in the presence of extracts and compounds as previously
described [25]. The Fe2+ was monitored by measuring the
formation of Perl’s Prussian blue at 700 nm. Butylated
hydroxytoluene (BHT) was used as a positive control. All
the tests were performed in triplicate.

Diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging
assay
The free radical scavenging activity of extracts and com-
pounds was evaluated according to described methods
[26]. The EC50 (μg/ml), which is the amount of sample
necessary to inhibit by 50% the absorbance of free rad-
ical DPPH was calculated [26]. Vitamin C was used as a
standard control. All the analyses were carried out in
triplicate.

Hemolytic assay
Whole blood (10 mL) from albino rats was collected
by cardiac puncture into a conical tube containing
EDTA as an anticoagulant. The study was conducted
according to the ethical guidelines of the Committee
for Control and Supervision of Experiments on
Animals (Registration no. 173/CPCSEA, dated 28 January,

2000), Government of India, on the use of animals for scien-
tific research. Erythrocytes were harvested by centrifugation
at room temperature for 10 min at 1000 x g and were
washed three times in PBS buffer [27]. The cytotoxicity was
evaluated as previously described [27].

Statistical analysis
Data were analyzed by one-way analysis of variance
followed by Waller-Duncan Post Hoc test. The experi-
mental results were expressed as the mean ± Standard
Deviation (SD). Differences between groups were
considered significant when p < 0.05. All analyses were
performed using the Statistical Package for Social
Sciences (SPSS, version 12.0) software.

Results
Chemical analysis
The phytochemical screening revealed the presence of
steroids, phenols, glycosides and tannins in all the plant
extracts (Table 1). Triterpenoids and flavonoids are se-
lectively distributed in the extracts whereas alkaloids
were absent in all the extracts (Table 1). The EtOAc and
n-BuOH extracts from D. senegambiensis and EtOH ex-
tract from the roots of A. monticola were fractionated by
silica gel column chromatography to afford fourteen
compounds (1–14) (Fig. 1). Compounds obtained from
D. senegambiensis were identified as β-amyrin palmitate
(1) [28], α-amyrin acetate (2) [29], ursolic acid (3) [30],
sitosterol-3-O-β-D-glucopyranoside (4) [31]; vitexin (5)
[32] and trans-tiliroside (6) [33]. From A. monticola,
compounds were identified as 3,4′-di-O-methylellagic
acid (7) [34], dimethyl 4,4′,5,5′,6,6′-hexahydroxybiphe-
nyl-2,2′-dicarboxylate (8) [35], lupeol (9) [36], ellagic
acid (10) [16], 3-hydroxy-4,5-dimethoxybenzoic acid
(11) [37], 3-O-methylellagic acid 4′-O-β-D-xylopyrano-
side (12) [38], oleanolic acid (13) [16], and amphible-
mmone A (14) [13]. The structures of the compounds

Table 1 Secondary metabolites identified in the studied plant
extracts

Metabolites D. senegambiensis A. monticola

Whole plant Roots Aerial part

Crude
EtOH
extract

EtOAc
extract

n-BuOH
extract

Crude
EtOH
extract

Crude
EtOH
extract

Triterpenoids + + – + +

Steroids + + + + +

Flavonoids + + + + –

phenols + + + + +

Tannins + + + + +

Glycosides + + + + +

Alkaloids – – – – –

(+): presence; (−): absence
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(Fig. 1) were determined by analysis of their NMR data
and comparison with those reported in the literature
(Additional file 1).

Antimicrobial activity
The antimicrobial activity of EtOH extracts from D.
senegambiensis and A. monticola as well as their isolated
compounds was performed against four bacterial strains

