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Abstract 

Background Oral microbiota comprises polymicrobial communities shaped by mutualistic coevolution 
with the host, contributing to homeostasis and regulating immune function. Nevertheless, dysbiosis of oral bacterial 
communities is associated with a number of clinical symptoms that ranges from infections to oral cancer. Peri-implant 
diseases are biofilm-associated inflammatory conditions affecting the soft and hard tissues around dental implants. 
Characterization and identification of the biofilm community are essential for the understanding of the pathophysi-
ology of such diseases. For that sampling methods should be representative of the biofilm communities Therefore, 
there is a need to know the effect of different sampling strategies on the biofilm characterization by next generation 
sequencing.

Methods With the aim of selecting an appropriate microbiome sampling procedure for periimplant biofilms, 
next generation sequencing was used for characterizing the bacterial communities obtained by three different sam-
pling strategies two months after transepithelial abutment placement: adjacent periodontal crevicular fluid (ToCF), 
crevicular fluid from transepithelial abutment (TACF) and transepithelial abutment (TA).

Results Significant differences in multiple alpha diversity indices were detected at both the OTU and the genus 
level between different sampling procedures. Differentially abundant taxa were detected between sample collec-
tion strategies, including peri-implant health and disease related taxa. At the community level significant differences 
were also detected between TACF and TA and also between TA and ToCF. Moreover, differential network properties 
and association patterns were identified.

Conclusions The selection of sample collection strategy can significantly affect the community composition 
and structure.

Trial registration This research is part of a randomized clinical trial that was designed to assess the effect of tran-
sepithelial abutment surface on the biofilm formation. The trial was registered at Trial Registration ClinicalTrials.gov 
under the number NCT03554876.
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Background
Peri-implant health is defined by the absence of ery-
thema, redness, bleeding on probing, swelling and sup-
puration around dental implants. Despite high implant 
survival rates, different biological complications can 
affect osseointegrated implants, including peri-implant 
mucositis and peri-implantitis [58]. Peri-implantitis is 
an oral inflammatory process that affects the surround-
ing tissues of osseointegrated implants and results 
in the loss of supporting bone and destruction of soft 
tissues [99]. According to Daubert et al. [29] and Kon-
stantinidis et  al. [59], the prevalence of peri-implant 
disease range between 13 and 25%, leading to a sig-
nificant increase of patient morbidity, economic bur-
den and eventual implant loss [5, 32]. As is the case for 
periodontal diseases [67], the primary etiological fac-
tor in the development of peri-implant diseases is the 
biofilm, which is a complex synthropic microbial com-
munity consisting of adherent cells embedded within a 
matrix composed of extracellular polymeric substances 
[46]. However, some discrepancies have been identified 
in the biofilms from peri-implantitis and periodontitis 
sites [8, 79].

Approximately 700 species of Prokaryota have been 
identified in the oral cavity, predominantly ascribed 
to 12 phyla: Firmicutes, Fusobacteria, Proteobacteria, 
Actinobacteria, Bacteroidetes, Chlamydiae, Chloro-
flexi, Spirochaetes, SR1, Synergistetes, Saccharibacte-
ria (TM7) and Gracilibacteria [93]. Specifically, the 
mouth contains distinct niches with dynamic micro-
bial communities, including saliva, gingiva, the hard 
and soft tissues of teeth, the tonsil, the gingival sul-
cus, the throat, the hard and soft palates and the buc-
cal mucosa [31], and eventually dental implants [23]. 
These surfaces—whose differing chemistry, topography 
and stability provide different habitats for microorgan-
isms—are colonized preferentially by different bacte-
ria via surface-attachments, movements and complex 
interactions, resulting in spatial compositional vari-
ability [72]. Furthermore, oral bacterial communities 
exist in multiplex dynamic equilibrium states, with 
large and rapid changes in composition and activity in a 
temporal dimension in response to environmental con-
ditions  [44]. The microbial communities are in symbio-
sis with the host shaped by co-evolution, contributing 
to digestion and homeostasis, neurological signaling, 
regulating immune and endocrine functions, modify-
ing metabolism and eliminating toxins   [37, 41]. Nev-
ertheless, under certain conditions, several pathogenic 
strains that are usually dominated by commensal bacte-
ria can proliferate [84], and even some commensal bac-
teria can transit to a pathogenic lifestyle via complex 

changes involving gene expression patterns, the core 
genome and the pan-genome [70, 90, 115].

Several studies aiming to compare oral bacterial com-
munities under health and disease conditions have 
been conducted [14, 38, 56], some of them focused on 
characterizing peri-implant and periodontal microbiota 
and its pathological changes [36]. The bacterial profile 
associated with peri-implant disease was reviewed by 
Pérez-Chaparro et al. [85], Rakic et al. [94], Sahrmann 
et al. [98], Butera et al. [15], Gazil et al. [43] and Rod-
ríguez-Archilla and Palma-Casiano [96]. These authors 
revealed that the core peri-implantitis microbiome is 
enriched in periodontal-inflammation related taxa, 
including Fusobacterium nucleatum, Parvimonas micra 
and Aggregatibacter actinomycetemcomitans, Prevotella 
intermedia, Prevotella nigrescens, Treponema denticola, 
Tannerella forsythia, Campylobacter rectus and Por-
phyromonas gingivalis. According to most published 
research findings, oral bacterial communities from 
healthy implants, peri-implantitis and periodontitis 
sites show contrasting diversity and composition [28, 
43, 105, 119]. However, conclusions regarding the role 
of individual taxa in oral pathogenesis are difficult to 
draw due to the presence of confounding factors, vari-
ability in experimental designs, interindividual variabil-
ity and complex ecological communities. Furthermore, 
bacterial actions are often secondary to immunologic 
imbalance [4, 75].