including two resistant bacterial strains, methicillin resistant
S. aureus (MRSA3) and methicillin resistant S. aureus
(MRSA4) and three yeast strains (Table 2). The EtOH,
EtOAc and n-BuOH extracts, as well as compounds 3, 5–
8, 10 and the mixture of 10 + 12 were active against all the
tested bacterial and fungal species. Among the extracts, the
EtOH extract from D. senegambiensis (MIC = 64–256 μg/
mL) was the most active against S. aureus strains whereas
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Fig. 1 Chemical structures of compounds isolated from D. senegambiensis (1–6) and A. monticola (3, 4, 7–14). 1: β-amyrin palmitate; 2: α-amyrin
acetate; 3: ursolic acid; 4: sitosterol 3-O-β-D-glucopyranoside; 5: vitexin; 6: trans-tilliroside; 7: 3,4′-di-O-methylellagic acid; 8: dimethyl 4,4′,5,5′,6,6′-
hexahydroxybiphenyl-2,2′-dicarboxylate; 9: lupeol; 10: ellagic acid; 11: 3-hydroxy-4,5-dimethoxybenzoic acid; 12: 3-O-methylellagic acid 4′-O-β-D-
xylopyranoside; 13: oleanolic acid; 14: amphiblemmone A
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Table 2 Antimicrobial activity (in μg/ml) of extracts and isolated compounds from D. senegambiensis and A. monticola against
bacterial and yeast strains

Crude extracts/
compounds

Inhibition
parameters

S. aureus
ATCC25923

S. aureus MSSA1 S. aureus MRSA3 S. aureus MRSA4 C. albicans
ATCC10231

C. tropicalis
PK233

C. neoformans H99

DSEtOH MIC 128 64 256 128 2048 1024 512

MMC 256 128 512 256 2048 2048 1024

MMC/MIC 2 2 2 2 1 2 2

DSEtOAc MIC 256 128 256 256 2048 1024 512

MMC 256 256 512 512 > 2048 > 2048 > 2048

MMC/MIC 1 2 2 1 nd nd nd

DSBuOH MIC 256 64 256 128 2048 1024 1024

MMC 512 128 512 256 2048 > 2048 > 2048

MMC/MIC 2 2 2 2 1 nd nd

AMEtOH MIC 256 128 256 256 256 128 256

MMC 256 128 512 512 512 256 256

MMC/MIC 1 1 2 2 2 2 1

AMEtOAc MIC 512 256 512 512 512 2048 2048

MMC 512 512 512 512 1024 > 2048 > 2048

MMC/MIC 1 2 1 1 2 nd nd

3 MIC 256 128 128 128 256 256 128

MMC > 256 > 256 > 256 > 256 > 256 > 256 > 256

MMC/MIC nd nd Nd nd nd nd nd

4 MIC > 256 > 256 > 256 > 256 256 256 128

MMC > 256 > 256 > 256 > 256 > 256 > 256 > 256

MMC/MIC nd nd Nd nd nd nd nd

5 MIC 64 64 64 128 128 64 128

MMC 128 128 128 256 256 128 128

MMC/MIC 2 2 2 2 2 2 1

6 MIC 32 64 64 128 64 64 64

MMC 64 64 128 128 64 64 128

MMC/MIC 2 1 2 1 1 1 2

7 MIC 32 16 16 32 32 32 32

MMC 32 16 32 64 64 64 32

MMC/MIC 1 1 2 2 2 2 1

8 MIC 32 32 64 128 128 16 32

MMC 64 32 128 256 > 256 16 32

MMC/MIC 2 1 2 2 nd 1 1

9 MIC 256 256 > 256 > 256 > 256 256 256

MMC > 256 > 256 > 256 > 256 nd > 256 > 256

MMC/MIC nd nd Nd nd nd nd nd

10 MIC 8 16 32 32 16 8 16

MMC 16 16 64 32 16 8 16

MMC/MIC 2 1 2 1 1 1 1

10 + 12 MIC 32 16 32 32 64 64 64

MMC 64 64 64 64 128 128 64

MMC/MIC 2 4 2 2 2 2 1

3 + 13 MIC 128 64 > 256 128 > 256 > 256 128
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the A. monticola EtOH extract (MIC = 128–256 μg/mL)
was the most effective against yeast strains. The results also
showed that S. aureus ATCC25923 and S. aureus MSSA1
were the most sensitive bacteria while the most sensitive
fungi were C. tropicalis and C. neoformans. Compound 10
(MIC = 8–16 μg/mL) displayed the largest antifungal ac-
tivity whereas compound 7 (MIC = 16–32 μg/ml) showed
the best anti-staphylococcal activity. Compound 10 (MIC
= 8–32 μg/mL) was the most active sample against bacter-
ial and fungal strains following in decreasing order by 7
(MIC = 16–32 μg/mL), 10 + 12 (MIC = 16–64 μg/mL), 8
(MIC = 8–128 μg/mL), 6 (MIC = 32–128 μg/mL), 5 (MIC
= 64–128 μg/mL), 3 (MIC = 128–256 μg/mL), 3 + 13
(MIC = 64 - > 256 μg/mL), 9 (MIC = 256 - > 256 μg/mL)
and 4 (MIC = 128 - > 256 μg/mL). Compounds 1 and 2,
obtained in small quantities, were not tested against the
microorganisms used. The standard drugs used in this
study were ciprofloxacin and nystatin for antibacterial and
antifungal activity, respectively, and the antibacterial
activities of some of the isolated compounds are in some
cases equal to those of ciprofloxacin whereas the antifun-
gal activity of the isolated compounds is lesser than that of
nystatin.

Ferric reducing antioxidant power (FRAP)
In this study, all the investigated samples showed
concentration-dependent reducing power (Fig. 2). The
EtOH extracts from D. senegambiensis and A. monticola
displayed the largest reductive abilities when compared
with their fractions. Interestingly, compounds 7 and 10 +
12 showed the lowest reducing power whereas compound
8 exhibited the highest reducing power at the different
concentrations tested. The antioxidant power of com-
pound 8 is almost equal to that of butylated hydroxytolu-
ene (BHT) used as standard antioxidant.

DPPH free radical scavenging activity
The results of the radical-scavenging activity showed that
compounds 7 and 10 + 12 had the highest EC50 (i.e. the

lowest activity) while compound 8 had the lowest EC50

(i.e. the highest activity) (Fig. 3). Among the extracts, A.
monticola EtOAc extract (EC50 = 40.83 ± 1.57 μg/ml) dis-
played the lowest activity whereas D. senegambiensis and A.
monticola EtOH extracts had the highest activity (EC50 = 22.
48 ± 1.62 and 19.74 ± 1.98 μg/ml). The DPPH free radical
scavenging activity of compound 8 was comparable to that
of the standard antioxidant vitamin C. These results corrob-
orate the FRAP assay, where this compound exhibited the
best antioxidant activity.

Hemolytic activity
To investigate the potential use of extracts and com-
pounds 1–14, the cytotoxicity also has to be evalu-
ated. In this study, none of the tested samples
showed hemolytic activities against red blood cells at
concentrations up to 256 μg/mL and 2048 μg/mL for
isolated compounds and extracts respectively (results
not shown). This finding highlights the fact that the
observed biological activity is not due to cellular
toxicity.

Discussion
The findings of the present study showed that there
were differences between the antimicrobial activities of
plant extracts. These differences may be due to the dif-
ferent groups of secondary metabolites found in these
extracts. Indeed, the antimicrobial activity of medicinal
plants is correlated with the presence in their extracts of
one or more classes of bioactive secondary metabolites
[39]. The results also showed that the fractionation of
EtOH extracts of D. senegambiensis and A. monticola re-
duced their antimicrobial activity in EtOAc and n-BuOH
extracts. This indicates that the active principles might
be more concentrated in the EtOH extracts and more
diluted in their fractions. The antimicrobial activity of
plant extracts is considered to be highly active if the
MIC < 100 μg/mL; significantly active when 100 ≤MIC
≤512 μg/mL; moderately active when 512 <MIC

Table 2 Antimicrobial activity (in μg/ml) of extracts and isolated compounds from D. senegambiensis and A. monticola against
bacterial and yeast strains (Continued)