Due to the irreversible nature of peri-implantitis, 
prognosis-based early therapeutic intervention is the 
best strategy to arrest the progression of the disease and 
prevent implant failure [114]. Thus, a wide range of early 
diagnosis methods have been suggested [19, 22, 95]. In 
this sense, molecular techniques—particularly metagen-
omic Next Generation Sequencing tests (mNGS)—are 
powerful approaches for the characterization of micro-
bial communities in the oral cavity, and also for the 
detection and surveillance of obligate or facultative oral 
pathogens associated with peri-implantitis [50, 103]. 
Considering the high variability in microbiota composi-
tion between different oral microbial habitats at multiple 
scales, the selection of appropriate sampling methods is a 
key aspect of implant disease risk assessment [6]. Sample 
collection via direct removal of transepithelial abutment 
and bacterial DNA isolation from transepithelial abut-
ment surface could be considered the most representa-
tive sampling strategy, but this is a destructive method 
and the replacement of the transepithelial abutment 
with another is required (thus making sampling harder, 
increasing the economic burden and preventing the pos-
sibility of long-term monitoring of the bacterial commu-
nity in that particular transepithelial abutment).
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Crevicular fluid collection via sterile paper points 
(either from an adjacent tooth or from the studied tran-
sepithelial abutment) was initially regarded as a prom-
ising approach, since it is nondestructive, fast and easy 
to carry out, and allows long-term sampling at different 
time points. The question is, could these alternative sam-
pling strategies be considered representative of bacterial 
communities formed on transepithelial abutment sur-
faces? Are microbial communities of samples collected 
using these methods significantly different than those 
obtained by sampling directly transepithelial abutments? 
In what respect and to what level? Thus, the aim of this 
preliminary research was to select the most appropri-
ate sampling approach to characterize bacterial biofilms 
from transepithelial abutment surfaces. For that, three 
sampling strategies were compared: crevicular fluid from 
an adjacent tooth (ToCF), crevicular fluid from transepi-
thelial abutment (TACF) and transepithelial abutment 
(TA), with a particular focus on peri-implant or peri-
odontal health and disease related taxa.

Methods
This research is part of a randomized clinical trial that 
was designed to assess the effect of transepithelial abut-
ment surface on the biofilm formation. The trial was reg-
istered at Trial Registration ClinicalTrials.gov under the 
number NCT03554876. The study protocol and informed 
consent, in full accordance with the ethical principles of 
the Declaration of Helsinki of 1975, as revisited in 2000, 
were approved by the ethical committee of investigation 
with medicines of the Basque Country (FIBEA-06-EC/17/
Multi-Im). This study constitutes a partial analysis of the 
results of this clinical trial aiming to assess the effect of 
sampling strategies on metagenomic outcomes. Addi-
tional information regarding the experimental design is 
provided as supplementary data (Supplementary Mate-
rial 1). For the analysis of the effect of sampling strategy, 
transepithelial abutments with a machined surface were 
included. Patient selection for this randomized con-
trolled clinical trial was based on the following criteria:

Inclusion criteria

• Patients with an age ≥ 18 years.
• Need for the placement of at least 3 dental 

implants.
• Complete mouth plaque index ≤ 20% and absence 

of active periodontal disease.
• Bleeding index ≤ 30%.
• Pocket probing depth at the adjacent teeth < 4 mm.
• No use of antibiotics in the last 6 months.
• Nonsmoker.
• Possibility of attending all the planned visits.

• Signing of informed consent.

Exclusion criteria

• Has severe hematological disease.
• Has received or receiving in the last 30 days at 

least one of the following treatments: radiother-
apy, chemotherapy, Immunosuppressive therapies, 
systemic corticoids, and anticoagulants.

• Presence of malignancy, hemangioma or angioma 
at the site where dental implants will be placed.

• Patients receiving bisphosphonates (oral or sys-
temic).

• Presence of metabolic osseous disease.
• Presence of diseases that affect the oral mucosa.
• Presence of diabetes mellites.
• Severe parafunctional habits and/or temporoman-

dibular joint disorders.
• Pregnancy or breast-feeding.
• Physical or mental disability to maintain good oral 

hygiene.
• Participating in other study.
• Other disabilities to participate in the study.

Clinical procedure
A total of 12 patients received professional oral hygiene 
and instructed how to maintain a good oral hygiene. 
After implant insertion, transepithelial abutments with 
machined surface were connected to the implants. Two 
months later, microbiome samples were acquired using 
different strategies. Sterile paper points size 30 (Maillefer, 
Ballaigues, Switzerland) were utilized to collect peri-
odontal crevicular fluid from adjacent teeth (ToCF) and 
peri-implant crevicular fluid (TACF). These samples were 
collected from at least one adjacent healthy tooth and 
also from each previously connected transepithelial abut-
ment with machined surface. After crevicular fluid col-
lection, transepithelial abutments (TA) were removed for 
processing. The collected samples were stored at -80  °C 
until bacterial DNA isolation.