Crude extracts/
compounds

Inhibition
parameters

S. aureus
ATCC25923

S. aureus MSSA1 S. aureus MRSA3 S. aureus MRSA4 C. albicans
ATCC10231

C. tropicalis
PK233

C. neoformans H99

MMC 256 128 Nd 256 > 256 > 256 256

MMC/MIC 2 2 nd 2 nd nd 2

Reference drugs* MIC 1 1 16 32 2 0.5 1

MMC 1 1 16 32 2 1 1

MMC/MIC 1 1 1 1 1 2 1

*: Ciprofloxacin for bacteria and nystatin for fungi; compounds 1–6 and compounds 3, 4, 7–14 were isolated from D. senegambiensis and A. monticola
respectively; compounds 1–2, 11 and 14 were not tested; nd: not determined. MIC: Minimum Inhibitory Concentrations; MMC: Minimum Microbicidal
Concentrations; DSEtOH = D. senegambiensis EtOH extract; DSEtOAc = D. senegambiensis EtOAc extract; DSBuOH = D. senegambiensis n-BuOH extract; AMEtOH = A.
monticola EtOH extract; AMEtOAc = A. monticola EtOAc extract; 3: ursolic acid; 4: sitosterol 3-O-β-D-glucopyranoside; 5: vitexin; 6: trans-tilliroside; 7: 3,4′-di-O-
methylellagic acid; 8: dimethyl 4,4′,5,5′,6,6′-hexahydroxybiphenyl-2,2′-dicarboxylate; 9: lupeol; 10: ellagic acid; 12: 3-O-methylellagic acid 4′-O-β-D-xylopyranoside;
13: oleanolic acid
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≤2048 μg/mL; weakly active if MIC > 2048 μg/mL and
not active when MIC > 10 mg/mL [40]. Hence, the
EtOH extract of D. senegambiensis was highly active
(MIC < 100 μg/mL) against S. aureus MSSA1; signifi-
cantly active (100 ≤MIC ≤512 μg/mL) against S. aureus
ATCC25923, S. aureus MRSA3, S. aureus MRSA4 and
C. neoformans; moderately active (512 <MIC ≤2048 μg/
mL) on C. albicans and C. tropicalis. The antibacterial
and antifungal activities of extracts support the use of D.
senegambiensis and A. monticola in traditional medicine
for the treatment of microbial infections.
Antimicrobial cutoff points have been defined in the

literature to enable the understanding of the potential of
pure compounds as follows: highly active: MIC below
1 μg/mL (or 2.5 μM), significantly active: 1 ≤MIC
≤10 μg/mL (or 2.5 ≤MIC < 25 μM), moderately active:
10 <MIC ≤100 μg/mL (or 25 <MIC ≤250 μM), low ac-
tivity: 100 <MIC ≤1000 μg/mL (or 250 <MIC ≤2500 μM
and not active: MIC > 1000 μg/mL (or > 2500 μM) [40].
Based on this, most of the antimicrobial activities of the
tested triterpenoid and phenolic derivatives could be
considered as significant, moderate and weak depending
on the sensitive microorganisms.

As mentioned previously, triterpenes are known to
display significant antimicrobial properties [41–43].
With this in mind, we examined the inhibitory activity of
compounds 3, 4, 9 and 13 against S. aureus and yeast strains.
Although the isolated triterpenoid derivatives did not display
any significant antimicrobial activity, these compounds
showed some moderate and weak anti-staphylococcal activ-
ity as well as weak antifungal activity against C. albicans, C.
tropicalis and C. neoformans. Generally, compounds 7, 10
and the mixture of 10+ 12 showed prominent activity
against methicillin-resistant S. aureus MRSA3 and MRSA4
and other microbes. Although the test compounds were not
as active as the standard drugs, ciproflaxacin and nystatin,
these compounds may be employed in situations where
there is resistance to anti-staphylococcal drugs. Compounds
7 and 10 are therefore the lead candidates in the search for
antimicrobial agents.
From the structure-activity-relationship point of

view, compounds 4, 5 and 6 with the same basic
skeleton, have the sugar moieties which should be re-
sponsible for the differences in their activity. The dif-
ference in the antimicrobial activity of compounds 7
and 10 suggests that the contribution of electron-