DNA extraction
Total microbial metagenomic DNA from each sample 
was extracted using the DNeasy PowerBiofilm DNA iso-
lation kit (Qiagen, Germany) following the manufactur-
er’s instructions. The strips were homogenized (1 cycle 
at 6400 rpm for 30 s) with a Precellys 24 Tissue Homog-
enizer (Bertin Technologies, France) and the implants 
were homogenized with an IKA MS 3 digital vortex (IKA, 
Germany) for 10  min at 2250  rpm. DNA quantification 
and quality control was performed using a Nanodrop 
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8000 (Thermo Fisher Scientific, MA, USA) and a Qubit 
fluorometer (Thermo Fisher Scientific, MA, USA). 
Extracted DNA was kept frozen at − 30  °C until library 
preparation.

Library preparation and sequencing
16S rRNA library preparation workflow for MiSeq 
sequencing platform was performed as suggested by 
Illumina. The specific primers for the 16S rRNA gene 
(v3- v4 region) were selected from Klindworth et  al. 
[57] and combined with Illumina adapter overhang 
nucleotide sequences to obtain a single amplicon of 
approximately ~ 460 bp. After PCR product purification, 
dual index barcodes and Illumina sequencing adapters 
were attached using the Nextera XT v2 index kit (Illu-
mina, CA, USA) as a previous step to pooling, librar-
ies were quantified by LabChip GX touch HT nucleic 
acid analyzer together with DNA 5  K/RNA/CZE chip 
(PerkinElmer, MA, USA) and diluted for an estimated 
sequencing depth of ~ 100.000 reads per sample. finally, 
pooled libraries were denatured with NaOH and diluted 
with hybridization buffer (library loading concentra-
tion = 6 pm) before MiSeq (llumina, CA, USA) sequenc-
ing. PhiX was included in each run to serve as an 
internal control for these low diversity libraries. Paired-
end sequencing (2 × 300 bp) was performed using MiSeq 
v3 reagent kits (600 cycles) (Illumina, CA, USA).

Data processing
Secondary analysis was performed on BaseSpace using 
the 16S metagenomics application (Illumina, CA, USA). 
After assembling, full-length sequences from paired ends 
were referenced against the Illumina-curated version of 
Greengenes Consortium Database. The classification step 
is based on ClassifyReads, a high-performance imple-
mentation of the Ribosomal Database Project (RDP) 
Classifier [112].

Statistical analyses
Statistical analyses applied to explore the structure of 
bacterial communities with respect to their diversity, 
composition and bacterial association patterns across 
sampling methods and differential taxa abundance were 
performed in R [92]. Graphical data analysis was per-
formed via ggplot2 [113] and fantaxtic R packages for 
data visualization [110].

Alpha diversity
In order to summarize the structure of the observed 
bacterial communities, a set of common alpha diversity 
metrics in mNGS data were computed for each sample at 
both the species and the genus level: observed richness, 
Chao index [20, 21], Abundance Coverage Estimator 

(ACE) [25, 77], Shannon index [101], Simpson indices 
[54] and Fisher’s alpha index [39] using vegan [78], phy-
loseq [73] andPMCMRplus [88] R packages. General-
ized linear mixed-effects models were constructed and 
ANOVA tests were computed using lme4 to analyze the 
effect of sampling method on alpha diversity indices [7]. 
Assumptions underlying parametric in parametric sta-
tistics were checked in model residuals through visual 
inspection (QQ Plots and density distributions) and also 
by significance tests (Shapiro-Wilk and Levene’s test for 
assessing normality and homoscedasticity). Multiple 
comparisons were performed via Bonferroni corrected 
post hoc tests in the multcomp package [52].

Data normalization
Library size was standardized across samples using dif-
ferent normalization approaches available in metage-
nomeSeq [81] and NetCoMi [87] R packages: Total Sum 
Scaling – TSS [18], Cummulative Sum Scaling – CSS [82] 
and Centered Log-Ratio transformation – CLR [2].

Differential taxa abundance
Differential abundance testing was performed at differ-
ent taxonomic ranks via differential expression analyses 
based on multivariate differential association computed 
by MaAsLin2 R package [71].

Beta diversity
The effect of sampling method on beta diversity was 
assessed via Permutational Analyses of Variance (PER-
MANOVA) tests (1000 permutations) based on Aitch-
ison distance for the community composition at both the 
OTU and the genus level [1]. For visual inspection, dis-
similarity networks (Aitchison distance) were also con-
structed using NetCoMi [87] R package.

Association networks
After constructing microbial association networks based 
on SparCC (Sparse Correlations for Compositional data) 
correlation measure [40], differential network analy-
ses were conducted using the discordant method [104]. 
At both the OTU and the genus levels, differential plot 
networks were constructed and compared using the Net-
CoMi R package. A sparsification threshold of 0.5 was 
used for comparing global network properties, centrality 
measures and hub taxa in the NetCoMi package via per-
mutation tests using 1000 permutations. Adjusted Rand 
Index (ARI) and Graphlet Correlation Distance (GCD) 
measures were calculated to assess whether the cluster-
ing solutions are more or less similar than expected at 
random or distance similarities [91, 116].  As a measure 
of conditional dependence, SPIEC-EASI (Sparse InversE 
Covariance estimation for Ecological Association and 
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Statistical Inference) pipeline was also applied to non-
transformed data. Association network properties were 
computed, and keystone taxa were selected from node 
degree (number of connections) and betweenness (node 
centrality) measures using SpiecEasi R package [65].

Results
The mean age of study participants was 56 years, ranging 
from 38 to 71 years, whereas the sex composition was 7 
females (58%) and 5 males (42%). A total of 15 implants 
were placed in the following positions: 14 (1), 25 (1), 26 
(1), 27 (1), 34 (1), 36 (2), 37 (2), 45 (1), 46 (2) and 47 (3). 
The number of dental implants in which transepithelial 
abutments with machined surface were placed ranged 
from one to two (only one transepithelial abutment with 
machined surface was placed in a total of nine patients, 
while a total of two transepithelial abutments with 
machined surface were placed in the remaining three 
patients).

As shown in Fig.  1, a significant effect of sampling 
method on most bacterial alpha diversity indices was 
detected, at both the OTU level (observed [p = 0.00090], 
Chao index [p = 0.0026] and Fisher’s alpha index 
[p = 2.4E−05]) and at the genus level (observed [p = 0.019], 
Chao index [p = 0.047], Fisher’s alpha index [p = 0.00038] 
and Simpson’s indices [p = 0.014]). After performing pair-
wise comparisons, significant differences in observed 
richness, Chao and Fisher’s alpha indices were identi-
fied between ToCF/TACF and TA at both the OTU and 
the genus level, and in Simpson’s indices at the genus 
level. No significant differences were detected in Shan-
non or Simpson’s diversity indices at the OTU (p = 0.81 
and p = 0.20, in each case) or in the Shannon index at the 
genus level (p = 0.30).

According to Fig.  2, Firmicutes (39–53%), Bacteroi-
dota (9.4–21%), Actinobacteria (6.7–8.9%), Fusobac-
teria (5.9–9%) and Proteobacteria (5.5–9.5%) are the 
most abundant phyla in the studied samples, with a 
higher proportion of Firmicutes in ToCF (53%) and 
TACF (52%), and more Bacteroidota (21%), Fusobac-
teria (9.0%) and Synergistetes (1.6%) in TA samples. 
Considering the class level, Bacteroidia (7.4–19%) 
and Negativicutes (7.3-13%) were two main taxa in all 
cases. Nevertheless, while the proportion Actinomyce-
tia (8.3%) was higher in ToCF and that of Bacilli was 
higher in both ToCF and TACF (37%), the abundance of 
Clostridia was higher in TACF (7.6%) and TA samples 
(10%). The orders Lactobacillales (12-33%), Bacteroi-
dales (7.5-19%), Eubacteriales (7.5-10%) and Veillonel-
lales (5.4-11%) reached the highest abundances in all 
sample types, together with Pasteurellales (3.5%) in 
TA and Actinomycetales in ToCF (5.4%) and Bacillales 
in TACF (4.1%) and ToCF (5.3%). On the other hand, 

Streptococcaceae (8.4-22%), Prevotellaceae (4.5-12%), 
Fusobacteriaceae (3.9-8.0%) and Veillonellaceae (5.4-
11%) were the most represented families in all sample 
types, along with Selenomonadaceae (2.5%) in ToCF, 
Bifidobacteriaceae (2.3%) and Clostridiaceae (3.0%) 
in TACF, Enterococcaceae and Bacillaceae in TACF 
(9.4% and 2.5% in each case) and ToCF (11% and 2.6% 
in each case), and Peptostreptococcaceae (6.9%), Por-
phyromonadaceae (6.1%), Pasteurellaceae (3.5%) and 
Treponemaceae (1.2%) in TA samples. At the genus 
level, Streptococcus (8.3-11%) and Veillonella (4.5-6.9%) 
were abundant genera in all sample types. Neverthe-
less, ToCF and TACF samples were richer in Lacto-
coccus (9.0% and 14% in each case) and Enterococcus 
(11%), whereas Prevotella (11%), Fusobacterium (8.1%), 
Porphyromonas (5.8%) and Peptostreptococcus (4.9%) 
reached higher frequencies in TA samples.

As shown in Fig.  3, significant differences in taxa 
abundances between sampling methods were identified 
in 0.58% (10/1732) of the OTUs shared by ToCF and 
TA, and in 0.40% of the OTUs shared by TCFA and TA 
(7/1732). Significant changes were also detected after 
comparing TA and ToCF in 3.1% of the families (10/322), 
4.1% of the orders (6/145), 8.7% of the classes (6/69) and 
6.3% of the phyla (2/32); and TA and TACF in 0.60% 
(5/830) of the genera, 2.0% (6/306) of the families and in 
1.4% (2/141) of the orders. Pairwise comparisons revealed 
significant changes in the frequency of some peri-implant 
or periodontal disease related taxa between different 
sampling methods. In TA samples, Synergistetes, Slackia, 
Peptostreptococcus, Atopobium, Mogibacterium, Slackia 
exigua or Peptostreptococcus stomatis showed increased 
abundance when compared to ToCF, whereas those of 
Lactococcus, Enterococcus, Cellulomonas, Corynebacte-
rium, Exiguobacterium, Bacillus, Microbacterium and 
Actinomyces naturae were reduced. In contrast to TACF, 
TA samples also showed lower abundances of several 
taxa, including Bacilli, Exiguobacterium, Enterococcus, 
Cellulomonas, Acinetobacter, Microbacterium, Paeniba-
cillus, Lactococcus and Actinomyces naturae.