Fig. 2 Reducing power activities of the tested samples as well as butylated hydroxytoluene (BHT). Results represent the mean ± standard
deviation of the triplicate reducing power at each concentration. Compounds 1–2, 11 and 14 were not tested; compounds 3–4, 9 and 13 were
not active; DSEtOH = D. senegambiensis EtOH extract; DSEtOAc = D. senegambiensis EtOAc extract; DSBuOH = D. senegambiensis n-BuOH extract;
AMEtOH = A. monticola EtOH extract; AMEtOAc = A. monticola EtOAc extract
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donating groups (-OH and –OCH3) is remarkable in
influencing the activity. The antimicrobial activities of
purified phenolic derivatives corroborate with those of the
early reports against bacteria and fungi [5, 26, 44]. The
antimicrobial inhibitory mechanisms of phenolic com-
pounds found active in this study, may be due to iron
deprivation or hydrogen bounding with vital proteins such
as microbial enzymes [45]. Lipophilic flavonoids may dis-
rupt microbial membranes whereas terpenes may have the
ability to disrupt microbial membrane and this may ex-
plain their antimicrobial properties [46].
Reducing power is associated with antioxidant activity

and may serve as a significant reflection of the antioxi-
dant activity [47]. In this study, the crude extracts, frac-
tions and isolated compounds from D. senegambiensis
and A. monticola exhibited concentration-dependent re-
ducing power. The reducing capacity of extracts is much
related to the presence of biologically active compounds
(phenols) with potent donating abilities [48]. The anti-
oxidant potential of each extract/compound was also
measured using the change in its absorbance of deco-
lourized DPPH free-radical as it accepts electrons from
the antioxidant-rich samples. A free radical is a species
capable of independent existence that contains one or
more unpaired electrons. Free radicals contribute to the
elimination of infected cells, but they can also react with

cellular DNA or other macromolecules, either damaging
them directly or setting in motion a chain reaction
resulting in extensive damage of cellular structures [49].
The present study showed that the free radical scaven-
ging activity of D. senegambiensis and A. monticola is
due to the presence of antioxidant-rich compounds like
phenolic derivatives. Indeed, phenolic compounds are
known to be potential antioxidants due to their ability to
scavenge free radicals and active oxygen species such as
singlet oxygen, superoxide anion and hydroxyl radicals
[50]. Hence, the presence of such compounds could ex-
plain the antioxidant activity found in the studied plant
extracts. The results of the antioxidant study show that
extracts from D. senegambiensis and A. monticola as well
as compounds 5–8, 10 and mixture of 10 + 12 may have
great relevance in the prevention and therapies of dis-
eases in which oxidants or free radicals are implicated.

Conclusions
The phytochemical study of the EtOH extracts from the
studied plant species afforded fourteen triterpenoid and
phenolic derivatives. Compounds obtained from D. senegam-
biensis are β-amyrin palmitate (1), α-amyrin acetate (2),
ursolic acid (3), sitosterol-3-O-β-D-glucopyranoside (4);
vitexin (5) and trans-tiliroside (6). Ursolic acid (3), sitosterol-
3-O-β-D-glucopyranoside (4), 3,4′-di-O-methylellagic acid

Fig. 3 Equivalent concentrations of tested samples scavenging 50% of DPPH radical (EC50). Results represent the mean ± standard deviation of
the triplicate EC50 of each sample. Letters a - h indicate significant differences between samples according to one way ANOVA and Waller
Duncan test; p < 0.05. Compounds 1–2, 11 and 14 were not tested; compounds 3–4, 9 and 13 were not active; DSEtOH = D. senegambiensis
EtOH extract; DSEtOAc = D. senegambiensis EtOAc extract; DSBuOH = D. senegambiensis n-BuOH extract; AMEtOH = A. monticola EtOH extract;
AMEtOAc = A. monticola EtOAc extract
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(7), dimethyl 4,4′,5,5′,6,6′-hexahydroxybiphenyl-2,2′-dicar-
boxylate (8), lupeol (9), ellagic acid (10), 3-hydroxy-
4,5-dimethoxybenzoic acid (11), 3-O-methylellagic acid
4′-O-β-D-xylopyranoside (12), oleanolic acid (13), and
amphiblemmone A (14) were isolated from A. monticola.
The present study revealed the potential of D. senegambien-
sis and A. monticola as well as the most active compounds
(7, 8 and 10) in the search for new antimicrobial and antioxi-
dant agents. So, further investigations are needed.

Additional files

Additional file 1: NMR and Mass spectra of isolated compounds from
D. senegambiensis and A. monticola. (PDF 1113 kb)
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