Figure  4 shows compositional beta diversity biplot 
generated through Aitchison distance matrix consid-
ering taxa with at least 0.1% of sequencing reads. PER-
MANOVA analyses based on Aitchison distance showed 
that the effect of sampling method on bacterial com-
munity composition was statistically significant at both 
the OTU (p = 0.0010) and the genus level (p = 0.0010). 
Multilevel pairwise comparisons revealed significant dif-
ferences between TA and ToCF (OTU level: p = 0.0010; 
genus level: p = 0.0010) and between TACF and TA (OTU 
level: p = 0.0020; genus level: p = 0.0030), but not between 
TACF and ToCF (OTU level: p = 0.837; genus level: 
p = 0.797).
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Fig. 1 Boxplot of alpha diversity indices reflecting taxa abundance and consistency in samples grouped by sampling method at: A) the OTU level, 
and B) the genus level
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Bacterial association networks of ToCF, TACF and 
TA communities constructed from SparCC correlations 
retaining taxa with at least 0.1% of sequencing reads are 
represented in Fig.  5, where nodes represent bacterial 
taxa and edges represent either co-presence (positive 
association) or mutual exclusion (negative association) 
relationships. At both the OTU and the genus levels, 
pairwise network comparisons revealed high clustering 
similarities in terms of ARI and GCD, and no significant 
changes in global network properties when compar-
ing different sampling methods (Table  1). However, sig-
nificant differences were detected in terms of hub taxa 
between ToCF and TA samples at the OTU level (Jaccard 
Index = 0.00, p = 0.017), with a higher influence of Strep-
tococcus spp., Veillonella atypica and Neisseria mucosa 
in ToCF, and a particular importance of Porphyromonas 
pasteri, Centipeda periodontii, Selenomonas sputigena, 

Veillonella tobetsuensis or Parvimonas micra in TA sam-
ples (Table 2). Significant differences were also identified 
in betweenness centrality after comparing ToCF and TA 
sampling methods at the OTU level (Jaccard Index = 0.13, 
p = 0.0033). Nevertheless, no significant differences were 
observed after adjusting permutation p-values of the 
tests for differential centrality values for multiple test-
ing. Further information on these measures is available in 
Supplementary Material 2.

After constructing SPIEC-EASI based ecological net-
works, the highest rated keystone OTUs attending to 
their node degree and betweenness were Prevotella 
multisaccharivorax, Streptococcus dentapri, Peptococ-
cus niger, Porphyromonas circumdentaria, Mycoplasma 
salivarium and Streptococcus gallinaceus in ToCF, 
Streptococcus oligofermentans, Actinomyces odontol-
yticus, Bacteroides heparinolyticus, Acidaminococcus 

Fig. 2 Stacked bar graphs representing cumulative abundances of taxa that represent up to 10 most abundant taxa nested by Phylum (only top 
10 phyla were plotted) and grouped by sampling method (TSS normalized data). Taxonomic ranks nested by Phylum were: A) the Class level, B) 
the Order level, C) the Family level, and D) the Genus level
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Fig. 3 Differentially abundant taxa between pairwise sampling method (SM) comparison identified through MaAsLin2 multivariate association 
testing: A) Phylum level, B) Class level, C) Order level, D) Family level, E) Genus level and F) OTU level
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intestini, Moryella indoligenes and Leptotrichia wadei in 
TACF, and Rothia aeria, Streptococcus sobrinus, Mory-
ella indoligenes, Actinobaculum massiliense, Prevotella 
paludivivens and Megasphaera sueciensis in TA bac-
terial communities. At the genus level, keystone gen-
era were Butyrivibrio, Flavobacterium, Leptotrichia, 
Paracoccus, Pasteurella and Sphingomonas in ToCF, 

Haloactinobacterium, Porphyromonas, Sphingobacte-
rium, Shuttleworthia, Moraxella and Propionibacterium 
in TACF, and Bacillus, Alloprevotella, Campylobacter, 
Pontibacillus, Eikenella and Parascardovia in TA.

Differential network analyses (Fig. 6) revealed correla-
tion changes between certain genera following pairwise 
comparisons. When comparing association patterns 

Fig. 4 Dissimilarity network based on Aitchison distance matrix representing the beta-diversity at: A) the OTU level, and B) the genus level 
retaining taxa with at least 0.1% of sequencing reads (zeros were replaced via multiplicative simple replacement and k-nearest neighbor was used 
as sparsification method)

Fig. 5 Bacterial association networks from ToCF, TACF and TA at the OTU and genus levels constructed using SparCC correlation coefficients 
for compositional data retaining taxa with at least 0.1% of sequencing reads. For network sparsification, only edges corresponding to an absolute 
association greater or equal than 0.7 (OTU level) and 0.6 (genus level) were represented in order to improve network readability
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from TACF and TA samples, the differential network 
analysis revealed significant correlation changes between 
a large number of genera, including Clostridium and Bifi-
dobacterium, Bifidobacterium and Dialister, Fusobacte-
rium and Haemophilus or Actinomyces odontolyticus and 
Veillonella atypica (inversely correlated in TACF and no 
correlated in TA), and Peptostreptococcus and Haemophi-
lus, Campylobacter and Oribacterium or Bifidobacterium 
and Porphyromonas (no correlated in TACF and nega-
tively correlated in TA). Pairwise comparisons between 
TA and ToCF sampling methods also showed strong 
positive correlations in ToCF samples that remained no 
significant in TA samples (Fusobacterium and Selenom-
onas, Alkaliphilus and Dysgonomonas, Dysgonomonas 
and Actinomyces, Gemella and Haemophilus, Rothia 
and Streptococcus, Rothia and Parascardovia, or Hae-
mophilus and Lautropia) and viceversa (Megasphaera 
and Prevotella). Moreover, some negative correlations 
between taxa detected in ToCF samples were not identi-
fied in TA samples (Treponema and Rothia, and Selenom-
onas and Rothia) and viceversa (Lautropia mirabilis and 
Haemophilus parainfluenciae, Actinomyces odontolyticus 
and Prevotella maculosa, or Atopobium parvulum and 
Streptococcus cristatus). No significant differential corre-
lations were observed between ToCF and TACF samples.

The effect of sampling strategy on the metagenomic 
profile of transepithelial abutments at different levels of 

analysis, including alpha diversity, beta diversity, differen-
tial taxa abundance and association network properties, 
was summarized in Table 3.

Discussion
When considering healthy peri-implant environments, 
bacterial colonization of the implant surface tends to be 
like healthy surrounding periodontal sites, with lower 
diversity [49]. However, it evolves toward the establish-
ment of organized biofilms within the next two weeks [9]. 
Despite the fact that salivary pellicles adsorbed to implant 
surfaces promote the adhesion of microbes, its molecular 
features (chemical composition) and the immunological 
microenvironment determine the microbial colonization 
process [33]. In the present study, certain alpha diversity 
metrics (Observed taxa, Chao index, Fisher’s alpha index 
and Simpson’s indices) have revealed significant differ-
ences between crevicular fluid samples (ToCF and/or 
TACF) and transepithelial abutments (TA). Differential 
statistical significance between diversity metrics could 
be explained by the varying influence of richness, even-
ness and dominance in each index. Considering that TA 
samples, as opposed to crevicular fluid samples, account 
not only free-living bacteria around transepithelial abut-
ments, but also most biofilm forming surface adhered 
bacteria, these results suggest that tooth surface could 
harbor a richer microbiota than TA surface. These results 

Table 1 Results from testing global network metrics of the networks in Fig. 5 for group differences (1000 permutations). The 
computed measures for ToCF, TACF and TA, the absolute difference, and the p-value adjusted for multiple testing using the adaptative 
Benjamini-Hochberg method [11, 66] at both the OTU and the genus level are summarized

Significance codes: ***: p ≤ 0.001; **: p ≤ 0.01; *: p ≤ 0.05

Whole network OTU level
Global network properties diff ToCF-TACF p-value diff ToCF-TA p-value diff TACF-TA p-value
Number of components 1.0 0.49 2.0 1.0 2.0 0.053

Clustering coefficient 0.027 0.60 0.021 1.0 0.0060 0.94

Modularity 0.059 0.29 0.0050 0.67 0.069 0.42

Positive edge percentage 1.7 0.51 0.22 1.0 5.9 0.092

Edge density 0.012 0.82 0.91 0.71 0.030 0.69

Natural connectivity 0.016 0.57 0.010 0.48 0.016 0.67

Adjusted Rand Index (ARI) 0.38 0.0 0.40 0.0 0.29 0.0

Graphlet Correlation Distance (GCD) 0.29 0.97 0.74 0.63 0.92 0.63

Whole network Genus level
Global network properties diff ToCF-TACF p-value diff ToCF-TA p-value diff TACF-TA p-value
Number of components 0.0 1.0 1.0 0.61 1.0 0.56

Clustering coefficient 0.0020 0.97 0.028 0.72 0.029 0.74

Modularity 0.0040 0.96 0.0080 0.94 0.014 0.92

Positive edge percentage 4.2 0.36 2.9 0.69 2.7 0.76

Edge density 0.0010 0.99 0.048 0.41 0.011 0.81

Natural connectivity 0.0030 0.87 0.023 0.11 0.0030 0.83

Adjusted Rand Index (ARI) 0.26 0.0 0.23 0.0 0.26 0.0

Graphlet Correlation Distance (GCD) 0.76 0.79 1.4 0.36 1.1 0.60
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Fig. 6 Differential association networks based on Fig. 5: A) OTU level and B) Genus level

Table 3 Summary of the effect of sampling method on the description of the bacterial communities from transepithelial abutments

Component Variable Differences

Alpha diversity Richness Yes

Diversity Fisher’s alpha (OTU and genus) 
and Simpson’s indices (genus)

Beta diversity Overall taxonomic composition Yes

Differential abundance Yes

Association network analysis Global network properties No

Centrality measures No

Hub taxa Yes

Differential associations Yes



Page 13 of 18Anitua et al. BMC Oral Health         (2024) 24:1001  

– indicating a lower diversity in peri-implant microbi-
ota—are in agreement with those of Dabdoub et al. [28] 
and Payne et al. [83]. Nevertheless, bacterial diversity in 
peri-implantitis sites is usually higher than that of healthy 
periodontal sites [106, 120], but lower than that of peri-
odontitis environments  [8].

According to the consulted bibliography, differentially 
abundant taxa related to healthy sites include mainly 
gram-positive cocci and non-motile bacilli, with higher 
frequencies of lactic acid bacteria (Lactobacillales and 
Bifidobacterium) [47], Lactococcus [15], Haemophi-
lus [97], Veillonella [97, 102, 109], Streptococcus [97, 
109],  Neisseria  [97], Rothia [97], Prevotella [42, 109], 
Actinomyces [64, 109]), Leptotrichia [15, 64], Gemella 
spp. [102], Vibrio [42], Brevundimonas [15, 118], Pseu-
domonas [118], Oribacterium spp., Selenomonas spp. and 
Cardiobacterium spp. [28], Staphylococcus [105], Granu-
licatella adjacens, Veillonella dispar, Actinomyces meyeri 
and Streptococcus mitis [27], Propionibacterium acnes 
[120], Acinetobacter, Paracoccus and Moraxella [45], 
Dialister [61], Abiotrophia defectiva [111], Microbacte-
rium   [108], Corynebacterium ([105]), Novosphingobium 
capsulatum [36], Propionibacter, Lautropia, Chitin-
ophagaceae, Brevundimonas nasdae, Delfitia acidivorans, 
Rothia aeria, Anaerofilum pentosovorans, Anaerofi-
lum agile, Pseudoramibacter alactolyticus and Porphy-
romonas HMT-277/278 [15]. Moreover, Kroeger et  al. 
[63] found higher abundances of Lautropia mirabilis, 
Rhodobacteriaceae or Bergeyella in shallow peri-implant 
pockets.

On the other hand, most published research findings 
confirm that peri-implantitis associated bacteria consist 
mainly of gram-negative motile anaerobic periopatho-
gens and opportunistic bacteria, including higher abun-
dancies of Porphyromonas gingivalis ([3, 10, 55, 68, 86, 
97, 103, 107, 109, 117]), Aggregatibacter actinomycetem-
comitans ([53,  68, 117]), Prevotella intermedia ([55, 68, 
74, 109]), Prevotella nigrescens [68, 74], Treponema den-
ticola ([17, 85, 103]), Tannerella forsythia ([3, 10, 74, 86, 
103, 117]), Fusobacterium nucleatum ([3, 10, 55, 109]), 
Parvimonas micra [17, 62, 109], Eubacterium [64, 109], 
Butyrivibrio [28, 64], Filifactor alocis [97, 109],  Pseu-
doramibacter [60], Desulfobulbus [16, 34], Streptococ-
cus ([27,  55, 109]), Exiguobacterium [24], Streptococcus 
mutans and Peptococcus [28, 64]. Koyanagi et  al. [62] 
reported that Chloroflexi, Tenericutes, Synergistetes, Pep-
tostreptococcus stomatis and Solobacterium moorei were 
detected only in peri-implantitis sites.

Peri-implantitis has been also associated with higher 
relative frequencies of Eikenella corrodens [17], Strepto-
coccus intermedius, Streptococcus mitis, Haemophilus 
influenzae and Treponema socranskii [86], Campyblo-
bacter gracilis, Dialister invisus, Eubacterium infirmum 

and Mitsuokella (da Silva et  al. 2013), Campylobacter 
rectus [17, 26], Fusobacterium [64, 74], Slackia exigua, 
Parascardovia denticolens and Centipeda periodontii 
[109], Mycoplasma and Treponema [64], Streptococ-
cus non-mutans [28], Neisseria, Kingella, Enterococcus, 
Fretibacterium and Bacillus [55], Propionibacterium, 
Paludibacter, Staphylococcus, Filifactor and Mogibacte-
rium [105], Treponema maltophilum [97], Olsenella and 
Sphingomonas [76], Veillonella [30, 64], Treponema [63, 
117], Prevotella tannerae [35], Actinomyces [28], Freti-
bacterium fastidiosum [97], Pseudoramibacter alactol-
yticus [28, 62], Campylobacter [64] and Staphylococcus 
aureus [86], Stenotrophomonas, Leuconostoc, Faecalibac-
terium prausnitzii, Haemophilus parainfluenzae, Prevo-
tella copri, Bacteroides vulgatus and Bacteroides stercoris 
[80]. Furthermore, the following taxa are also strongly 
associated with subgingival plaque of periodontitis: Allo-
prevotella, Phocaeicola, Johnsonella and Mycoplasma 
[24].

Oral micro-habitats, including teeth, transepithelial 
abutments and crevicular fluid, provide unique biologi-
cal niches that harbors specific bacterial communities. 
Compositional variation in oral microbiota related to 
sampling origin has been highlighted by multiple studies, 
including crevicular fluid around dental prostheses that 
were fabricated by various biomaterials and fabrication 
techniques [13, 48], supra and subgingival biofilm [103, 
117] and different peri-implantitis lesions [63, 89]. More-
over, dental intervention-related perturbations lead to 
significant environmental changes at the microscale level, 
including surface topology, chemistry and immunologi-
cal response, resulting in dysbiosis and structural dis-
ruption of the oral microbiota. Compositional variation 
was higher between bacterial communities from tran-
sepithelial abutments (TA) and periodontal crevicular 
fluid (ToCF). In this sense, a significant reduction in cer-
tain peri-implant or periodontal health related taxa was 
observed in TA when compared to ToCF (Bacilli, Actino-
mycetia and Lactococcus), while several of those related 
with oral dysbiosis showed increased relative frequencies 
(Synergistetes, Peptostreptococcus, Slackia, Atopobium 
and Mogibacterium).

Considering higher taxonomic ranks, higher abun-
dances of certain taxa after implant insertion (Bacteroi-
dota, Synergistetes and Coriobacteriaceae) and lower 
frequencies of Actinomycetia, Bacillaceae, Cellulo-
monadaceae and Enterococcaceae were identified in TA 
samples. In this context, Heyman et  al. [51] reported 
analogous population trends for Bacteroidota and Corio-
bacteriaceae after implant placement using a murine 
model. On the other hand, certain peri-implant and peri-
odontal disease related taxa, including Mogibacterium, 
Slackia, Peptostreptococcus, Atopobium, Slackia exigua 
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and Peptostreptococcus stomatis showed increased abun-
dances in transepithelial abutments. Similar results were 
obtained after comparing crevicular fluid from transepi-
thelial abutments (TACF) with transepithelial abutments 
(TA), with lower frequencies of several opportunistic 
commensal enterococci, Cellulomonas, Lactococcus and 
Actinomyces naturae in TA samples. When compared 
with crevicular fluid samples extracted transepithelial 
abutments, TA were also depleted in other taxa, includ-
ing Bacilli, Paenibacillus, Exiguobacterium, Microbacte-
rium and Corynebacterium. These results do not agree 
with those of Schaumann et al. [100], who concluded that 
peri-implant and periodontal tissues share a similar bio-
film composition at the genus level.

Dental intervention-related perturbations lead to sig-
nificant environmental changes at the microscale level, 
including surface topology and chemistry, resulting in 
dysbiosis and structural disruption of the oral microbi-
ota. Abundance-based associations also revealed differ-
ential correlation across sampling methods, particularly 
when TA was compared to ToCF. More specifically, 
differential associations affecting mainly peri-implant 
health and peri-implantitis related taxa (Bifidobacterium, 
Haemophilus, Campylobacter, Peptostreptococcus, Por-
phyromonas, Treponema, Selenomonas, Fusobacterium, 
Rothia and Prevotella) were detected after performing 
pairwise comparisons. Moreover, significant variations 
regarding hub OTUs were identified between ToCF and 
TA. These findings suggest that both peri-implant and 
crevicular fluid bacterial communities are character-
ized by a particular distinctive associational footprint as 
opposed to that of the adjacent teeth or transepithelial 
abutments and also that environmental gradients and 
complex ecological interactions contribute to variations 
in ecosystem structure and function.

According to the results found in the present study, 
the abundances of most peri-implantitis or periodontal 
disease related taxa were higher in TA samples, whereas 
those of peri-implant health associated bacteria were 
higher in ToCF or TACF. Thus, current data suggest that 
implant micro-habitats are usually characterized by a 
dysbisotic shift, enriched in Synergistetes, Bacteroidota, 
Atopobium, Slackia, Peptostreptococcus, Mogibacte-
rium and Slackia exigua, and depleted in Bacillus, Pae-
nibacillus, Enterococcus, Lactococcus, Microbacterium, 
Corynebacterium and Actinomyces naturae. Differential 
abundance patterns between crevicular fluid from tran-
sepithelial abutments and transepithelial abutments, not 
detected when comparing crevicular fluid samples from 
different origins, reflect the particularities of specific oral 
niches [69]. Furthermore, sampling method was a sig-
nificant source of bacterial community dissimilarity. In 
this sense, significant differences were identified at the 

community level between TA and ToCF and also between 
TACF and TA, but not between ToCF and TACF. With 
respect to network properties, sampling procedures did 
not significantly differ in terms of global network prop-
erties or centrality measures. However, variations in hub 
OTUs were identified between ToCF and TA. By con-
trast, TACF and TA shared the most relevant hub taxa at 
both the OTU and the genus level.

As stated by Berry and Widder [12], hub taxa are not 
necessarily keystones in the microbial community, but 
ecologically relevant hub taxa are likely to be. Thus, dif-
ferent keystone taxa were also identified in bacterial 
communities from different sampling origins. Consid-
ering node degree and betweenness, Streptococcus oli-
gofermentans, Actinomyces odontolyticus, Bacteroides 
heparinolyticus, Acidaminococcus intestini, Moryella 
indoligenes, Leptotrichia wadei, Haloactinobacterium, 
Porphyromonas, Sphingobacterium, Shuttleworthia, 
Moraxella and Propionibacterium have a pivotal role 
in TACF samples, whereas Rothia aeria, Streptococcus 
sobrinus, Moryella indoligenes, Actinobaculum massil-
iense, Prevotella paludivivens, Megasphaera sueciensis, 
Bacillus, Alloprevotella, Campylobacter, Pontibacillus, 
Eikenella and Parascardovia showed a higher influence in 
TA samples. On the other hand, Prevotella multisaccha-
rivorax, Streptococcus dentapri, Peptococcus niger, Por-
phyromonas circumdentaria, Mycoplasma salivarium, 
Streptococcus gallinaceus, Butyrivibrio, Flavobacterium, 
Leptotrichia, Paracoccus, Pasteurella and Sphingomonas 
were identified as drivers of microbiome structure and 
functioning in ToCF samples. With the exception of Fla-
vobacterium (ToCF), Sphingobacterium (TACF), Rothia 
aeria (TA), Moraxella (TACF), Sphingomonas (ToCF) 
and Rothia mucilaginosa (TA), most keystone taxa were 
obligate (eg. Bacteroides heparinolyticus, Moryella indoli-
genes, Acidaminococcus intestine, Peptococcus niger, 
Megasphaera sueciensis, Shuttleworthia, Campylobacter, 
Butyrivibrio, Actinomyces, Propionibacterium) or fac-
ultative anaerobes (eg. Streptococcus spp., Parascardo-
via, Alloprevotella, Bacillus, Paracoccus, Leptotrichia, 
Eikenella, Porphyromonas, Pasteurella, Mycoplasma sali-
varium or Actinobaculum massiliense).

Conclusions
According to these findings, it should be highlighted 
that bacterial community assessment via mNGS could 
be considered a promising strategy for peri-implant and 
periodontal health surveillance and early peri-implant 
disease diagnosis. Despite the fact that, regardless of 
sampling approach, association network properties 
and centrality measures from transepithelial bacterial 
communities were similar, significant differences were 
detected in terms of hub taxa, alpha and beta diversity 
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and individual taxa abundance, including some peri-
implant and periodontal health related taxa. In most 
aspects, crevicular fluid samples (ToCF and TACF) are 
not representative of bacterial communities developed 
on transepithelial surfaces. As a result, it can be con-
cluded that the choice of sampling strategy can deeply 
affect the results of oral microbiota profiling, with a 
particular emphasis on peri-implant health related bac-
terial taxa.
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